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What is this? A Wikipedia paper, by an author designated by “AA”,
that introduces important Category Theory (CT) concepts and discusses
some interesting points. For students of CT, this revision may be useful.

I have edited and illustrated the the Wikipedia entry. All possible errors
and omissions are of course of my entire responsibility.
Armando B. Matos.

1 Categories

1.1 Definition

A category C is a collection of objects A, B, C. . . and arrows f , g, h. . . between
the objects with following properties:

– Two arrows can be composed, if the first arrow ends where the second arrow
begins. If f is an arrow from object A to object B and g is an arrow from
object B to object C then their composition g ◦ f , also denoted by f ; g, is an
arrow from A to C.

– Composition of arrows is associative, the order of composition does not matter.
(h ◦ g) ◦ f = h ◦ (g ◦ f).

– For every object A there is a special arrow 1A : A → A called the identity
arrow of A. For every arrow f : B → A and g : A → C, the identity arrow
satisfies 1A ◦ f = f and g ◦ 1A = g.

Arrows are often called morphisms. The collection of all arrows from A to B is
written homC(A, B).

1.2 Discussion

These principles are just those of the “algebra of function composition”. So we
are making a shift from thinking about functions in terms of what they do to the
elements of sets, to thinking about (vaguely) function-like entities that are described
in terms of their external behavior in terms of composition. But we see from the
upcoming list of examples that arrows are only function-like in certain respects;
they definitely do not have to actually be functions.

From the definition, some basic results follow – in the same way they do for monoids
and groups:

– A sequence of arrows a1,. . . an composes to the same thing no matter how it is
parenthesized, as long as the order is kept. e.g. a◦(b◦(c◦d)) = ((a◦b)◦c)◦d =
(a ◦ b) ◦ (◦c ◦ d), etc.

– Identities are unique. That is, if we have some h : A→ A such that h ◦ f = f

for all f : B → A and g ◦ h = g for all g : A→ C, then h = 1A.

The first of these is usually proved by induction in graduate level introductions
to abstract algebra (such as Serge Lang’s “Algebra”), but the proof is not very
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illuminating (at least to beginners). The proof of the second is however a mini-
classic, which you would have already encountered if you have done any group
theory:

h = h ◦ 1A = 1A

It is the two-sidedness of the property characterizing the identity that makes this
work.

1.3 Examples

1.3.1 Sets

Sets is a category whose objects are sets and whose arrows are functions.

There is however a technical point to manage. A function may be presented as a
kind of relation between two sets: its domain, which it is “from”, and its codomain,
which it is “to”. This is what is needed for category theory, but in the most
commonly encountered set-theoretical definition, a function is just a set of ordered
pairs meeting the condition that nothing appears as first member of two different
pairs – different pairs being those with either different first or second members, by
the set-theoretical principle of extensionality. The set of second members is called
the range, and a function is then “to” any set that contains the range as a subset.
This would not work out for category theory, since we need each arrow to have only
one domain and only one codomain.

So to make a set-theoretic function serve as a category arrow in Sets, we need to
bundle it with with some superset of its range, which then constitutes is codomain,
so it is an ordered pair 〈set-theoretic function, codomain〉. But we do not have to
add a domain, since, unlike the range, the domain is determined intrinsically by the
set of ordered pairs.

So, having taken all that on board and proved to ourselves that Sets is a category,
we get for free the results from the Discussion section above that identities are
unique.

1.3.2 Monoids

Every monoid is a category with only one object. Category is a generalization of
monoid. The section on Free Categories just below expands on this point.

1.3.3 All monoids

The category of monoidsMon is a category, whose objects are monoids and whose
arrows are monoid homomorphisms.

This represents a very large and important class of examples: for pretty much any
of the kinds of algebraic systems you might study in an Abstract Algebra course,
there will be a category with instances of the kind of system in question as objects,
and homomorphisms (however defined for that particular kind of system) as arrows.
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Figure 1: A simple directed graph.

1.3.4 Posets

A partially ordered set or a poset is a category, whose objects are elements of the
poset and whose arrows are “less than or equal” relations.

In greater detail, a preorder is a category in which there is at most one arrow
from any object A, to any object B. So the relation “there is an arrow from A,
to B”, will satisfy the axioms of reflexivity and transitivity, but not necessarily
either symmetry or antisymmetry. We can impose antisymmetry by requiring at
most one arrow connecting A and B, regardless of direction. This example provides
another instance where arrows are not functions. The Hasse diagram of a poset is a
directed graph whose corresponding free category is that set with its partial order.

1.3.5 All posets

The category of posets Pos is a category, whose objects are posets and whose arrows
are order preserving functions. If A and B are posets, then function f : A → B

is order preserving or monotone, if for every elements x and y in A, f(x) ≤ f(y)
if x ≤ y. This is another example where algebraic systems of some type are the
objects, and their homomorphisms the arrows.

1.4 Free Categories

1.4.1 Directed graphs

Consider Figure 1. Here we have objects (A, B,C, D) and arrows (w, x, y, z), the
basic furniture of a category, but no category because there are no rules. In partic-
ular, the only arrows present are the ones depicted; for instance, there is no identity
arrow on B and no arrow x ◦ y.

A directed graph is a collection of objects and arrows without any rules of compo-
sition or identity arrows. We say that a graph is small if the collections are sets. A
small directed graph can be described as a set O of objects and a set A of arrows,
and two functions dom : A → O and cod : A → O that associate domain and
codomain to each arrow. Conversely, given any two disjoint sets A and O, and any
two functions from A to O, we get a small directed graph.

1.4.2 Free category on a (directed) graph

An obvious way to get a category out of a graph is to let category arrows be (finite)
sequences of graph arrows, with the empty sequence 〈 〉 serving as the identity for

4



each node, and composition of sequences defined in the “obvious” way. Alterna-
tively, we could consider the transitive closure of the relation defined by the graph.

Well, that is the basic idea, but there are a few annoying technicalities. First, and
trivially, we have to decide whether to write our sequences in the order of traversal
of a path – intuitively natural –, or in the standard order of arrow (and function)
composition – counter-intuitive but supported by tradition. We will try to uphold
rationality against tradition for a few minutes and write our paths in the order of
traversal. So, technically an arrow f in a category freely generated by graph is
a sequence 〈x1, x2, . . . , xm〉 of arrows xi in graph such that cod(xi) = dom(xi+1)
for all indexes i. The word “freely” means that two sequences 〈x1, x2, . . . , xm〉 and
〈y1, y2, . . . , yn〉 represent the same arrow if and only if they are the same sequence,
that is

m = n and x1 = y1, x2 = y2, . . . , xm = yn

Composition of arrows is defined as: if f = 〈x1, . . . , xm〉, g = 〈y1, . . . , yn〉, and
cod(xm) = dom(y1), then:

g ◦ f = 〈x1, . . . , xm, y1, . . . , yn〉

Ugh. Well, eventually stuff like this gets easier to write for yourself than to read.
Note the confusing order switch between the structure of the composed sequence
and the arrow-composition notation. Associativity of course follows from the asso-
ciativity of composition of sequences.

The other technical point involves the identities and the requirements for something
to be an arrow. Can you figure out what it is and suggest a solution?

Hint/Solution. The problem is that arrows are supposed to have unique domains
and codomains, so the empty sequence technically can not serve as the identity
arrow for every node in the graph (= object in the free category). A reasonable
solution is to use the nodes themselves as their own identity arrows, and engineer
this by brute force into the definition of composition. �

We say that a category is free, if it is freely generated by some directed graph.

Free categories are of considerable importance for applying category theory to logic,
e.g. [Lambek and Scott (1986), “Introduction to Higher Order Categorical Logic”].
They also provide a fine illustration of why arrows do not have to be functions.
And they also illustrate the point above that a category is a generalization of a
monoid, since the category arrows are like monoid elements that can not always
be composed. Monoids in general have one feature that free categories can lack, in
that different compositions of arrows can result in the same monoid element. This
can happen with categories too, but not with free ones.

1.5 Foundational Issues

There are some tricky foundational points that arise in the definition of category.
The word “collection” was used where one might have expected “set”, because in
many important examples of categories, the collections of objects and arrows are
“too big” to be sets, but instead must be proper classes. The most obvious case
is our first example, the category Sets, where Russell’s Paradox tells us that there
can not be any such thing as a set of all sets, so the collection of objects of Sets
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can not be a set.

If the collections of objects and arrows of a category are sets, it is called a small
category, otherwise, a large category. So Sets is large, and any monoid is small.
What about a poset, orMon? Most of the large categories that people are interested
in, such as Sets, have the property that for any objects A, B, homC(A, B) is a set.
Such a category is called locally small.

Category theorists appear on the whole to not be very interested in fussing about
foundations, so if you can remember what “small”, “large”, and “locally small”
mean, you almost certainly know enough.

1.6 “Spinoff” Categories

All algebraic systems provide various further ones of the same kind; for groups, for
example, we might have some interesting subgroups and quotient groups, and will
always have lots of product groups. Categories seem to participate in the process
with an unusual degree of exuberance. For each of the “spinoff categories” below
(not a standard term, but it seems quite appropriate to this author (AA)), it is
a good basic exercise to prove that it really is a category. The proof is always a
routine demonstration that:

– The putative arrow-composition actually produces an arrow in the category.

– Composition is associative.

– Each object has an identity arrow

There are plenty more of these things than we illustrate here, but is it necessary to
learn them all at once?

1.6.1 The Opposite Category

For any category C, we also have the opposite category Cop, formed by retaining the
objects of C without change, but swapping the domain and codomain of each arrow.
Composition is defined by the equation fop ◦ gop = (g ◦ f)op. Yet another way of
making the point that arrows do not have to be functions. Here is an outline of the
proof that Cop really is a category. This is also often called the dual category.

Hint/Solution. Outline of proof that Cop is a category:

– The result of composition belongs to the opposite category by definition.

– Composition is associative via a chain of identities involving the definition of
opposite-composition and the associativity of the original category.

– The identities of the original category serve as identities for the opposite
category.

�
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Figure 2: Arrow h in slice category.
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Figure 3: Composition of arrows in slice category.

1.6.2 Pair Categories

For any categories C, D, we can form the pair category (C,D) whose objects are
pairs (C, D) of objects from C, D, respectively, and whose arrows are pairs (f, g),
of arrows of C, D, respectively, such that if f : C → C ′, g : D → D′, then

(f, g) : (C, D)→ (C ′, D′)

Composition is defined as:

(f ′, g′) ◦ (f, g) = (f ′ ◦ f, g′ ◦ g)

This is basically a direct product construction, and generalizes straightforwardly to
n-tuples.

1.6.3 Slice Categories

For any object A of a category C, the slice category of objects over A, denoted
by C/A, has as objects those arrows of C that have A as their codomain. The arrows
are a bit harder to describe. Suppose that f : B → A and g : C → A are objects
of C/A. Then h : B → C of C is also an arrow of C/A, from f to g, if g ◦h = f . This
is illustrated in the commutative diagram of Figure 2, which is a graph representing
some objects and arrows in the category, and there is a convention that any two
paths between the same node are the same arrow (typically derived by a different
composition of other arrows).

Commutative diagrams can be formalized as a way to represent facts about cate-
gories, e.g. [Barr and Wells 1999:91-94], but we will just take them as suggestive
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intuitive representations for equations, which will be the “official” format for im-
posing identities on different compositions of arrows.

We now need to define composition for the arrows; the basic idea is that the com-
posite of two slice-category arrows is the slice-category correspondent of the two
original arrows. We need to do a bit of work to show that this works, as expressed
in the diagram of Figure 3. Here h is an arrow f → f ′, and h′, one f ′ → f ′′. For
h′ ◦ h to be an arrow from f to f ′′, it must be the case that f ′′ ◦ h′ ◦ h = f , which
you can verify as an exercise. Associativity and identities then follow immediately
from these properties of the original arrows of C.
A (perhaps excessively) fine point is that, although people standardly speak of the
arrows of C/A as being certain of the arrows of C, this can not technically be quite
right, since arrows have unique domains and codomains, and these are different for
the arrows of the two categories. What we really want is for each suitable arrow
of C to induce a (different) corresponding arrow of C/A. A construction that would
suffice would be to have the arrows of C/A be triples of the form (original arrow,
new domain, new codomain).

2 Morphisms

2.1 Monomorphism

“One-to-oneness”, an “internal” property of function, is equivalent to the “external”
property of being cancellable on the left

g ◦ f1 = g ◦ f2 if and only if f1 = f2

Arrows that are not functions of any kind can not be one-to-one, but they can have
the cancellation property, giving us:

Monomorphism, a categorical analogy of injective function

A monomorphism (also called a monic morphism or a mono) is a morphism f :
X → Y which is left-cancellative in the following sense

for all morphisms g1, g2 : Z → X, f ◦ g1 = f ◦ g2 implies g1 = g2

The situation described by these equations is often depicted by this diagram:

Z X Y
g1

g2

f

Put another way, map f : X → Y is monic if and only if the induced map
f? : hom(Z, X) → hom(Z, Y ) is injective for all Z. Here f? is function such that
f?(g) = f ◦ g for all g in hom(Z, X). If your mind bounces off this statement at
first, it is definitely worth reflecting on until it really seems to make sense.

In the category Sets the monomorphisms are exactly the injective functions. Many
familiar arrows, such as the homomorphisms of various kinds of algebraic systems,
are functions with some additional restrictions placed on them – e.g. they must
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preserve some algebraic relationships. Such arrows are (almost?) always one-to-
one/injective as functions if and only if they are monic as arrows. Eventually we
will be able to formulate a more precise and general version of this claim.

Prove the following two easy results about monomorphisms:

– If f and g are monomorphisms, then g ◦ f is one too.

– If g ◦ f is a monomorphism, then f is one too.

Hint/Solution. Here are the proofs.

– Suppose f, g are monomorphisms, and g ◦f ◦h = g ◦f ◦h′. Then f ◦h = f ◦h′
(why?) and so h = h′ (why), so f ◦ g is a monomorphism.

– Suppose g◦f is a monomorphism, and f ◦h = f ◦h′. Then g◦f ◦h = g◦f ◦h′,
so h = h′. Therefore, f is a monomorphism.

If you are new to algebraic proofs, make sure you understand the implicit role of
associativity in these arguments �

2.2 Epimorphism

Likewise, there is an “external” version of the “internal” property of onto-ness:

Epimorphism is (almost) a categorical analog of surjective function

An epimorphism (also called an epic morphism or an epi) is a morphism f : X → Y

which is right-cancellative in the following sense:

for all morphisms g1, g2 : Y → Z, g1 ◦ f = g2 ◦ f implies g1 = g2

ZYX
g1

g2

f

Put another way, a map f : X → Y is epic if and only if the induced map f? :
hom(Y,Z) → hom(X, Z) is injective for all Z. Here f? is a function such that
f?(g) = g ◦ f for all g in hom(Y,Z).

In the category Sets the epimorphisms are exactly the surjective functions. There
is also another way to define surjective, which is equivalent to epimorphism in many
interesting categories, but certainly not in all categories.

From the discussion of “opposite categories”, we can see that a monomorpism f is an
epimorphism in Cop (or, if we want to be ultra-fussy, corresponds to one), and vice-
versa. This gives us free proofs for two results about epimorphisms corresponding to
the ones about monomorphisms above. We also say that mono- and epi-morphisms
are dual concepts.

2.2.1 Example: Non-surjective epimorphism

Consider the monoid homomorphism f from the natural numbers to the integers
that takes every number to itself, that is

f : N→ Z, where f(n) = n for all integers n
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The morphism f is clearly not surjective as a function in the category of sets. We
claim it is an epimorphism in the category of monoids.

Let M be any monoid and let g1, g2 be any monoid homomorphisms Z→M , such
that g1 ◦ f = g2 ◦ f . This means that g1 and g2 agree on all non-negative numbers.
We must show that they agree on negative numbers also. We do this by induction.

g1(−1) = g1(−1) ◦ 1M

= g1(−1) ◦ g2(0)

= g1(−1) ◦ g2(1 + (−1))

= g1(−1) ◦ g2(1) ◦ g2(−1)

= g1(−1) ◦ g2(f(1)) ◦ g2(−1)

= g1(−1) ◦ g1(f(1)) ◦ g2(−1)

= g1(−1 + 1) ◦ g2(−1)

= 1M ◦ g2(−1) = g2(−1)

Now suppose we have proved g1(−n) = g2(−n). We prove it for n + 1 by g1(−(n +
1)) = g1((−n)+(−1)) = g1(−n) ◦ g1(−1) = g2(−n)◦ g2(−1) = g2((−n)+(−1)) =
g2(−(n + 1)).

Hint/Solution.

– Split epimorphism: every generalized element in codomain is an image of
generalized element in domain. This is equivalent to condition that morphism
has right-inverse.

This condition is too strong for many algebraic categories. For example
monoid homomorphism from Z to cyclic monoid, Z/nZ is not split epi.

– S-surjective: every S → cod(f) is an image of S → dom(f). If S is a sepa-
rator, every S → cod(f) is monic and category has subobject classifier this is
equivalent to epimorphism [Lawvere and Rosebrugh P4.10].
Monoid homomorphism N → Z, n 7→ n is not N-surjective, since n 7→ −n is
not in the image.

�

2.3 Isomorphism

Isomorphism is a categorical analogy of bijection.

An isomorphism is a morphism f : X → Y that has an inverse morphism g : Y → X

such that
g ◦ f = 1X and f ◦ g = 1Y

We say that objects X and Y are isomorphic, denoted X ∼= Y , if there exists an
isomorphism between them.

Inverses are unique, that is if h, g are both inverses of f , then h = g. The easy proof
is left to reader as an exercise. This fact lets us speak of the inverse of f , written f−1.
Every isomorphism is monomorphism and epimorphism, but the converse is not
true.
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2.3.1 Example: morphisms in posets

In a partially ordered set morphisms are “less-than-or-equal” relations. For any
two objects a, b in a poset, there is at most one morphism from a to b. It follows
that every morphism is monic and epic. On the other hand only morphisms with
inverses are identity morphisms (proof: anti-symmetry).

2.3.2 Exercise: Duals of isomorphisms

Prove that if f is an isomorphism in C, then so is its correspondent (its dual) in Cop.

3 Initial and terminal objects

We will be looking at concepts defined by universal properties, which character-
ize things up to isomorphism, that is, any two things that have the property are
isomorphic. In Category Theory, it is relatively unusual to be interested in actual
identity: identity up to isomorphism is most often all that is of interest, in accord
with the general focus on external behavior rather than internal construction. The
simplest universal properties are those being initial and final objects:

An object A in a category C is an initial object, if for every object C in C, there is
exactly one arrow from A to C. Similarly an object A in a category C is a terminal
object, if for every object C in C, there is exactly one arrow from C to A. Some
basic facts about these are:

– A initial object of C is a terminal object of Cop, and vice-versa.

– Initial and terminal objects are unique up to isomorphism. That is if A and B

are both initial objects, then there is isomorphism from A to B.

Proof: exercises.

Arrows as elements: if 1 is a terminal object of Sets, and A is an object of Sets,
then there is a one-to-one correspondence between the conventional set-theoretic
members of A and the arrows from 1 to A.

3.1 Examples

– In the category of sets Sets the empty set is an initial object. For any set X

there is only one function from the empty set to set X, the empty function.
Any set with only one element, a singleton set, is a terminal object. In Sets,
there is in fact only one initial object, due to the axiom of extensionality.
And, for any set X there is only one function from X to a singleton set, a
constant function that has the same value on every element of X. There are
many different singleton sets, but they are all isomorphic. These examples
provide a further illustration of how “internal” properties can be replaced
by “external” ones, since the notions of having zero elements or one can be
described (for sets) in terms of the arrows from or to the set. Of course one
has to do quite a bit of further development in order to describe all of the
properties of sets “externally”.
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– The monoid with only one element, the identity element, is both initial and
terminal object in the category of monoids. An object that is both initial
and terminal is called a zero object. The zero object is only unique up to
isomorphism.

– In a poset, a minimum element, if there is one, is an initial object, and a
maximum element, if there is one, is a terminal object. Here the initial and
terminal objects are fully unique.

3.2 Discussion

A few further points:

– An initial object in C is terminal in Cop(proof: trivial).

– Any arrow f : 1→ A, where 1 is a terminal object, is monic. Proof: exercise.

– An arrow f : 1→ A is often called an “element” of A. Can you identity the
property of Sets that motivates this terminological usage?

4 Exercises

1. We say that an arrow f : A → B has a left inverse if there is an arrow
g : B → A so that g ◦ f = 1B . Suppose that f has a left inverse and show that
f is a monomorphism.

2. Show that an epimorphism with a left inverse is an isomorphism.

3. Give an example of a category and an arrow in that category that is not an
isomorphism but is both a monomorphism and epimorphism.
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