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1 What’s this?

This is a collection of transcriptions and personal notes in the area of Recursion
Theory. Our goal is the study some specific topics such as (i) the search of
natural intermediate problems of the arithmetic hierarchy; that is, problems
strictly in a class such as Σ0

n, but not ≤m-complete in that class. (ii) the need
(or not) of non primitive recursive reductions in Σ0

1, and others.

These rather disorganized notes are for personal use only and include some
verbatim transcriptions of other works. Perhaps for the occasional reader, they
can also be the source of inspiration and further research. My contribution is
Chapter 6: the primitive recursive hierarchy.

2 Notation and preliminaries

Definition 1

f(x) ≡ g(x) or f = g: ∀x : f(x) = g(x).

∞-many: infinitely many.

p : N2 7→ N, l : N 7→ N, and r : N2 7→ N denote the Cantor pairing
function and its left and right inverses.

φe: the partial recursive function that corresponds to the Turing machine
with index e. Another notation: φe(x) = {e}(x).

H(e, x, t): if e is an index of Turing machine M , and x is its input, the
predicate H(e, x, t) means “M halted after t steps of computation”.

M(x)↓: the computation M(x) halts (or “converges”); equivalent to ∃t :
H(e, x, t) where e is an index of M .

M(x)↓t: the computation M(x) halts after t steps of computation; equiv-
alent to H(e, x, t) where e is an index of M .

M(x)↑: the computation M(x) does not halt (or “diverges”); equivalent
to ∀t : ¬H(e, x, t) where e is an index of M .

M(x)↑t: the computation M(x) did not halt after t steps of computation;
equivalent to ¬H(e, x, t) where e is an index of M .

A≤mB: A reduces “many-to-one” to B.

A≤tB: A Turing-reduces to B.

A≤PR
m B: A “PR-reduces” to B.

If A and B are sets of integers,

A is r.e. in B: A = L(MB) for some oracle TM M (oracle B).

A is recursive in B: A is r.e. in B with MB total. Same as A≤tB.
Same as: membership in A is decidable relative to an oracle for B.
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2.1 Summary of notation and some results

This material is essentially from Soare’s book [19].

1. The ordinal ω is identified with N.

2. ϕ is used instead of φ.
We write ϕe,t(x) = y if x, y, e < t and y is the output of ϕe(x) in < t steps
of the Turing program Pe. If such a y exists we say ϕe,t(x) converges,
which we write as ϕe,t(x)↓ , and diverges (ϕe,t(x)↑) otherwise. Similarly,
we write ϕe(x)↓ if ϕe,t(x)↓ for some t and we write ϕe(x)↓= y if ϕe(x)↓
and ϕe(x) = y, and similarly for ϕe,t(x)↓= y.

3. We let P̃e be the eth oracle program under some effective coding, we
let ΦA

e (x) denote the partial function computed by P̃e with oracle A, and
we let φAe (x) denote the maximum element used (i.e., examined) on the
oracle tape A during the computation on input x.

4. “Computably enumerable” (c.e.) sets instead of “recursively enumerable”
(r.e.).
We denotes the domain of ϕe, We = dom(ϕe) = {x : ϕe(x)↓}.
We,s = dom(ϕ)e,s = {x : ϕe(x)↓ in s steps}, see item 2.

5. Similarly “computable” and “partial computable” instead of “recursive”
and “partial recursive” respectively.

6. Some decision problems

(a) K
def= {x : ϕx(x) converges} = {x : x ∈ Wx} is the SHP (“self-

halting”) set (or problem). The set K is not computable (recursive),
but c.e.

(b) K0
def= {〈x, y〉 : x ∈Wy}. The set K0 is not computable but c.e. The

set K0 corresponds to the halting problem HP: given x and y, does
ϕx(y) converge?

(c) K1: {x : Wx 6= ∅}, defined for at least one value.
(d) Fin: FINITE, {x : Wx is finite}.
(e) Inf: INFINITE, {x : Wx is infinite}.
(f) Cof: CO-FINITE, {x : Wx is cofinite}.
(g) Tot: TOTAL, {x : ϕx is a total function} = {x : Wx = ω}.
(h) Con: {x : Wx is total and constant}.
(i) Rec: RECURSIVE, {x : Wx is recursive (computable)}.
(j) Ext: {x : ϕx is extendible to a total computable function}.

7. A is one-one reducible (1-reducible) to B (A≤1B) if A≤mB by a bijective
function.

8. It may be proved that it makes no difference whether to use “≤m” or “≤1”
in the definition of complete problems.
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9. Jump operator, page 71. The diagonalization produces a noncomputable
c.e. set K. Relativizing this procedure to A we get a set KA c.e.a. in A
such that A≤TKA.
Definition. (i) Let KA = {x : ΦA

x (x)↓} = {x : x ∈ WA
x }. KA is called

the jump of A and is denoted by A′. (ii) A(n), the nth jump of A, is
obtained by iterating the jump n times; i.e., A(0) = A, A(n+1) = (A(n))′.
It follows that KA ≡ KA

0 ≡ KA
1 where KA

0 = {〈x, y〉 : ΦA
x (y) ↓} and

KA
1 = {x : WA

x 6= ∅}.

10. The jump is well-defined on degrees, Theorem 11.2.2. Let 0(n) def= deg(∅(n)).
Thus 0 < 0′ < 0′′ . . .

0 = deg(∅) = {B : B is computable}
0′ = deg(∅′), where ∅′ def= K∅ ≡ K ≡ K0 ≡ K1

0′′ = deg(∅′′) = deg(Fin) = deg(Tot) = deg(Inf)
0′′′ = deg(∅′′′) = deg(Cof) = deg(Cput) = deg(Ext)

What is
“Cput”?

11. Turing degrees and the jump operator.

(a) A ≡T B if A≤TB and B≤TA (equivalence relation).
(b) Turing degree (or degree of unsolvability) of A is the equivalence

class deg(A) def= {B : B ≡T A}.
(c) Degrees D: partially ordered set (D,≤) under the relation deg(A) ≤

deg(B) iff A ≤T B. We write deg(A) < deg(B) if A <T B, i.e., if
A ≤T B and B 6≤T A.

There are (infinitely) many methods for indexing a family of computation “de-
vices” – Turing machines, programs. . . Let M be a particular device; depending
on the circumstances it may be appropriate to talk about “the index of M” or
about “an index of M”. The index of a PR function refers exclusively to PR
functions, and not to a more general model of computation (such as Turing
machine).

Definition 2 A set A ⊆ N is not trivial if A 6= ∅ and A 6= N.

Definition 3 In this definition the functions f and s and the relation r are to-
tal. The function f(x) with codomain {0, 1} represents the relation {x : f(x) =
1}.
The relation associated with the total function f(x) is

r(x, y) =
{

1 if f(x) = y
0 otherwise

The step function associated with the total function f(x) is

s(x, y) =
{

1 if f(x) ≥ y
0 otherwise
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Consider the following sequence of integer operators, where all the operators
are right associative.

a× n = a× n = a+ a+ · · ·+ a (n a’s)

a
1
↑ n = a ↑ n def= an = a× a× · · · × a (n a’s)

a
2
↑ n = a ↑ a ↑ · · · ↑ a (n a’s)

The following definition generalizes these examples.

Definition 4 For m, n ≥ 0, the function a
m
↑ n is

a
−2
↑ n = a+ 1

a
−1
↑ n = a+ n

a
m
↑ n = a

m−1
↑ a

m−1
↑ · · · a

m−1
↑ a︸ ︷︷ ︸

n a’s

for m ≥ 1

The case m = 0 follows from the case m = −1 and the induction rule (last
line).

For m ≥ 1 the operator
m
↑ is not associative. The Ackermann function [7] can

be expressed ([12]) as a(m,n) = 2
m−1
↑ (n+ 3)− 3.

Definition 5 (HP, SHP, and HAS-ZEROS)
HP(halting problem): the set {(e, x) : φe(x)↓}; the question “given e, x ∈ N,
does φe(x)↓?”.
SHP(self halting problem): the set {e : φe(e)↓}; the question “given e ∈ N, does
φe(e)↓?”.
HAS-ZEROS: the set {e : ∃xφe(x) = 0}; the question “given e ∈ N, is there an
integer x such that φe(x) = 0?”.

3 Recursion Theorem

Theorem 1 (“Fixed-point” or “first recursion” theorem) If g is a re-
cursive function, there is an integer n such that φn = φg(n).

The integer n is called a fixed point of g for the indexing system in use.

Proof. For each integer i define the unary function Hi as follows:

Hi(x):
1) Compute φi(i); // x is ignored here (?)
2) If φi(i)↓, let j be the output;
3) Compute φj(x); (?)
4) If φj(x)↓, output the result.
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Note that the computation may diverge (“loop forever”) at the lines marked
“(?)”. The previous family of programs, one for each i ∈ N, effectively defines
a family of indices, one for each Hi. Let the corresponding recursive function
be h(i). Thus φh(i)(x) ≡ Hi(x).

Consider the recursive function g(h(x)) where g is the given recursive function.
Let its index be k, φk(x) ≡ g(h(x)). As φk is total, φk(k) halts. Thus, when
computing Hk(x), we get

Hk(x)
= φh(k)(x) [h(k) is index of Hk]
= φφk(k)(x) [φk(k)↓]
= φg(h(k))(x) [k is an index of g ·h]

Thus, for every x, φh(k)(x) = φg(h(k))(x), so that h(k) is a fixed point of g.
Notice that h(k) is effectively defined: it is the index of Hk, where k is the
index of g ·h. �

From the Wikipedia – with some repetition. . .

Rogers’ fixed-point theorem
Given a function F , a fixed point of F is, in this context, an in-
dex e such that φe ' φF (e); in programming terms, e is semantically
equivalent to F (e).

Rogers’ fixed-point theorem. If F is (total) computable, it has a fixed
point.

This theorem is Theorem I in (Rogers, 1967: §11.2) where it is
described as “a simpler version” of Kleene’s (second) recursion the-
orem.

Proof of the fixed-point theorem
The proof uses a particular total computable function h, defined
as follows. Given a natural number x, the function h outputs the
index of the partial computable function that performs the following
computation:

Given an input y, first attempt to compute φx(x).
If that computation returns an output e, then:

Compute φe(y) and return its value, if any.

Thus, for all x, if φx(x) halts, then φh(x) = φφx(x), and if φx(x) does
not halt then φh(x) does not halt; this is denoted φh(x) ' φφx(x). The
function h can be constructed from the partial computable function
g(x, y) = φφx(x)(y) and the S-m-n theorem: for each x, h(x) is the
index of a program which computes the function y 7→ g(x, y).

To complete the proof, let F be any total computable function, and
construct h as above. Let e be an index of the composition F ◦ h,
which is a total computable function. Then φh(e) ' φφe(e) by the
definition of h. But, because e is an index of F ◦h, φe(e) = (F ◦h)(e),
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and thus φφe(e) ' φF (h(e)). By the transitivity of ', this means
φh(e) ' φF (h(e)). Hence φn ' φF (n) for n = h(e).

Fixed-point free functions
A function F such that φe 6' φF (e) for all e is called fixed point
free. The fixed-point theorem shows that no computable function is
fixed point free, but there are many non-computable fixed-point free
functions. “Arslanov’s completeness criterion” states that the only
recursively enumerable Turing degree that computes a fixed point
free function is 0′, the degree of the halting problem.

Kleene’s second recursion theorem
An informal interpretation of the second recursion theorem is that
self-referential programs are acceptable.

Second recursion theorem
For any partial recursive function Q(x, y) there is an index p such
that φp ' λy.Q(p, y).

This can be used as follows. Suppose that we have a self-referential
program, namely one that evaluates a computable function Q of two
arguments where the first is supposed to be the index of that very
program, and the second represents input. By the theorem, we have
a program p that does exactly that. Note that p only has y as input;
it does not have to be supplied with its own index but satisfies the
“self referential” equation by construction.

The theorem can be proved from Rogers’ theorem by letting F (p)
be a function such that φF (p)(y) = Q(p, y) (a construction described
by the S-m-n theorem). One can then verify that a fixed-point of
this F is an index p as required.

4 Arithmetic hierarchy

Definition 6 An instance of a (possibly quantified) predicate P is obtained by
assigning to the free variables of P a tuple of integers; thus, an instance has no
free variables. The question or statement associated with an instance of P is
“is the sentence P true?”.

Consider a “quantification sequence” ∃x1∃x2 . . . ∃xn. In the sequel we will use
pairing functions and “compress” the quantifier sequence into a single quantifier
∃x, where x = p(x1, p(x2, . . . p(xn−1, xn) . . .)); here, p is a (recursive) bijection
p : N 7→ N2. Similarly, we compress universal quantifiers.

Definition 7 Let P be a recursive predicate; the variables of P are not shown.
A problem belongs to the class Σ0

n if the corresponding question has the form

∃∀∃∀ . . . Q : P
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where n is the total number of quantifiers, Q is ∃ if and n is odd and ∀ otherwise,
and P is a recursive predicate (no variables are shown). A problem belongs to
the class Π0

n if the corresponding question has the form

∀∃∀∃ . . . Q : P

where P is a recursive predicate, n is the total number of quantifiers, and Q
is ∀ for n is odd and ∃ for n even. An equivalent definition for sets, instead of
decision problems is (see for instance [10])

∆0
0 = Σ0

0 = Π0
0

def= {recursive sets} (1)

Σ0
1

def= {r.e. sets} (2)

Σ0
n+1

def= {L(MB) : B ∈ Σ0
n} (3)

= {A : A is r.e. in some B ∈ Σ0
n} (4)

Π0
n

def= {complements of sets in Σ0
n} (5)

∆0
n+1

def= {L(MB) : B ∈ Σ0
n, MB total} (6)

= {A : A is recursive in some B ∈ Σ0
n} (7)

= {A : A≤tB for in some B ∈ Σ0
n} (8)

((2) is included in (3)/(4)) Thus Σ0
0 = Π0

0 is the class of recursive problems; is
is also denoted by ∆0

0 or simply ∆. The problem P is in Σ0
n iff the problem ¬P

is in Π0
n.

The proof of the following result is easy.

Theorem 2 For n ≥ 1 the problem P is complete in Σ0
n iff the problem ¬P is

complete in Π0
n.

4.1 Arithmetic hierarchy: classification of some sets

Definition 8 A problem P is exactly (or strictly) the class Σ0
n of the arith-

metical hierarchy if it belongs to Σ0
n but not to Σ0

n−1 ∪Π0
n−1. Similar definition

for a problem exactly in the class Π0
n.

We list some sets and classify them in the arithmetic hierarchy.

Theorem 3 The set EMPTY def= {M : L(M) = ∅} is exactly in Π0
1.

Proof. (i) The corresponding statement is ∀n∀t : ¬H(e, x, t). (ii) Define a
reduction ¬HP≤mEMPTY. Let e be an instance of ¬HP and let

f(x) =
{

0 if φe(e)↓
undefined otherwise

We have that e ∈ ¬HP iff f ∈ EMPTY.

The set TOTAL def= {M : M is total} is exactly in Π0
2. Proof (partial). The

corresponding statement is ∀n∃t : H(e, x, t).
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The set FINITE def= {M : L(M) is finite} is exactly in Σ0
2. Proof (partial). The

corresponding statement is ∃n∀x∀t : (x ≥ n)⇒ ¬H(e, x, t).

The set CO-FINITE def= {M : L(M) is finite} is exactly in Σ0
3. Proof (partial).

The corresponding statement is ∃n∀x∃t : (x ≥ n)⇒ H(e, x, t).

4.2 Arithmetic hierarchy: complete sets

We begin with a question.

Question.
Most well known sets in Σ0

1 \ ∆, such as HP, SHP, HAS-ZEROS. . . , are
complete in Σ0

1. I don’t know examples of such sets that are not complete.
Is every set in Σ0

1 \∆ complete in Σ0
1? If not so: (i) proof it (is there some

Ladner-type Theorem?) (ii) give examples – natural examples, if possible.

This question was answered by Friedberg and Muchnik (for Turing reductions)
in 1956/7: there are non complete sets in Σ0

1 \∆ – but no “natural” is known,
see page 15

Theorem 4 The halting problem (HP) is ≤m-complete in Σ0
1.

Proof. Let A be a set in Σ0
1. By (3) (page ??) A = L(M) for some Turing

machine M . Define the Turing machine M ′ with input n as follows: run M(n);
if M(n)↓ in an accepting state (that is, if n ∈ A) then accept n; if M(n)↓ in a
rejecting state (that is, if n 6∈ A) then enter a non-halting configuration (and
of course, do not halt if M(n)↑). Thus M ′(n)↓ iff n ∈ A. �

Corollary 1 The non-halting problem is ≤m-complete in Π0
1.

Corollary 2 The self-halting problem (SHP) is ≤m-complete in Σ0
1.

Proof. It is obvious that SHP∈ Σ0
1.

Consider the instance 〈M,n〉 of HP; the corresponding question is “M(n)↓?”.
Define the Turing machine M ′ as:

M ′(y), input y (which is not used):
run φn(n)

Note that M(n)↓ iff M ′(y)↓ for every y, and in particular, iff M ′(m′)↓, where m′
is an index of M ′. Thus, we have reduced HP to SHP. �

Lemma 1 The set FINITE is Σ0
2-hard.

Proof. We reduce an arbitrary set A of Σ0
2 to FINITE

{x : ∃y∀z R(x, y, z)} ≤m {M : L(M) is finite}
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where R is recursive. We need a recursive function f such that for all x, f(x) is
an index of a Turing machine Mx such that ∃y∀zR(x, y, z) ⇔ L(Mx) is finite.
For this purpose, given x, define Mx as

Mx(w):
for each y with |y| ≤ |w|:

search z such that ¬R(x, y, z)

It follows that: (i) if ∀y∃z ¬R(x, y, z) then L(Mx) = Σ?; (ii) otherwise we have
∃y∀z R(x, y, z), so that the computation M(w) does not halt for w sufficiently
large; that is, L(Mx) is finite. �

Theorem 5 The FINITE problem is ≤m-complete in Σ0
2.

Proof. Lemma 1 states that FINITE is Σ0
2-hard. We only have to prove that it

is in Σ0
2; but this is simple because the corresponding statement is

∃y∀z∀t : (z ≥ y)⇒ ¬H(e, z, t)

�

Theorem 6 If A is ≤m-complete in Σ0
n, then FINITEA is ≤m-complete in Σ0

n+2.

Proof. (incomplete) (i) FINITEA ∈ Σ0
n+2. We have

[M ∈ FINITEA] ⇔ [L(MA) is finite] ⇔ [∃y∀z∀t(z ≥ y)⇒MA(z)↑t]

where without loss of generality we consider only Turing machines without
reject states.

The predicate MA(z)↑t is in ∆0
n+1 because it is recursive in A, which is in Σ0

n; Define MA,
“jump”

thus it is also in Σ0
n+1, and can be expressed in the form

n+ 1 quantifiers︷ ︸︸ ︷
∀∃ . . . . . . . . . P , where P

is recursive. Combining with a prefix of the form ∃∀, we get

∃y∀z∀t : (z ≥ y)⇒MA(z)↑t

The overall sequence of quantifiers has the form

∃∀∀
n+ 1 alternations︷ ︸︸ ︷
∀∃ . . . . . . Q

where Q is an appropriate quantifier. Thus FINITEA is in Σ0
n+2 (note that

the 3 consecutive ∀’s count as 1 alternation).

(ii) FINITEA is ≤m-complete in Σ0
n+2. We can proceed as in the proof of

Lemma FINhard.
To complete. �

Corollary 3 FINITEHP is ≤m-complete in Σ0
3.
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4.3 Some complete sets in Σ0
3

The following problems are ≤m-complete in Σ0
3.

– CO-FINITE def= {M : L(M) is cofinite} = {M : ¬L(M) is finite}

– RECURSIVE def= {M : L(M) is recursive}

– REGULAR def= {M : L(M) is regular}

– CONTEXT-FREE def= {M : L(M) is context-free}

We now prove that the CO-FINITE language is ≤m-complete in Σ0
3.

Theorem 7 The language CO-FINITE is ≤m-complete in Σ0
3.

Proof. The proof has two parts.
(i) CO-FINITE∈ Σ0

3. Let e be an the index of M . The statement is: M(x)
accepts all except a finite number of x’s, or

∃y∀x∃t : (x ≥ y)⇒ H(e, x, t)

Thus CO-FINITE ∈ Σ0
3.

(ii) We now prove that CO-FINITE is hard in Σ0
3. From Lemma 6 (page 11)

we have that FINITEHP is Σ0
3-hard. Define a recursive function f such that

M
f→ N (9)

L(MHP) is finite ⇔ L(N) is cofinite (10)

where N is the Turing machine f(M). Given M , let KHP be an oracle machine
with oracle HP that works as follows.

KHP(y), input y

(1) Search z with |z| > |y| that is accepted by MHP. This is done
by the well known “dovetailing technique”. If such a z is found,
go to step (2).

(2) Verify the yes oracle responses in step (1) by checking that the
computation M(w) halts, whenever the oracle answered yes to
a query with input 〈M,w〉. (no oracle responses are ignored).
All these simulations terminate.

This describes a recursive transformation M 7→ K such that, if L(MHP) is
finite, then L(KHP) is finite, and if L(MHP) is infinite, then L(KHP) is Σ?.

Let us now describe a recursive transformation K 7→ N , by defining N as the
Turing machine that accepts the strings that are not accepting computation
histories of KHP (on any input). Apart from the well known usual Turing
machines conditions for non correct computation histories, we have now to deal
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with non valid oracle responses. The correctness proof of valid responses are
made by the algorithm above (step (2)), so N has to detect incorrect responses,
and these correspond to one or more halting computations when the oracle
answer is no. These can be detected “in parallel” (by the dovetailing technique).

We have thus defined the recursive function M
f→ N as the composition of two

recursive functions, M 7→ K 7→ N . Moreover the condition (10) is satisfied.
�

4.4 Arithmetic hierarchy: on closures

Σ0
n is not closed under (infinite) intersection.

Let Mi be the ith Turing machine program, and H(i, k, t) be the proposition
“at step t, the computation Mi(k) is halted”.

For each m ∈ N, Um
def= {e : (∃k > m) : φe(k)↓} belongs to Σ0

1 because the
predicate in the definition of the set can be written ∃k, t : k > i ∧H(i, k, t).

We have
Inf def= {e : φe(k)↓ for ∞-many k’s} =

⋃
m

Um

Inf belongs to Π0
2 once the predicate is ∀m∃k, t : H(e, k, t); in fact, Inf is Π0

2-
complete. Hence Inf is an intersection of Σ0

1 sets which is not in Σ0
1.

5 Non complete Σ1 \∆0
0 sets

From “mathoverflow”

Is every non-recursive set in Σ1 complete in Σ1 (relatively to many-
to-one reductions)?

Most well known sets in Σ1 \∆0, such as the Halting problem, are complete in
Σ1, relatively to the many-to-one reduction. In fact I don’t know any example
of a (non recursive) set in Σ1 that is not complete.

Is every set in Σ1 \∆0 complete in Σ1?

– If so, why the trouble of proving completeness for such problems?

– If not (is there some Ladner-type Theorem?), can anyone give natural
examples of Σ1 \∆0 sets that are not complete?

Of course the question generalizes for other levels of the arithmetic hierarchy.

I apologize if this question was already answered here, or if the answer is well
known.

Asked by Armando Matos
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Answer I
Not every set in Σ1 \∆1 is Σ1-complete.

For Turing reductions it was known as Post’s Problem and resolved by Friedberg
and Muchnik around 1957. Interestingly there is still no known natural solution
to Post’s problem. Perhaps the closest is as follows: let We,s be the eth Σ1 set
in some standard enumeration, as it looks at stage s; let K(j)[s] be the prefix
free Kolmogorov complexity of j as approximated at stage s; and let A =

⋃
sAs

where the finite sets As are uniformly ∆1 and

A = {〈e, n〉 : ∃s(We,s∩As = ∅∧〈e, n〉 ∈We,s∧Σ〈e,n〉≤j≤s2
−K(j)[s] < 2−(e+ 2))}

Then A is K-trivial (which implies it is not Σ1-complete) and not ∆1 (Downey,
Hirschfeldt, Nies, Stephan).

For m-reductions the problem was already resolved by Post. He constructed a
set A ∈ Σ1 \∆1 whose complement B contains no infinite ∆1 set, and showed
that such a set A would have to be m-incomplete. In standard terminology A
is simple and B is immune.
Bjørn Kjos-Hanssen

There are even conjectures and results to the effect that there cannot be a
natural solution: for example, there is no e ∈ ω and computable total f such
that (1) for all sets X, X <T W

X
e <T X

′, (2) if X ≡T Y via Φd then WX
e ≡T

W Y
e via Φd. I believe even more is known, but I can’t recall.

– Noah S 2 days ago 1

Does your remark on the lack of natural complete sets apply to many-one
completeness (mentioned in the OP) as well as Turing completeness?
– Joel David Hamkins 2 days ago

Joel David Hamkins, I think it does, right? I suppose the halting probability Ω
is a natural example of a ∆0

2 set of incomplete tt-degree, though.
– Bjorn Kjos-Hanssen

Answer II
Let Ω be the halting probability, and let X be the set of rational numbers less
than Ω . I think I can reasonably claim that X is a natural set.

Since Ω is left-c.e., X is Σ0
1. Also, X is non-computable since it’s Turing

equivalent to Ω . However, X cannot be many-one complete for Σ0
1 sets. Indeed,

no convex set of rationals (or finite union of convex sets of rationals) can be
many-one complete for Σ0

1 sets.

Suppose X were complete. Note that ∅′ is uniformly many-one complete: from
a Σ0

1 index for a set, we can compute an index for its reduction to ∅′. Since X is
complete, there is a reduction from ∅′ to X, and so by composing these we see
that X is uniformly many-one complete (this argument works for any complete
set).

Now, we’ll make a Σ0
1 set V , and by a standard argument with the recursion

theorem we can assume we already know an n with V = Wn. Using the uni-
formity, this means we know the index of a computable reduction f from V
to X.
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Begin by computing f(0), f(1), and f(2). These are rational numbers, and
so are arranged in some order. Without loss of generality, let’s assume that
f(0) ≤Q f(1) ≤Q f(2). Then enumerate 0 and 2 into V , but leave 1 out. By
assumption, this means that f(0) and f(2) are in X, but f(1) is not. But this
contradicts the convexity of X.
Answered yesterday, Dan Turetsky

Nice although I suppose the m-degree of this set depends on the version of Ω
used? Also instead of Ω we could use 0′ which is even more natural?
– Bjørn Kjos-Hanssen yesterday

Yeah, I’m pretty sure I’ve got a construction of m-incomparable versions. If you
mean the real 0.∅′’, that should also work, but again different numberings will
give different m-degrees. Also, I’m stumped on whether these are tt-complete.
– Dan Turetsky yesterday

Because Ω itself is not a canonical number, but is only a arbitrarily chosen
member of an infinite class of Ω-numbers, sets defined using Ω will not be
natural.
– Carl Mummert 3 hours ago

Well, even Hilbert’ 10th problem has to be encoded to get a subset of ω. . . which
can be done in many ways
– Bjørn Kjos-Hanssen 2 hours ago

Often, naturalness makes sense only modulo some notion of equivalence. In
the context of m-equivalence, there is only one reasonable encoding of Hilbert’s
10th problem, and it is natural. Not so for (left cuts of) Ω .
– Denis Hirschfeldt

From the Wikipedia

Albert Abramovich Muchnik (born 1934) is a Russian mathematician who
worked in the field of foundations and mathematical logic.

He received his Ph.D from Moscow State Pedagogical Institute in 1959 under
the advisorship of Pyotr Novikov.[1] Muchnik’s most significant contribution
was on the subject of relative computability. He and Richard Friedberg, in-
dependently introduced the priority method which gave an affirmative answer
to Post’s Problem regarding the existence of re Turing degrees between 0 and
0’ . This groundbreaking result, now known as the Friedberg-Muchnik The-
orem,[2][3] opened a wide study of the Turing degrees of the recursively enu-
merable sets which turned out to possess a very complicated and non-trivial
structure. He also has a significant contribution in the subject of mass prob-
lems where he introduced the generalisation of Turing degrees, called ”Muchnik
degrees” in his work On Strong and Weak Reducibilities of Algorithmic Prob-
lems published in 1963.[4] Muchnik also elaborated Kolmogorov’s proposal of
viewing intuitionism as ”calculus of problems” and proved that the lattice of
Muchnik degrees is Brouwerian.

From Soare’s book “Computability Theory and Applications” pages 176–179
The Friedberg-Muchnik Theorem that there exist c.e. sets A and B of incom-
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parable degree is the canonical finite injury theorem, not only because it was
the first example of a finite injury proof, but also because the injury pattern is
the most typical, a bit more complex than the low simple set of Theorem 7.1.1
where the injury set Ie satisfies |Ie| ≤ e, but not as complex as the unbounded
injury pattern in Theorem 7.4.1 where we have merely |Ie| <∞. Here we have
|Ie| < 2e which is typical of these arguments.

Theorem 8 (Friedberg (1957), Muchnik (1956)) There exist c.e. sets A
and B of incomparable Turing degree.

Proof. Proof. Without loss of generality we may assume that our effective num-
bering of oracle Turing programs satisfies (or can be effectively renumbered to
satisfy) that every oracle Turing program P̂e occurs with both an even and odd
index P̂e = P̂2i = P̂2j+1 for some i and j. Hence, to satisfy all the incompara-
bility requirements it suffices to satisfy merely all even requirements {R2e}e∈ω
and likewise for odd requirements. (This enables us to have the subscript of Re
match that on Φe which makes the proof more perspicuous rather than having
R2e : A 6= Φe.)

We construct c.e. sets A and B to meet the same requirements as in (6.1) of
the Kleene-Post theorem,

Re : A 6= ΦB
e for e even (11)

Re : B 6= ΦA
e for e odd (12)

We say that requirement Ri has higher priority than Rj if i < j. We first
present the basic module or atomic strategy for meeting a single requirement Re
and then explain how to combine these strategies.

Basic Module for Meeting Re for e even. Select an integer x not yet in A. Wait
for s such that ΦBu

s (x)↓= 0, which must happen if ΦB
e = A. (Now u < s by our

convention in Chapter 3.)

Action. At stage s + 1 enumerate x in A, and define a restraint function
r(e, s + 1) = s + 1 which prevents lower priority requirements Rj , j > e, from
enumerating any z ≤ r(e, s+ 1) into B. If the higher priority requirements Ri,
i < e, are finished acting by stage s then the restraint function r(e, s+1) ensures
that B �� s = Bs ��s s so that

ΦB(x)↓= 0 6= 1 = A(x)

and requirement Re is met. If some Ri, i < e, acts at some stage t > s+ 1 then
we reset the Re basic module with a fresh witness x′ and begin all over.

Construction. We now combine all the strategies as follows. Let ω[y] = {〈x, y〉 :
x ∈ ω}. To avoid conflict between requirements we choose witnesses x ∈ ω[e]
to meet Re. Second we start with all restraint functions r(e, 0) = −1 so that
r(e, s) > 0 indicates that Re has been satisfied at some stage t ≤ s and no Ri,
i < e, has acted since then. We only allow Re to act at stage s + 1 if its
indicator r(e, s) = −1. Therefore, r acts both as an indicator function and
restraint function.

Stage s = 0. Define r(e, 0) = −1 for all e.
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Stage s+1 even. Choose the least even e such that

r(e, s) = −1 ∧ (∃x)[x ∈ ω[e] −As]
∧ ΦBs

e,x(x)↓= 0 ∧ (∀i < e)[r(i, s) < x]]

Action. If there is no such e, then do nothing and go to stage s + 2.
Otherwise, choose the least such e and the least corresponding x. We
say Re acts at stage s+ 1. Perform the following steps.

Step 1. Enumerate x in A.

Step 2. Define r(e, s+ 1) = s+ 1 (thereby restraining Bs �� s).

Step 3. For all j > e, define r(j, s + 1) = −1. We say that these lower
priority requirements {Rj}j>e are injured at s+ 1 and are reset.

Step 4. For all i < e define r(i, s + 1) = r(i, s). (This leaves the previ-
ous action performed by these higher priority requirements {Ri}i<e un-
touched).

Stage s+ 1 odd. Do the same for odd with the roles of A and B reversed.

�

Lemma 2 If requirement Re acts at some stage s+1 and is never later injured,
then requirement Re is met and r(e, t) = s+ 1 for all t ≥ s+ 1.

Proof. Suppose Re acts at stage s + 1 and say e is even. Then ΦBs(x)↓= 0
for some x ∈ As+1. Since no Ri, i < e, ever acts after stage s+ 1 it follows by
induction on t > s that Re never acts again and r(e, t) = s + 1 for all t > s.
Hence,no Rj , j > e, enumerates any x ≤ s into B after stage s+ 1. Therefore,
�� s = Bs �� s and ΦB(x)↓= 0 6= A(x). �

Lemma 3 For every e requirement Re is met, acts at most finitely often, and
r(e) = limsr(e, s) exists.

Proof. Fix e and assume true for all Ri, i < e. Let v be the greatest stage
when some such Ri acts if ever and v = 0 if none exists. Then r(e, v) = −1 and
this will persist until some stage s + 1 > v (if ever) when Re acts. If Re acts
as some stage s+ 1 then by Lemma 2 that action satisfies Re which never acts
again and r(e, t) = s+ 1 for all t ≥ s+ 1.

Either way r(e) exists and Re acts at most finitely often. Now suppose that Re
is not met. Then ΦB

e = A. Now by stage v at most finitely many elements
x ∈ ω[e] have been enumerated in A. Choose the least x ∈ ω[e] − Av such that
x >v. Eventually there will be a stage s such that ΦBs

e,s(x)↓= 0 since x 6∈ As.
Hence, Re acts at stage s+ 1 and by Lemma 2 this action satisfies Re forever.
�

Proposition 1 In Theorem 7.2.1 |Ie| < 2e where we define

(InjurySet) Ie = {x : x ∈ As+1 −As ∧ x ≤ r(e, s)} (13)
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for e even and similarly for e odd and B in place of A.

Proof. Define fs(i) = 1 if r(i, s) > 0 and fs(i) = 0 otherwise. If Re is injured at
stage s+1 it is only because some Ri acts, and hence fs(i) = 0 and fs+1(i) = 1
causing f to increase lexicographically at stage s+1. However, fs � e is a binary
string of exactly e bits and can increase lexicographically at most 2e− 1 times.
�

5.1 On jumps

This material is from Li and Vitányi book ([11], exercise 3.6.18).
One can also consider more powerful notions of computability, called relativized
computability, such as Turing machines equipped with oracles. Such an oracle
is a subset A of the natural numbers, and a Turing machine T equipped with
oracle A, denoted by TA, can ask “is n ∈ A?”

Thus, if A is the set of programs (the binary code considered as a natural
number) for which T (without oracle A) halts, then TA can compute more
than T . Let T1, T2,. . . be the standard enumeration of prefix machines, and
let U be the reference prefix machine with U(〈i, p〉) = Ti(p) for all i, p.

In recursion theory one defines the jump A′ of A as A′ = {x : UA(x) < ∞}.
Main jumps are those of the empty set: ∅, ∅′, ∅′′,. . . Clearly, ∅′ is recursively
enumerable, by U = U∅, ∅′′ is recursively enumerable by U ′ defined as U ′ = U∅

′
,

∅′′′ is recursively enumerable by U ′′ = U∅
′′
, and so on.

Define the halting probability of U ′ by Ω′ = ΣU ′(p)<∞2−l(p), and similarly the
halting probability U ′′ by Ω′′ = ΣU ′′(p)<∞2−l(p), and so on. Just as Ω is random
with respect to the ∅ jump, every such halting probability is Martin-Löf random
with respect to its respective jumps, that is, of the higher orders of randomness.

We are interested in natural examples of infinite binary sequences (equivalently,
real numbers) that are of these higher orders of randomness, but are defined
without recourse to oracles.

(a) Show that the probability that a program for the reference universal prefix
machine U both outputs finitely many symbols and does not halt (has an
infinite computation) is Martin-Löf random in the first jump of the halting
problem.

(b) Define the probability β = Σ2− l(p), where the summation is taken over
the shortest p ∈ {0, 1}? such that the set Q = {q : U(pq) <∞} is cofinite
({0, 1}? − Q < ∞). Show that β is as random as Ω′′: it is Martin-Löf
random in the second jump of the halting problem.

5.2 On Chaitin’s Ω number

In the computer science subfield of algorithmic information theory, a Chaitin
constant (Chaitin omega number) or halting probability is a real number that
informally represents the probability that a randomly constructed program will
halt. These numbers are formed from a construction due to Gregory Chaitin.
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Although there are infinitely many halting probabilities, it is common to use
the letter Ω to refer to them as if there were only one. Because Ω depends
on the program encoding used, it is sometimes called Chaitin’s construction
instead of Chaitin’s constant when not referring to any specific encoding.

Each halting probability is a normal and transcendental real number that is not
computable, which means that there is no algorithm enumerating its digits.

5.2.1 Background

The definition of a halting probability relies on the existence of prefix-free uni-
versal computable functions. Such a function, intuitively, represents a program-
ming language with the property that no valid program can be obtained as a
proper extension of another valid program.

Suppose that F is a partial function that takes one argument, a finite binary
string, and possibly returns a single binary string as output. The function F is
called computable if there is a Turing machine that computes it.

The function F is called universal if the following property holds: for every
computable function f of a single variable there is a string w such that for all x,
F (wx) = f(x); here “wx” represents the concatenation of the two strings w
and x. This means that F can be used to simulate any computable function of
one variable. Informally, w represents a “script” for the computable function f ,
and F represents an “interpreter” that parses the script as a prefix of its input
and then executes it on the remainder of input. Note that for any fixed w the
function f(x) = F (wx) is computable; thus the universality property states
that all computable functions of one variable can be obtained in this fashion.

The domain of F is the set of all inputs p on which it is defined. For F that
are universal, such a p can generally be seen both as the concatenation of a
program part and a data part, and as a single program for the function F .

The function F is called prefix-free if there are no two elements p, p′ in its
domain such that p′ is a proper extension of p. This can be rephrased as: the
domain of F is a prefix-free code (instantaneous code) on the set of finite binary
strings. A simple way to enforce prefix-free-ness is to use machines whose means
of input is a binary stream from which bits can be read one at a time. There is
no end-of-stream marker; the end of input is determined by when the universal
machine decides to stop reading more bits. Here, the difference between the two
notions of program mentioned in the last paragraph becomes clear; one is easily
recognized by some grammar, while the other requires arbitrary computation
to recognize.

The domain of any universal computable function is a computably enumerable
set but never a computable set. The domain is always Turing equivalent to the
halting problem.
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5.2.2 Definition

Let PF be the domain of a prefix-free universal computable function F . The
constant ΩF is then defined as

ΩF =
∑
p∈PF

2−|p|,

where |p| denotes the length of a string p. This is an infinite sum which has one
summand for every p in the domain of F . The requirement that the domain
be prefix-free, together with Kraft’s inequality, ensures that this sum converges
to a real number between 0 and 1. If F is clear from context then ΩF may be
denoted simply Ω, although different prefix-free universal computable functions
lead to different values of Ω.

5.2.3 Relationship to the halting problem

Knowing the first N bits of Ω, one could calculate the halting problem for all
programs of a size up to N . Let the program p for which the halting problem is
to be solved be N bits long. In dovetailing fashion, all programs of all lengths
are run, until enough have halted to jointly contribute enough probability to
match these first N bits. If the program p hasn’t halted yet, then it never will,
since its contribution to the halting probability would affect the first N bits.
Thus, the halting problem would be solved for p.

Because many outstanding problems in number theory, such as Goldbach’s
conjecture are equivalent to solving the halting problem for special programs
(which would basically search for counter-examples and halt if one is found),
knowing enough bits of Chaitin’s constant would also imply knowing the answer
to these problems. But as the halting problem is not generally solvable, and
therefore calculating any but the first few bits of Chaitin’s constant is not
possible, this just reduces hard problems to impossible ones, much like trying
to build an oracle machine for the halting problem would be.

5.2.4 Interpretation as a probability

The Cantor space is the collection of all infinite sequences of 0s and 1s. A
halting probability can be interpreted as the measure of a certain subset of
Cantor space under the usual probability measure on Cantor space. It is from
this interpretation that halting probabilities take their name.

The probability measure on Cantor space, sometimes called the fair-coin mea-
sure, is defined so that for any binary string x the set of sequences that begin
with x has measure 2−|x|. This implies that for each natural number n, the set
of sequences f in Cantor space such that f(n) = 1 has measure 1/2, and the
set of sequences whose nth element is 0 also has measure 1/2.

Let F be a prefix-free universal computable function. The domain P of F
consists of an infinite set of binary strings

P = {p1, p2, . . .}
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Each of these strings pi determines a subset Si of Cantor space; the set Si
contains all sequences in cantor space that begin with pi. These sets are disjoint
because P is a prefix-free set. The sum∑

p∈P
2−|p|

represents the measure of the set ⋃
i∈N

Si

In this way, ΩF represents the probability that a randomly selected infinite
sequence of 0s and 1s begins with a bit string (of some finite length) that is in
the domain of F . It is for this reason that ΩF is called a halting probability.

5.2.5 Properties

Each Chaitin constant Ω has the following properties:

– It is algorithmically random. This means that the shortest program to
output the first n bits of Ω must be of size at least n − O(1). This is
because, as in the Goldbach example, those n bits enable us to find out
exactly which programs halt among all those of length at most n.

– It is a normal number, which means that its digits are equidistributed as
if they were generated by tossing a fair coin.

– It is not a computable number; there is no computable function that
enumerates its binary expansion, as discussed below.

– The set of rational numbers q such that q < Ω is computably enumerable;
a real number with such a property is called a left-c.e. real number in
recursion theory.

– The set of rational numbers q such that q > Ω is not computably enu-
merable.

– Ω is an arithmetical number.

– It is Turing equivalent to the halting problem and thus at level ∆0
2 of the

arithmetical hierarchy.

Not every set that is Turing equivalent to the halting problem is a halting
probability. A finer equivalence relation, Solovay equivalence, can be used to
characterize the halting probabilities among the left-c.e. reals.

5.2.6 Uncomputability

A real number is called computable if there is an algorithm which, given n,
returns the first n digits of the number. This is equivalent to the existence of a
program that enumerates the digits of the real number.
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No halting probability is computable. The proof of this fact relies on an algo-
rithm which, given the first n digits of Ω, solves Turing’s halting problem for
programs of length up to n. Since the halting problem is undecidable, Ω can
not be computed.

The algorithm proceeds as follows. Given the first n digits of Ω and a k ≤ n,
the algorithm enumerates the domain of F until enough elements of the domain
have been found so that the probability they represent is within 2 − (k + 1)
of Ω. After this point, no additional program of length k can be in the domain,
because each of these would add 2−k to the measure, which is impossible. Thus
the set of strings of length k in the domain is exactly the set of such strings
already enumerated.

5.2.7 Incompleteness theorem for halting probabilities

For each specific consistent effectively represented axiomatic system for the
natural numbers, such as Peano arithmetic, there exists a constant N such that
no bit of Ω after the Nth can be proven to be 1 or 0 within that system. The
constant N depends on how the formal system is effectively represented, and
thus does not directly reflect the complexity of the axiomatic system. This
incompleteness result is similar to Gödel’s incompleteness theorem in that it
shows that no consistent formal theory for arithmetic can be complete.

5.2.8 Super Omega

As mentioned above, the first n bits of Gregory Chaitin’s constant Omega are
random or incompressible in the sense that we cannot compute them by a
halting algorithm with fewer than n − O(1) bits. However, consider the short
but never halting algorithm which systematically lists and runs all possible
programs; whenever one of them halts its probability gets added to the output
(initialized by zero). After finite time the first n bits of the output will never
change any more (it does not matter that this time itself is not computable by
a halting program). So there is a short non-halting algorithm whose output
converges (after finite time) onto the first n bits of Ω. In other words, the
enumerable first n bits of Ω are highly compressible in the sense that they are
limit-computable by a very short algorithm; they are not random with respect
to the set of enumerating algorithms. Jürgen Schmidhuber (2000) constructed
a limit-computable “Super Omega” which in a sense is much more random than
the original limit-computable Omega, as one cannot significantly compress the
Super Omega by any enumerating non-halting algorithm.

6 A primitive recursive arithmetic hierarchy

In construction.
A different form of arithmetic hierarchy, namely the hierarchy relative to a
oracle or set has been studied, see for instance the definition 4.1.2 of [19].

We follow another direction and define a restricted form of arithmetic hierarchy
in which both the relations and the reductions must be primitive recursive,
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that is, defined in terms of PR relations. The interest of this definition is
twofold. First, the collection of sets in every class of the hierarchy is recursively
enumerable (r.e.). For instance, the class of PR-sets (Definition 9 below) is r.e.
while the class of recursive sets is not. Second, most (decidable or undecidable)
mathematical sets of interest that can be many-to-one reduced can also be
reduced by a PR-reduction, that is, a reduction whose transformation function
is PR. For instance, the problems HP (halting problem), SHP (self-halting
problem) and HAS-ZEROS (at least one zero) can be PR-reduced to each other.

6.1 Basic concepts and results

We begin by studying the lowest class of the hierarchy, the class of PR-sets. How
can we represent a set by a PR function? We will use the following convention

Definition 9 A set T is a PR-set if there is a PR function χT : N 7→ N such
that

χT (x) =
{

0 if x 6∈ T
1 if x ∈ T

The function χT is called the characteristic function1 of T .
A PR-relation R ⊆ Nn is a relation that can be represented by a PR function r :
Nn 7→ N as

r(x1, . . . , xn) =
{

0 if (x1, . . . , xn) 6∈ R
1 if (x1, . . . , xn) ∈ R

The function r is the characteristic function of T .

The characteristic function χA of a set A could have been defined as any function
such that: χA(x) = 0 if x 6∈ A and χA(x) ≥ 1 if x ∈ A. The two definitions are
equivalent.

It it easy to check that PR-sets and relations are closed for union, intersection,
and complement.

Theorem 9 If f is a given PR function, {p(x, f(x)) : x ∈ N} a PR-set.

Proof. A characteristic function of the set is obtained by the following algo-
rithm: compute x = l(z) and y = r(z). If y = f(x), output 1, otherwise
output 0. This function is PR. �

Definition 10 A set A is PR-many-to-one-reducible (or simply PR-reducible)
to a set B and we write A≤PR

m B, if there is a PR function f such that for
every x we have x ∈ A iff χB(f(x)) ∈ B. The definition of a PR-reduction
between two relations is similar.

Theorem 10 If A≤PR
m B and B is a PR-set, then A is a PR-set.

Proof. Let f be the PR function associated with the reduction. Then, χB · f is
a characteristic function of A. �

1which is of course the same as {(x, y) : y = f(x)}.
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There are non-PR functions f with cod(()f) = 2

Some recursive functions, like the Ackermann function, are not PR because
they “grow too fast”.

However, the growth rate is not the only reason for non-PR-ness. In fact there
are also recursive functions with codomain {0, 1} that are not PR.

Theorem 11 There are total, non-PR functions, with codomain {0, 1}.

Proof. By diagonalization. Consider an effective enumeration of PR func-
tions φPR

0 , φPR
1 . . . . Define

f(n) =
{

0 if φPR
n (n) ≥ 1

1 if φPR
n (n) = 0

�

6.2 Comments and results on PR-reductions

Most of the (many to one) reductions that are usually defined in recursion
theory, that is, “in practice”, are PR-reductions. The corresponding functions
often transform Turing machine instructions (or equivalently indices) in Turing
machine instructions (or indices) and these transformations are often primitive
recursive. Moreover PR reductions are used in many proofs of completeness.

Theorem 12 There are sets A and B in Σ0
1\∆0

0 such that A≤mB, but A6≤PR
m B.

Proof. Let A be the HP set, that is, HP def= {i : φi(i)↓}, and let f(n) be an
increasing function that grows faster than any PR function. Define B = {f(i) :
i ∈ HP}. Clearly the transformation n→ f(n) defines a many-to-one reduction
between HP and B, and there is no PR reduction between HP and B. �

Definition 11 A set A in a class C is PR-complete in C if, for every B ∈ C,
we have B≤PR

m A.

The following is a consequence of Theorem 12 above.

Theorem 13 That there are no PR-complete sets in Σ0
1.

Definition 12 The set A is PR-similar to the set B, and we write A∼PRB,
if A≤PR

m B and B≤PR
m A. The relation ∼PR is an equivalence relation. If A is

not PR-similar to the set B, we write A�PRB. When there is no possibility of
confusion we omit the superscript PR.
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6.3 PR-sets: the class ∆PR of the PR hierarchy

The class of PR-sets is denoted by ∆PR.

Theorem 14 If A is a not trivial PR-set, then the class of sets {B : B≤PR
m A}

is the class of PR-sets. In other words, every not trivial PR-set is complete in
the class of PR-sets.

Proof. Let B be a PR-set and χB its (PR) characteristic function. Consider
the integers a 6∈ A and a′ ∈ A. Use the following function for the PR-reduction

f(n) =
{
a if χB(n) = 0
a′ if χB(n) = 1

�

6.4 The PR-hierarchy

Definition 13 The PR-hierarchy is constituted by the classes of sets ∆PR, ΣPR
i

(i ≥ 0), and ΠPR
i (i ≥ 0), which are similar to the corresponding arithmetic

hierarchy classes (denoted by the superscript 0), see Definition 7 (page 8). The
only differences are that P is a PR predicate or a PR-set (instead of a recursive
predicate or a recursive set) and that the functions associated with the reductions
are PR (instead of recursive).

Theorem 15 Every recursive relation (in the sense that its characteristic func-
tion is recursive) belongs to ΣPR

1 . Every recursive relation that is not PR strictly
belongs to ΣPR

1 \∆PR.

Proof. We exemplify for relations of arity 1 (PR-sets). Given a recursive rela-
tion R(x), there is a PR binary relation implemented by a Turing machine M
that does the following

M(x, t):

– During at most t steps, search for the integer x in the relation R. This is
possible because the relation is recursive.

– If, at step t, the integer x was not found, output false.

– If, at step t, the integer x is found, output true.

The total (but possibly not PR) relation r(x) can be expressed as

R = {x : ∃t M(x, t)}

As M(x, t) is a PR-relation, r is in ΣPR
1 . �

Definition 14 (Strictly in a class of the hierarchy) A set A is strictly in Σ0
1

if it belongs to Σ0
1\∆. A set A is strictly in Π0

1 if it belongs to Π0
1\∆. For n ≥ 2:

the set A is strictly in Σ0
n if it belongs to Σ0

n\(Σ0
n−1∪Π0

n−1); the set A is strictly
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in Π0
n if it belongs to Π0

n \ (Σ0
n−1 ∪Π0

n−1).
We similarly define “strictly in a class of the PR-hierarchy”.

Theorem 16 There are problems A and B strictly in ΣPR
1 and A � B.

Proof. Let A be a non PR-recursive set, whose existence is guaranteed by
Theorem 11, page 24. From Theorem 15 (page 25), we see that A is strictly
in ΣPR

1 . On the other hand it is easy to see that SHP is also strictly in ΣPR
1

(to see it, use Kleene normal form). But we can not have SHP≤PR
m A, because

otherwise SHP would be recursive (every PR-reduction is also a many-to-one
reduction). �

7 On Kleene’s normal form Theorem

The Theorems 17 and 18 below expressing the Kleene normal form do not men-
tion Turing machines or any other computation model – only things related
to the logical classification and representation of functions, such as “partial
recursive functions”, “primitive recursive functions”, the “minimization opera-
tor”, are mentioned. However we will find convenienr to define partial recursive
functions as those computable by a Turing machine.

We think that that this is not a limitation. Although (we think) “purely logical
proofs” of those theorems are possible, every purely logical definition of a partial
recursive function (say) always hides a “computation mechanism”: in principle
it must be possible to compute the function from its definition – the value of
a function must be uniquely defined and computable given its definition. The
computational character of the minimization operator “µ”is particularly clear:
given x, to find µyf(x, y) we compute in succession f(x, 0), f(x, 1). . . until some
of these computations halts and outputs 0 (if some computation does not halt,
the value is undefined); the value of the expression muyf(x, y) is the smallest y,
if any, such that f(x, y) = 0. When defining a partial recursive function, we may
not specify arbitrary conditions on the definitions; for instance the definitions

– “. . . is the second smallest y such that f(x, y) = 0.

– “. . . is the smallest y such that f(x, y) diverges.

are certainly ilegal, in the sense of not being computable. Essentially there
must be a “semantic” coincidence between “the function is logically undefined”
(by some computational method) and “the corresponding computation does not
halt”.

The main burden in proving Kleene’s normal form Theorem is to show that there
are certain functions (related with “universal” or “general purpose” models of
computation) that are primitive recursive. These proofs are neither difficult nor
deep, but are often rather laborious. For instance, there is a primitive recursive
function that accepts an integer y and checks things like
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1. y represents a computation history of a certain Turing machine T – es-
sentially a succession of machine configurations.

2. The state in the first configuration is the initial state.

3. The application of transition rules of T to each configuration produces
the next configuration, except the first, is obtained from the previous one
with the application

Kleene’s normal form Theorem is a consequence of the following result, where
the representation of partial recursive functions by Turing machines is assumed.

Lemma 4 Let e be the index of a Turing machine and x its input. The function
C(e, x, t) that returns the configuration of the Turing machine after t steps of
computation is primitive recursive.

An equivalent result is: let e be the index of a Turing machine and c its config-
uration. The function C(e, x) that returns the next configuration is primitive
recursive. This corresponds essentially to the case t = 1 in the previous result.

Let us state the Kleene’s normal form Theorem from [15], page 90.

Theorem 17 (KNF Theorem, Odifreddi) There is a PR function U and
(for each n ≥ 1) PR predicates Tn, such that for every recursive (total) func-
tion f of n variables there is a number e (called the index of f) for which the
following hold:

1. ∀x1 . . . xn∃y : T (e, x1, . . . , xn, y)

2. U(µyTn(e, x1, . . . , xn, y)).

Theorem 17 is in fact a special case for it deals only with total functions. Also
note that criterium 1. above, which characterizes the total character of the
function, is not effective.

Most formulations of the Theorem are “general” in the sense that they give a
representation or computation for any partial recursive function. A part of the
statement which is often emphasised is that, to represent any partial recursive
function, the operator µ needs to be used at most once. For instance, the
theorem is stated in [1], page 94, is:

Theorem 18 (KNF Theorem, Boolos, Burgess and Jeffrey) Every recur-
sive total or partial function can be obtained from the basic functions (zero, suc-
cessor, identity) by composition, primitive recursion, and minimization, using
this last process no more than once.

Sometimes, a register language, such as WHILE, is used as the general purpose
computation model. In this case, Kleene’s normal form Theorem can be stated
as follows. For any partial recursive function f(x) there is a program of the
following form (which can be slightly simplified) that computes it.
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% Input in registers x1,. . . xn, e
% Output in register x0
PR function (no WHILE’s)
WHILE y 6= 0

PR function (no WHILE’s)
ENDWHILE
PR function (no WHILE’s)

A more detailed information about a “normal form” WHILE program can be
seen for instance in [3].

It is also interesting to mention Kleene’s original version of the normal form
Theorem, as stated in [9], page 288. The notation was slightly adapted.

Theorem 19 (KNF Theorem, Kleene) For each n ≥ 0: given any general
recursive function φ(x1, . . . , xn), a number e can be found such that

∀x1 . . . xn∃y : Tn(e, x1, . . . , xn, y), (14)
φ(x1, . . . , xn) = U(µyTn(e, x1, . . . , xn, y)), (15)

∀x1 . . . xny : Tn(e, x1, . . . , xn, y) ⇒ U(y) = φ(x1, . . . , xn) (16)

where Tn(e, x1, . . . , xn, y) and U(y) are the particular primitive recursive predi-
cate and function defined above.

Again, this result mentions only total (recursive) functions. Condition 14 says
that the function represented by the index e is total. Condition 15 says that
U(µyTn(. . .)) is in fact the function φ. Finally, condition 16 says that, for any
halting computational history y, the value U(y) is correct, that is, equal to
φ(x1, . . . , xn).

Regarding condition 16, we recall that the computational models or definitional
systems may be non-deterministic, so that this is a kind of “normal form”
theorem. Particular computations or definition sequences may of course diverge,
even for total functions.

It seems that the equality of two partial recursive functions is not expressed by
this result. Write as usual f(x) ≡ g(x) if, for any input x the following holds

Either f(x) and f(x) are both undefined
. . . or both are defined and have the same value

and, of course, µy(P (x, y)), where P is a total predicate, is undefined if there
is no y such that P (x, y) holds. Then (part of) Theorem 19 could be rephrased
as the following function equality

φ(x) ≡ U(µyTn(e, x, y))

8 Primitive recursive functions: “positive” results

The closure under substitution and composition can be considered positive re-
sults. Another positive result is
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Theorem 20 Every nonempty recursively enumerable set can be enumerated
by a primitive recursive function.

Proof. (from [5]) Let T (e, n, x) be Kleene’s T-predicate, which is primitive
recursive. Suppose that the e-th computably enumerable set

We = {n ∈ N : ∃x T (e, n, x)}

is nonempty; say n0 ∈ We. Let l, r : N 7→ N be the two primitive recursive
projections associated with the Cantor pairing function. Define the primitive
recursive function f : N 7→ N by

f(m) =
{
l(m) when T (e, l(m), r(m))
n0 otherwise

It is clear that f enumerates We. �

Theorem 21 If a PR function t(x) bounds the execution time of a partial
recursive (total) function f(x) then f(x) is PR.

Proof. ??? �

Theorem 22 If f(x) is PR, it is possible to use the definition of f to charac-
terize a PR function t(x) that is PR and bounds the execution time of f(x).

Proof. See the discussion of the execution time of a LOOP program in [13]. �

9 Primitive recursive functions: “negative” results

9.1 A PR function can not simulate PR functions

Theorem 23 There is no binary PR function φi such that φi(e, x) is φe(x).
Equivalently there is no PR function with index i such that φi(y) decomposes y
in e (the index of a PR function) and x (its input) and runs φe(x).

Proof. By contradiction. If there is such PR function φi, there exists also be a
PR function with some index i′ that works as follows

φi′(x)
run φx(x);
output 1+the result of φx(x)

But then φi′(i′) = φi′(i′) + 1 �

Theorem 23 also holds for any (indexable) class of functions that is included in
the total (computable) class. Thus,

Corollary 4 There is no universal PR function.
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This makes it difficult to use diagonalization and prove (directly) that some PR
existential problem (such as, “given the PR function f , is there some x such
that f(x) = 0?”) is undecidable and derive from that the undecidability of the
halting problem.

When we say “there is no universal PR function” this means that PR functions
do not include one of the following capabilities. 1) giving an integer x (loop
program Gödel number) translate it to a convenient form p (integer code of
a convenient program) and store it in a register. 2) Run the program(integer
coded) in p with input p.

Only part 2) is impossible within the class of PR functions. Why? One reason
may be that the program p may of course mention the register p and say “run
myself”, which could result in an infinite computation (thus not in PR).

Theorem 24 There are (total) recursive functions with codomain {0, 1} that
are not primitive recursive.

Proof. Consider the following function, where φe is the LOOP program with
index e.

f(e) =
{

0 if φe(e) ≥ 1
1 if φe(e) = 0

The function f is total, its codomain is {0, 1}. We show that is not primitive
recursive. Define g(e) = 1− f(e). Note that for all e g(e) 6= f(e). Let e′ be an
index of g. We have

g(e′) = 1− f(e′) (17)

But by definition of f , f(e′) = 0 if g(e′) = 0, and f(e′) = 1 if g(e′) ≥ 1.
From (17) {

g(e′) = 1 if f(e′) = 0 if g(e′) = 0
g(e′) = 0 if f(e′) = 1 if g(e′) = 1

This is a contradiction. �

Corollary 5 The relation

r(i, e, y) =
{

1 if φi(e) = y
0 otherwise

is not PR.

Proof. Otherwise we could define f(e), where f is the function used in the proof
of Theorem 24, as

f(e) =
{

0 if r(e, e, 1) holds
1 if r(e, e, 0) holds

and f would be PR. �

9.2 The inverse of a PR function need not be PR

The inverse of a total function f(x) can only be total (and thus can only be
PR) if the codomain is N. However it is not in general possible to know if a
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given PR function is onto? (this problem is unsoluble).

Review this section!

Theorem 25 There are unary PR functions with codomain in {0, 1} whose
inverse is not PR.

Proof. Let T (e, x, t) be the Kleene T-predicate and define T ′(p(e, t)) def= T (e, e, t),
where p(e, t) is a Cantor pairing function. The inverse of T ′(x) is not PR.
T (e, x, t) is PR. Let T ′(p(e, t)) def= T (e, e, t), where p(e, t) is a Cantor pairing
function with inverse functions l and r. �

10 Unary primitive recursive functions

Let us consider the problem HAS-ZEROS, Definition 5 (page 6). The instance
of the problem is the pair 〈f, x〉, where f is a PR function and x is the tuple
of input values. This problem is related to the halting problem HP and also
to Kleene’s normal form. However, in HP the function f may be considered to
be fixed – corresponding to the universal Turing machine – and has an extra
argument, an index or Gödel number.

Thus, it seems that there are several variants of the HAS-ZEROS problem.
However, if we use the Smn Theorem it is easy to see that

– To specify “a primitive recursive function f(x, y), and the value of x” is
equivalent to specify “a primitive recursive function of the form fx(y)”
which is less general than (or as general as) to specify “a primitive recur-
sive function f”.

Thus, for simplicity, the decision problems can and will often be rephrased in
the unary form. This simpler form is used in most of the problems studied in
this work. In other words, most of the time we will be dealing with problems
whose instance is a general unary PR function.

We now prove that, in terms of Recursion Theory, the following 3 problems are
equivalent:

(1) Problem HAS-ZEROS for arbitrarily arity: given the unary PR func-
tion f(x), is there some tuple x such that f(x) = 0?

(2) Unary problem HAS-ZEROS: given the unary PR function f(x), is there
some x such that f(x) = 0?

(3) T -HAS-ZEROS.
Instance: Index e and value of x
Question: Is there some y such that T (e, x, y) = 0?
(T is Kleene’s predicate)

For simplicity we denote the problems by (1), (2), and (3). The following
reductions prove the equivalence of the three problems for each arity n, where
x = 〈x1, . . . , xn〉.
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(1)≤m(2): Let f(x, y) be the instance of (1). Using the Smn Theorem, define
fx(y) ≡ f(x, y). The transformation (1)→ (2) is 〈f, x〉 → fx. Clearly, given f
and x, there is an y such that f(x, y) = 0 iff there is some y such that fx(y) = 0.

(2)≤m(3): Given the function f , consider the function g(x1, . . . , xn, y) = f(y)
and let e be its index. The transformation is

f(y) → T (e, 〈0, . . . , 0〉, y)

(the 0’s can be replaced by any other constant). The TM with index e starts
by writing 〈x1, . . . , xn〉 on the tape and then computes g(x1, . . . , xn, y) = f(y).

(3)≤m(1): it is enough to use the Smn Theorem to “include” e and x in the
function T , that is, define f(y) = Te,x(y).

11 From [Boolos et al]: mainly logic and arithmetic

Languages, [1], pages 100–104.

– Language L? of arithmetic: first-order theory (quantifiers, logical connec-
tives. . . ) with non-logical symbols: constant 0, binary predicate <, unary
function successor, binary functions + and ×.

– ↑-arithmetics (or exp-arithmetics): arithmetics with the extra binary
functions ↑. Easier to prove Gödel’s incompleteness Theorem with this
enriched language, see for instance [18].

– Rudimentary formulas: formula built up from atomic formulas using only
negation, conjunction, disjunction, and bounded quantifications ∀x < t
and ∃x < t, where t may be any term of the language (not involving x).

– ∃-rudimentary formula: formula of form ∃x : F where F is rudimentary.
Similarly for ∀-rudimentary formula

– Standard interpretation N?: |N?| is N, the set of natural (non-negative)
integers, 0N?

is 0 (zero). . . (that is, <N?
, ′N

?
, +N?

, ·N?
.

– Correct: true in the standard interpretation.

Theories, [1], pages 214. . . .
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– ([1], pages 207. . . ) The theory Q, minimal arithmetic:

0 6= x′ (18)
x′ = y′ =⇒ x = y (19)
x+ 0 = x (20)
x+ y′ = (x+ y)′ (21)
x · 0 = 0 (22)
x · y′ = (x · y) + x (23)
¬(x < 0) (24)
x < y′ ⇔ (x < y ∨ x = y) (25)
0 < y ⇔ y 6= 0 (26)
x′ < y ⇔ (x < y ∧ y 6= x′) (27)

There is a natural nonstandard model for Q, called the system of ordinal
numbers.
Q is not strong enough to prove major theorems of number theory, but
the following result is important:

An ∃-rudimentary sentence is correct if and only if it is a theo-
rem of Q.

– ([1], pages 216. . . ) The theory R, Robinson arithmetic. Add to R the
axiom schema

(x = 0) ∨ (∃y : x = y′) (28)

and replace (24)–(27) by

x < y ⇔ ∃z : z′ + x = y (29)

There is also a natural nonstandard model for R, called the system of
cardinal numbers, in which (27) fails.

– ([1], pages 214. . . ) The theory P of Peano arithmetic is the set of all
sentences of the language of arithmetic that are provable from (or equiv-
alently, are consequences of) the axioms of Q plus the the schema of
induction.

[1], Pages 199–204.

– Arithmetic formula F (x) defines the set S ⊆ N: ∀a ∈ N : F (a) ⇔ a ∈ S.
Depending on the arithmetic we also say: “S is arithmetical” or “S is
↑-arithmetical (or ”exp-arithmetical.”).

– The arithmetic formula F (x, y) defines the relation R ⊆ N × N: ∀a, b ∈
N : F (a, b) ⇔ 〈a, b〉 ∈ R.
We say that the relation R is arithmetic.

– The arithmetic formula F (x, y) defines the function f(x) : N → N if it
defines the relation {〈x, f(x)〉}
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– Examples if arithmetical functions; +(x, y), ·− (x, y), quo(x, y), rem(x, y),
IF-EQ-ZERO(x, y, z). . .

– Composition, primitive recursion and minimization applied to exp-arithmetical
functions result in exp-arithmetical functions.

– Lemma 16.4: every partial recursive function is exp-arithmetical.

– Every partial recursive function is arithmetical (Lemma 16.6).

– Every semi-decidable set is arithmetical (Lemma 16.6).

– Every partial recursive function is arithmetically definable by a general-
ized rudimentary arithmetic formula (Lemma 16.6).

– Every generalized ∃-rudimentary arithmetic formula is arithmetically equiv-
alent to an ∃-rudimentary formula (Lemma 16.6).

– Every partial recursive function is arithmetically definable by an ∃-rudimentary
formula (Lemma 16.6).

– Every partial recursive function is obtainable by composition of from rudi-
mentary functions (Lemma 16.6).

11.1 Relation to Turing machines

The Turing computable sets of natural numbers are exactly the sets at level ∆0
1

of the arithmetical hierarchy.

The recursively enumerable sets are exactly the sets at level Σ0
1.

No oracle machine is capable of solving its own halting problem (a variation
of Turing’s proof applies). The halting problem for a ∆0,Y

n oracle in fact sits
in Σ0,Y

n+1.

Post’s theorem establishes a close connection between the arithmetical hierarchy
of sets of natural numbers and the Turing degrees. In particular, it establishes
the following facts for all n ≥ 1:

• The set ∅(n) (the nth Turing jump of the empty set) is many-one complete
in Σ0

n.

• The set N \ ∅(n) is many-one complete in Π0
n.

• The set ∅(n−1) is Turing complete in ∆0
n.

The polynomial hierarchy is a “feasible resource-bounded” version of the arith-
metical hierarchy in which polynomial length bounds are placed on the numbers
involved (or, equivalently, polynomial time bounds are placed on the Turing ma-
chines involved). It gives a finer classification of some sets of natural numbers
that are at level ∆0

1 of the arithmetical.
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11.2 Logic and decidability, Chapter 11

([1], page 132. . . )

If the decision problem for logical implication were solvable, the halting problem
would be solvable, which (assuming Turing’s thesis) we know it is not. Hence
we have established the following result, assuming Turing’s thesis.

Theorem 26 (Church’s theorem) The decision problem for logical implica-
tion is unsolvable.

Thus we have reduced the problem of determining whether for some n we have
f(m,n) = 0 to the problem of determining whether Γ implies D(m). That is,
we have established that if the decision problem for logical implication were
solvable, the nullity problem for f would be solvable, which it is known, as we
have said, that it is not, assuming Church’s thesis. Hence we have established
the following result, assuming Church’s thesis.

Theorem 27 (Church’s theorem) . The decision problem for logical impli-
cation is unsolvable.

12 The n-Category Café – Weak Systems of Arith-
metic

From [golem.ph.utexas.edu/category/2011/10/weak_systems_of_arithmetic.html]. Au-
thors: John Baez, Jeffrey Ketland, et al.

Posted by John Baez
[http://golem.ph.utexas.edu/ distler/blog/mathml.html]

The recent discussion about the consistency of arithmetic made me want to
brush up on my logic. I’d like to learn a bit about axioms for arithmetic that
are weaker than Peano arithmetic [http://en.wikipedia.org/wiki/Peano_axioms].
The most famous is Robinson arithmetic:

• Robinson arithmetic [http://en.wikipedia.org/wiki/Robinson_arithmetic], Wikipedia.

Robinson arithmetic is also known as Q, after a Star Trek character who could
instantly judge whether any statement was provable in this system, or not:

Instead of Peano arithmetic’s axiom schema for mathematical induction, Q only
has inductive definitions of addition and multiplication, together with an axiom
saying that every number other than zero is a successor. It’s so weak that it
has computable nonstandard models! But, as the above article notes:

Q fascinates because it is a finitely axiomatized first-order theory that is con-
siderably weaker than Peano arithmetic (PA), and whose axioms contain only
one existential quantifier, yet like PA is incomplete and incompletable in the
sense of Gödel’s Incompleteness Theorems, and essentially undecidable.
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But there are many interesting systems of arithmetic between PA and Q in
strength. I’m hoping that if I tell you a bit about these, experts will step in
and tell us more interesting things—hopefully things we can understand!

addrhttp://golem.ph.utexas.edu/∼distler/blog/mathml.html

For example, there’s primitive recursive arithmetic, or PRA:

• Primitive recursive arithmetic [http://en.wikipedia.org/wiki/Primitive_recursive_

arithmetic], Wikipedia.

This system lacks quantifiers, and has a separate predicate for each primitive
recursive function, together with an axiom recursively defining it.

What’s an interesting result about PRA? Here’s the only one I’ve seen: its
proof-theoretic ordinal [http://en.wikipedia.org/wiki/Proof-theoretic_ordinal] is
ωω. This is much smaller than the proof-theoretic ordinal for Peano arithmetic,
namely ε0.

What’s ε0? It’s a big but still countable ordinal which I explained back in
week236 [http://math.ucr.edu/home/baez/week236.html]. And what’s the proof-
theoretic ordinal of a theory?

Ordinal analysis concerns true, effective (recursive) theories that can in-
terpret a sufficient portion of arithmetic to make statements about ordinal
notations. The proof theoretic ordinal of such a theory T is the small-
est recursive ordinal that the theory cannot prove is well founded – the
supremum of all ordinals α for which there exists a notation o in Kleene’s
sense such that **T** proves that σ is an ordinal notation.

For more details, try this wonderfully well-written article:

• Michael Rathjen, The art of ordinal analysis [http://www.icm2006.org/proceedings/

Vol_II/contents/ICM_Vol_2_03.pdf], International Congress of Mathemati-
cians, II, Eur. Math. Soc., Zurich, pp. 45–69.

Climbing down the ladder we eventually meet elementary function arithmetic,
or EFA:

• Elementary function arithmetic [http://en.wikipedia.org/wiki/Elementary_

function_arithmetic], Wikipedia.

Its proof-theoretic ordinal is just ω3. It’s famous because Harvey Friedman
made a grand conjecture about it:

Every theorem published in the Annals of Mathematics whose statement
involves only finitary mathematical objects (i.e., what logicians call an
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arithmetical statement) can be proved in EFA. EFA is the weak fragment
of Peano Arithmetic based on the usual quantifier-free axioms for 0, 1,
+, ×, exponential, together with the scheme of induction for all formulas
in the language all of whose quantifiers are bounded.

Does anyone know yet if Fermat’s Last Theorem can be proved in EFA? I seem
to remember early discussions where people were wondering if Wiles’ proof
could be formalized in Peano arithmetic.

But let’s climb further down the ladder. How low can we go? I guess ω is
too low to be the proof-theoretic ordinal of any theory “that can interpret a
sufficient portion of arithmetic to make statements about ordinal notations.”
Is that right? How about ω + 1, 2ω, and so on?

There are some theories of arithmetic whose proof-theoretic ordinal is just ω2.
One of them is called I∆0. This is Peano arithmetic with induction restricted to
predicates where all the for-alls and there-exists quantify over variables whose
range is explicitly bounded, like this:

∀i ≤ n∀j ≤ n∀k ≤ n : i3 + j3 6= k3

Every predicate of this sort can be checked in an explicitly bounded amount of
time, so these are the most innocuous ones.

Such predicates lie at the very bottom of the arithmetical hierarchy [http:

//planetmath.org/encyclopedia/ArithmeticalHierarchy.html], which is a way of clas-
sifying predicates by the complexity of their quantifiers. We can also limit in-
duction to predicates at higher levels of the arithmetic hierarchy, and get flavors
of arithmetic with higher proof-theoretic ordinals.

But you can always make infinities bigger – to me, that gets a bit dull after
a while. I’m more interested in life near the bottom. After all, that’s where I
live: I can barely multiply 5-digit numbers without making a mistake.

There are even systems of arithmetic too weak to make statements about ordinal
notations. I guess Q is one of these. As far as I can tell, it doesn’t even make
sense to assign proof-theoretic ordinals to these wimpy systems. Is there some
other well-known way to rank them?

Much weaker than Q, for example, is Presburger arithmetic:

• Presburger arithmetic [http://en.wikipedia.org/wiki/Presburger_arithmetic],
Wikipedia.

This is roughly Peano arithmetic without multiplication! It’s so simple you can
read all the axioms without falling asleep:

¬(0 = x+ 1)x+ 1 = y + 1⇒ x = yx+ 0 = x(x+ y) + 1 = x+ (y + 1)

and an axiom schema for induction saying:

(P (0) ∧ (P (x)⇒ P (x+ 1))) ⇒ P (y)

or all predicates P that you can write in the language of Presburger arithmetic.
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Presburger arithmetic is so simple, Gödel’s first incompleteness theorem doesn’t
apply to it. It’s consistent. It’s complete: for every statement in Presburger
arithmetic, either it or its negation is provable. But it’s also decidable: there’s
an algorithm that decides which of these two alternatives holds!

However, Fischer and Rabin [www.lcs.mit.edu/publications/pubs/ps/MIT-LCS-TM-043.

ps] showed that no algorithm can do this for all statements of length n in less
than 22cn

steps. So, Presburger arithmetic is still fairly complicated from a
practical perspective. (In 1978, Derek Oppen showed an algorithm with triply
exponential run time can do the job.)

Presburger arithmetic can’t prove itself consistent: it’s not smart enough to even
say that it’s consistent! However, there are [http://mathoverflow.net/questions/

9864/presburger-arithmetic/10027#10027] weak systems of arithmetic that can prove
themselves consistent. I’d like to learn more about those. How interesting can
they get before the hand of Gödel comes down and smashes them out of exis-
tence?

Re: Weak Systems of Arithmetic

Does anyone know yet if Fermat’s Last Theorem can be proved in EFA? I seem
to remember early discussions where people were wondering if Wiles’ proof
could be formalized in Peano arithmetic.

I’ve heard Angus MacIntyre talking about this. He is working on a paper argu-
ing that Wiles’ proof translates into PA. I say “arguing” rather than “proving”
because all he plans to do is show that the central objects and steps can be for-
malised in PA, rather than translate the entirety of Wiles’ proof, which would
be a a ridiculously Herculean task. I don’t know if his paper is available yet,
but there’s some discussion of it here [http://rjlipton.wordpress.com/2011/02/03/

infinite-objects-and-deep-proofs/].

Posted by: Richard Elwes on October 11, 2011 8:52 AM

[http://golem.ph.utexas.edu/~distler/blog/mathml.html] Richard wrote:

I’ve heard Angus MacIntyre talking about this. He is working on a paper
arguing that Wiles’ proof translates into PA.

Hmm, that’s interesting! Sounds like a lot of work—but work that’s interesting
if you really know and like number theory and logic. Of course one would
really want to do this for Modularity Theorem [http://en.wikipedia.org/wiki/

Modularity_theorem], not just that piddling spinoff called Fermat’s Last Theorem.

I say “arguing” rather than “proving” because all he plans to do is show
that the central objects and steps can be formalised in PA, rather than
translate the entirety of Wiles’ proof, which would be a a ridiculously
Herculean task.

Right. But by the way, I think most logicians would be perfectly happy to say
‘proving’ here.

38

www.lcs.mit.edu/publications/pubs/ps/MIT-LCS-TM-043.ps
www.lcs.mit.edu/publications/pubs/ps/MIT-LCS-TM-043.ps
http://mathoverflow.net/questions/9864/presburger-arithmetic/10027#10027
http://mathoverflow.net/questions/9864/presburger-arithmetic/10027#10027
http://rjlipton.wordpress.com/2011/02/03/infinite-objects-and-deep-proofs/
http://rjlipton.wordpress.com/2011/02/03/infinite-objects-and-deep-proofs/
http://golem.ph.utexas.edu/~distler/blog/mathml.html
http://en.wikipedia.org/wiki/Modularity_theorem
http://en.wikipedia.org/wiki/Modularity_theorem


I think most logicians would be perfectly happy to say “proving” here.

Well, when I heard Angus talk he was keen to emphasise that it would not be
a complete proof, but would only focus on the major bits of machinery needed.
So it seems polite to echo the official line!

Of course one would really want to do this for Modularity Theorem, not just
that piddling spinoff called Fermat’s Last Theorem.

Yes - my notes from the talk are elsewhere, but I think his main focus is indeed
on the central modularity result (I don’t know whether he addresses the full
theorem, or just the case needed for FLT).

In any case, he claims that it is effectively Π0
1, and provable in PA.

Posted by: Richard Elwes

Regarding FLT, nLab has a short section [http://ncatlab.org/nlab/show/effects+

of+foundations+on+%22real%22+mathematics#fermats_last_theorem_3] on this. So any
findings to be added there. It mentions Colin McLarty’s research.

I have also heard Angus MacIntyre on a sketch of a proof that PA suffices. He
seems to have given a number of talks on this, e.g., here [http://www.cs.ox.ac.uk/

seminars/128.html] and here [http://www.cs.ox.ac.uk/seminars/355.html], the later
mentioning a discussion on FOM.

There’s a paper by Jeremy Avigad – Number theory and elementary arithmetic
[http://www.andrew.cmu.edu/user/avigad/Papers/elementary.pdf] – which should in-
terest you.

Posted by: David Corfield

McLarty has recently shown [http://arxiv.org/abs/1102.1773] (I believe) that
finite-order arithmetic is sufficient to define pretty much all of Grothendieck-
style algebraic geometry necessary for arithmetic questions. nth-order arith-
metic admits quantification over Pn(N), the n-times iterated power set for some
given n. The n needed depends on the problem in question, and the hope is
that n < 2 (PA or weaker) is sufficient for FLT, or even the modularity theorem
(since there is a proof of the Modularity Theorem which is simpler than Wiles’
original proof of the semistable case).

The trick is defining derived functor cohomology for sheaf coefficients. All the
algebra content is apparently very basic from a logic point of view.

Posted by: David Roberts

So, I just spent a bit playing around with I∆0 to get a sense for it. I wanted
to build a Gödel coding, and I found I needed the following lemma (quantifiers
range over positive integers):

∀n∃N∀k ≤ n∃d : kd = N
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Easy enough in PA; it’s a simple induction on n. But in I∆0 I can’t make that
induction because there is no bound on N . (There’s also no bound on d, but I
can fix that by changing the statement to ∃d ≤ N ; this is also true and trivially
implies the above.) I can’t fix it by adding in N ≤ n100 because that’s not true;
the least such N is of size ≈ en. I can’t write N ≤ 4n because I don’t have a
symbol for exponentiation. Anyone want to give me a tip as to how to prove
this in I∆0?

Posted by: David Speyer

That’s a great puzzle, David! I’m not very good at these things, so I hope
someone materializes who can help you out. In the meantime here are some
references that might (or might not provide useful clues. At least I found they’re
somewhat interesting.

First:

• Chris Pollet, Translating I∆0 + exp proofs into weaker systems. [http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.7317]

I’m guessing you could do what you want in I∆0 + exp, but you’re struggling
to do it in I∆0. A few intriguing quotes:

Of the commonly studied bounded arithmetic theories, I∆0 + exp, the
theory with induction for bounded formulas in the language of 0, S, +,
× together with the axiom saying the exponential function is total, is one
of the more interesting. . .

Wilkie–Paris have shown several interesting connections between I∆0 +
exp and weaker theories. They have shown I∆0 + exp cannot prove
Con(Q). . .

Despite the fact that I∆0 + exp is not interpretable in I∆0, it is known
if I∆0 + exp proves ∀x : A(x) where A is a bounded formula then I∆0

proves
∀x(∃y : y = 2xk) =⇒ A(x))

Here 2xk is a stack of 2’s k high with an x at top.

Here k depends on x in some way. I guess he’s saying that while I∆0 can be
used to describe a relation deserving of the name y = 2xk, it can’t prove that
exponentiation is total, so it can’t prove there exists a y such that y = 2xk. So,
we need to supplement its wisdom for it to prove something similar to ∀xA(x).
Or in his words:

Intuitively, this results says: given x, if I∆0 knows a big enough y exists
then it can show A(x) holds.

Of course you don’t want to resort to a trick like this!

Posted by: John Baez
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That’s a great puzzle, David! I’m not very good at these things, so I hope
someone materializes who can help you out. In the meantime here are some
references that might (or might not provide useful clues. At least I found they’re
somewhat interesting.

First:

• Chris Pollet, Translating I∆0 + exp proofs into weaker systems. [http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.7317]

I’m guessing you could do what you want in I∆0 + exp, but you’re struggling
to do it in I∆0. A few intriguing quotes:

Of the commonly studied bounded arithmetic theories, I∆0 + exp, the
theory with induction for bounded formulas in the language of 0, S, +,
× together with the axiom saying the exponential function is total, is one
of the more interesting. . .

Wilkie–Paris have shown several interesting connections between I∆0 +
exp and weaker theories. They have shown I∆0 + exp cannot prove
Con(Q). . .

Despite the fact that I∆0 + exp is not interpretable in I∆0, it is known
if I∆0 + exp proves ∀x : A(x) where A is a bounded formula then I∆0

proves
∀x(∃y : y = 2xk)⇔ A(x))

Here 2xk is a stackof 2’s k high with an x at top.

Here k depends on x in some way. I guess he’s saying that while I∆0 can be
used to describe a relation deserving of the name y = 2xk, it can’t prove that
exponentiation is total, so it can’t prove there exists a y such that y = 2xk. So,
we need to supplement its wisdom for it to prove something similar to ∀x : A(x).
Or in his words:

Intuitively, this results says: given x, if I∆0 knows a big enough y exists then
it can show A(x) holds.

Of course you don’t want to resort to a trick like this!

Posted by: John Baez

I think you can bet your sweet bippy that he himself knows how to do it. :-)
Hey, maybe someone should ask on Math Overflow!

Posted by: Todd Trimble

It looks like the conversation has moved on. In case anyone is still puzzled, let
me spell out what Kaveh is saying:

My statement cannot be proved in I∆0 because I∆0 is polynomially bounded.
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I think I understand what this means now. Suppose that I∆0 proves

∀n∃m : . . . . . .

where the ellipsis are any grammatical statement about n and m. Then there
is some polynomial p(n) there exists an m with m ≤ p(n).

This is not true for my statement! The smallest validN is LCM(1,2,. . . ,n),which
is ≈ en. (The more obvious choice of N is n!, which is even bigger.) So this
is a great example of a sentence which is true (as a statement about ordinary
integers) and grammatical in I∆0, but not provable in I∆0, on account of the
fact that it involves a fast growing function.

This example really helps me understand the more complicated examples of
statements which are known to be undecidable in PA because of fast growing
functions, like the Paris-Huntington theorem. I always run into a psycholog-
ical roadblock with examples like Paris-Huntington, because the encoding of
those statements into formal language is so complex. This example is straight-
forwardly a number theoretic statement, so I think I’ll use it as my standard
example of a statement which is undecidable for growth rate reasons in the
future.

I’ll point out that there is plenty of stuff which is provable in I∆0. I got through
showing “if x divides y then x ≤ y”, “every positive integer is either of the
form 2k or 2k + 1”, “if a divides c and b divides c, then LCM(a, b) divides c”,
and several other standard examples of induction in elementary number theory
before trying this one.

Posted by: David Speyer

I have two naive questions:

On the wikipedia page “ordinal analysis”, RFA (rudimentary function arith-
metic) is mentioned as having proof-theoretic ordinal omega2, but nothing is
said about it. Has anyone here heard of it? Is it EFA minus exponentiation?

Even if some systems may be too weak to be assigned proof-theoretic ordinals,
is it possible to make sense of “if that system had a proof-theoretic ordinal in
any reasonable sense, then this ordinal would be. . . ”? In view of the wikipedia
page on the Grzegorczyk hierarchy (which gives systems of strength ωn), it is
tempting to say that Presburger arithmetic “should” have strength omega.

Posted by: ben

While naive, these questions are not sufficiently naive for me to answer them.
So, I hope someone else can! They’re interesting.

Posted by: John Baez

What’s an interesting result about PRA?
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It is suggested that PRA is an upper bound for what Hilbert considered to be
finitistic reasoning.

Is there some other well-known way to rank them?

There are (e.g. by the class of their provably total functions), but I guess you
want something similar to ordinal analysis. In that case check Arnold Beckmann
[http://cs.swan.ac.uk/~csarnold/]’s project on dynamic ordinal analysis [http://

cs.swan.ac.uk/~csarnold/amllcc/give-page.php?2] .

How interesting can they get before the hand of Gödel comes down and
smashes them out of existence?

For most purposes the bounded arithmetic theory V 0 (which is quite similar
to I∆0) is the natural starting point. The provably total functions of V 0 are
exactly AC0 functions (the smallest complexity class complexity theorist usu-
ally consider). For comparison, provably total functions of I∆0 are Linear Time
Hierarchy (LTH). V 0 is capable of talking about sequences using a better en-
coding that Gödel’s beta function (write the numbers in the sequence in binary,
add 2 between each consecutive pair, read in base 4). It can also check if a given
number encodes the computation of a given Turing machine on a given input.

But a more natural theory to work with might be VTC0 whose provably total
functions are complexity class TC0 which can also parse syntax. See Cook and
Nguyen [http://www.cambridge.org/gb/knowledge/isbn/item2708116/?site_locale=en_

GB] (draft [http://www.cs.toronto.edu/~sacook/homepage/book/] ) for more informa-
tion.

I think self-verifying theories [http://en.wikipedia.org/wiki/Self-verifying_theories]

that can prove their own consistency (in the usual formalization) are artificial.
For more information about them see:

Dan Willard, “Self Verifying Axiom Systems, the Incompleteness Theorem and
the Tangibility Reflection Princible”, Journal of Symbolic Logic 66 (2001) pp.
536-596.

Dan Willard, “An Exploration of the Partial Respects in which an Axiom Sys-
tem Recognizing Solely Addition as a Total Function Can Verify Its Own Con-
sistency”, Journal of Symbolic Logic 70 (2005) pp. 1171-1209.

I just spent a bit playing around with I∆0 to get a sense for it. I wanted to
build a Gödel coding. . .

You cannot prove that in I∆0 because that would give a exponentially growing
function while I∆0 is a polynomially bounded theory.
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On the wikipedia page “ordinal analysis”, RFA (rudimentary function arith-
metic) is mentioned as having proof-theoretic ordinal ω2, but nothing is said
about it.

Rudimentary sets are defined in Smullyan 1961. They are essentially ∆0 =LTH.
I am not sure about the theory RFA but I would guess it is essentially I∆0. EFA
is I∆0 + EXP (where EXP expresses that the exponential function is total).

Even if some systems may be too weak to be assigned proof-theoretic ordinals. . .
See above (the part about Beckmann’s research).

Posted by: Kaveh

Thanks for posting this, John.

(Small quibble though - you have “Q only has inductive definitions of addition,
multiplication and exponentiation”, but Q lacks the primitive recursive defn for
exponentiation. Those axioms would be:

∀x : (x0 = S(0)) (30)

∀x∀y : (xS(y) = x× xy) (31)

But in standard logic, simply assuming a function symbol more or less presup-
poses the totality of corresponding function, i.e., exponentiation in this case.
I.e., if we have a primitive binary symbol (i.e., xy), then ∀x∀y∃z(z = xy) is a
theorem of logic! For if f is, say, a 1-place function symbol, then ` ∀x : (f(x) =
f(x)). And this gives us ` ∀x∃y : (y = f(x)). Quick indirect proof: suppose
∃x∀y(y 6= f(x)). So, ∀y : (y 6= f(c)), by introducing a new constant c; which
gives the contradiction f(c) 6= f(c).)

When Joel David Hamkins says that any weak system in the hierarchy IΣn

simulates computation, I think (I am guessing) he just means that any recursive
function is representable in Q and its extensions. E.g., if f : Np → N is a partial
recursive function, then there is an LA-formula φ(y, x1, . . . , xp) such that, for
all k, n1,. . . , np ∈ N,

if k = f(n1, . . . , np), then Q ` ∀y : (y = k ⇔ φ(y, n1, . . . , np))

In particular,exponentiation, f(a, b) = ab,is recursive. So, there is an LA-
formula Exp(y, x1, x2) such that, for all n, m, k ∈ N,

if k = nmthenQ ` ∀y : (y = k ⇔ Exp(y, n,m))

So Exp(y, x1, x2) represents exponentiation. However, Q cannot prove it total.
I.e., for any such representing formula Exp

Q 6` ∀x1∀x2∃y : Exp(y, x1, x2)

It’s a long time since I worked through some of the details of bounded arith-
metic, and my copy of Hayek and Pudlack is in Munich. So I can’t see im-
mediately how to give a model for this. Still, Q is very, very weak and here
is a simple non-standard model. (From Boolos and Jeffrey’s textbook). Let
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A = dom(�) = ω ∪ {a, b}, where a and b are new objects not in ω. These will
behave like “infinite numbers”. We need to define functions S�, +� and ×�

on A interpreting the LA-symbols S, + and ×. Let S� have its standard values
on n ∈ ω (i.e., S�(2) = 3, etc.), but let S�(a) = a and S�(b) = b. Similarly, +
and × are interpreted standardly on ω, but one can define an odd multiplication
table for the values of a +� a, a +� b, a ×� b, etc. Then one proves � |= Q,
even though � 6≈ N. This model is such that,

1. � 6|= ∀x∀y : (x+ y = y + x)

2. � 6|= ∀x∀y : (x× y = y × x)

So, this tells us that Q doesn’t prove that + and × are commutative.

I don’t think this simple model � with two infinite elements, a and b, is enough
to show that Q doesn’t prove that exponentiation is total.

The idea would be to find a model B |= Q such thatB 6|= ∀x1∀x2∃y : φ(y, x1, x2),
for any LA-formula φ(y, x1, x2) that represents f(a, b) = ab in Q. I don’t know
off-hand what such a model B looks like though.

Posted by: Jeffrey Ketland

On one of Kaveh’s points, another property of PRA is that if φ is a Π11-sentence,
then:

IΣ1 ` φ iff PRA ` φ
(Parsons 1970). Yes, Tait has argued that PRA represents the upper limit on
what a finitist should “accept”. However, I think that Kreisel had argued earlier
that it should be PA.

Posted by: Jeffrey Ketland

Here’s another system (call it FPA) which proves its own consistency. Work in
2-nd order logic, with predicative comprehension. Let 0 be a constant; let N
be a (1-ary) predicate, meant to represent being a natural number; and let S
be a (2-ary) relationship, meant to represent the successor relationship. Do not
assume the totality of S. Instead assume

1. S is functional, i.e. Nx and Sx, y and Sx, z implies y = z

2. S is one-to-one, i.e. Nx and Ny and Sx, z and Sy, z implies x = y

3. For all n, not Sn, 0

4. Induction (full induction, as a schema)

Because the totality of S is not assumed, FPA has the singleton model {0}. It
also has all the initial segments as models, as well as the standard model (well,
whichever of those models actually exist). In a nutshell, FPA is “downward”;
if you assume that a number n exists, then all numbers less than n exist and
behave as you expect. Most of arithmetic is, in fact, “downward”, so FPA can
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prove most familiar propositions, or at least versions of them. It can prove
(unlike Q) the commutative laws of addition and multiplication. It can prove
Quadratic Reciprocity. It cannot prove that there are an infinite number of
primes (it cannot even prove the existence of 2, after all), but it can prove
that between n/2 and n for any n > 2, there always exists a prime. It’s not
far-fetched to think that FPA can prove Fermat’s Last Theorem. So, math-
ematically anyway, it’s pretty strong. (Still it’s neither stronger nor weaker
than Q. It’s incomparable, because it assumes induction, which Q does not,
but does not assume the totality of successoring, which Q does.)

In particular FPA can talk about syntax because syntactical elements can be
defined in a downward way. Something is a term if it can be decomposed in a
particular way. Something is a wff if it can be decomposed in a particular way.
Etc.

Now, to prove its own consistency, it suffices for FPA to show that the assump-
tion of a proof in FPA of “not 0=0” leads to a contradiction. But a proof is a
number (in Gödel’s manner of representing syntactical elements) and, in fact,
a very large number. This large number then gives enough room, in FPA, to
formalize truth-in-the-singleton-model and to prove that any sentence in the
inconsistency proof must be true. But “not 0=0” isn’t true. Contradiction!
Therefore FPA has proven its own consistency.

Here’s a link to a book-long treatise, if it interests anyone:

• Andrew Boucher, Arithmetic Without the Successor Axiom [http://www.

andrewboucher.com/papers/arith-succ.pdf].

It’s possible to formalize everything in a first-order system, if the second-order
is bothersome for some.

Posted by: t

Wow, that’s quite interesting! Thanks!

Since this post grew out of our earlier discussions of ultrafinitism [http://golem.

ph.utexas.edu/category/2011/09/the_inconsistency_of_arithmeti.html] , I couldn’t
help noting that this axiom system should be an ultrafinitist’s dream, since you
can take any model of Peano Arithmetic, throw out all numbers > n, and be
left with a model of this one!

Indeed I see Andrew Boucher writes:

Most sub-systems of Peano Arithmetic have focused on weakening induc-
tion. Indeed perhaps the most famous sub-system, Robinson’s Q, lacks
an induction axiom altogether. It is very weak in many respects, unable
for instance to prove the Commutative Law of Addition (in any version).
Indeed, it is sometimes taken to be the weakest viable system; if a proposi-
tion can be proved in Q, then that is supposed to pretty much established
that all but Berkleyan skeptics or fools are compelled to accept it.

But weakness of systems is not a linear order, and F is neither stronger
nor weaker than Q. F has induction, indeed full induction, which Q
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does not. But F is ontologically much weaker than Q, since Q supposes
the Successor Axiom. Q assumes the natural numbers, all of them, ad
infinitum. So in terms of strength, F and Q are incomparable. In actual
practice, F seems to generate more results of standard arithmetic; and so
in that sense only, it is “stronger”.

One of the most important practitioners of Q has been Edward Nelson
of Princeton, who has developed a considerable body of arithmetic in Q.
While Nelson’s misgivings with classical mathematics seemed to have their
source in doubts about the existence of the natural numbers, the brunt of
his skepticism falls on induction, hence his adoption of Q. “The induction
principle assumes that the natural number series is given.” [p. 1, Predica-
tive Arithmetic] Yet it would seem that induction is neither here nor there
when it comes to ontological supposition. Induction states conditions for
when something holds of all the natural numbers, and says nothing about
how many or what numbers there are. So a skeptic about the natural
numbers should put, so to speak, his money where his doubts are, and
reject the assumption which is generating all those numbers — namely
the Successor Axiom – and leave induction, which those doubts impact
at worst secondarily, alone.

He also mentions other systems capable of proving their own consistency:

A number of arithmetic systems, capable of proving their own consistency,
have become known over the years. Jeroslow [Consistency Statements]
had an example, which was a certain fixed point extension of Q ∨ ∀x∀y :
(x = y). More recently, Yvon Gauthier [Internal Logic and Internal
Consistency] used indefinite descent and introduced a special, called “effi-
nite”, quantifier. And Dan Willard [Self-Verifying Axiom Systems] has
exhibited several cases, based on seven “grounding” functions. These
systems lack a certain naturalness and seem to be constructed for the ex-
press purpose of proving their own consistency. Finally, Panu Raatikainen
constructed what is effectively a first-order, weaker variant of F ; this sys-
tem can prove that it has a model [Truth in a Finite Universe], but its
weakness does not allow the author to draw conclusions about intensional
correctness and so it seems to fall short of the ability to prove its own
self-consistency.

Posted by: John Baez

I remember Andrew Boucher describing his theory F on sci.logic years back;
the problem is that it doesn’t interpret syntax (e.g., Tarski’s TC). (The current
state of play is that TC is interpretable in Q.)

The language LF is a second-order language with a binary relation symbol S
instead of the usual unary function symbol. Even with this small modification
(so as to drop the automatic existence of successors), the syntax of LF is still
that of a standard language, with, say, symbols 0, S, = and ¬, → , ∀ and
variables v, v′ , v′′, etc. It is straightforward to prove, based merely on the
description of LF and the usual assumptions about concatenation, that:

|LF | = ℵ0.
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So the language LF itself is countably infinite. Denying the existence of numbers
while asserting the existence of infinitely many syntactical entities is incoherent,
as one of Gödel’s basic insights is: syntax = arithmetic.

Suppose we then begin to try and interpret the syntax of LF in F itself. Ignore
the second order part, as it introduces needless complexities. In the metatheory,
suppose we assign Gödel codes as follows:

#(0) = 1 #(S) = 2 #(=) = 3 #(¬) = 4
#(→) = 5 #(∀) = 6 #(v) = 7 #(′) = 8

Incidentally, this already goes beyond F itself, as the metatheory already im-
plicitly assumes the distinctness of these numbers. How would this be done,
given that one cannot even prove the existence of 1?

In LA, we encode any string (sequence of primitive symbols) as the sequence
of its codes, and we encode a sequence (n1, . . . , nk) of numbers as a sequence
number, e.g., as

〈n1, . . . , nk〉 = (p1)n1+1 × . . .× (pk)nk+1.

For example, the string ∀∀S is really the sequence (∀,∀, S), and is coded as the
sequence (6, 6, 2), which becomes the sequence number 27× 37 × 53.

But what, in F , is the corresponding numeral for any expression of the language
LF? In the usual language LA of arithmetic, an expression ε with code n is
assigned the numeral n, written [ε], which is S . . . S0. That is, 0 prefixed by n
occurrences of S, where S is a function symbol. (Can’t get “ulcorner” to work!)

How would this work in F? Consequently, F does not numeralwise represent
non-identity of syntactical entities.

For example, in syntax we have

A: “The quantifier ∀ is distinct from the conditional →”.

Under the coding above, this becomes

A′ : 6 6= 5

which is trivially provable in Q.

Now it’s very unclear to me how one even expresses 6 6= 5 in LF. But however
it is done, we get that

F 6` 6 6= 5

A requirement on a theory T that interprets syntax is that, for expressions ε1

, ε2 , we have unique singular terms [ε1], [ε2] such that,

if ε1 6= ε2 then T ` [ε1] 6= [ε2]

But F doesn’t give this. Instead, we have

F 6` [∀] 6= [→]

So, alleged “agnoticism” about numbers has become “agnoticism” about syntax.
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Which contradicts the non-agnoticism of the description of syntactical structure
of LF itself.

There is no faithful interpretation of the syntax of LF into F . So, syntactical
claims about the properties of F cannot be translated into F . The meta-theory
of the syntax of F already assumes an infinity of distinct syntactical entities.
In particular, claims about consistency cannot be translated into F .

Posted by: Jeffrey Ketland

Thanks for your comment. Unfortunately, I don’t think it’s quite right and F
does indeed interpret syntax adequately, so that it does express notions of
consistency.

First, just as F is agnostic about the infinity of the natural numbers, it is
agnostic about the infinity of the syntax. The infinity of syntax comes from
assuming that there are an infinite number of variables; F doesn’t make this
assumption. I guess a stickler might say this is no longer second- (or first-)
order logic because these assume that there are an infinite number of variable
symbols. But I would hope most would agree this is not an essential feature of
the logic.

JK: “Incidentally, this already goes beyond F itself, as the metatheory already
implicitly assumes the distinctness of these numbers. How would this be done,
given that one cannot even prove the existence of 1?”

While one cannot prove that 1 exists, it is possible to prove that anything which
*is* one is unique (and so distinct). That is, it is possible to define a predicate
one(x) as (Nx and S0, x). It is not possible to prove that there exists x s.t.
one(x), but it *is* possible to prove that (x)(y)(one(x) and one(y) impliesx = y)
So proof of existence, no; proof of distinctness, yes. One can define two(x) as

Nx and there exists y such that one(y) and Sy, x

And so forth as far as one wants or has energy to go.

Moreover, one can define the concepts of odd and even. One defines even(x)
iff Nx and (there exists y)(y + y = x). Again, no assertion that one can prove
that even(x) or odd(x) for any x. But one *can* prove that there is no x such
that both even(x) and odd(x). Again, existence no, distinctness yes.

So one can represent the syntax. Define predicates one, two, three, . . . , ten.
Define Big(x) as Nx and not one(x) and not two(x) and . . . and not ten(x).
Then x represents a left parentheses if x = 0. x represents a right parenthesis
if one(x). x represents the implication sign if two(x). x represents the negation
sign if three(x). x represent the equal sign if four(x). And so forth. x represents
a small-letter variable if Big(x) and even(x). x represents a big-letter variable
if Big(x) and odd(x).

One gives the usual recursive definitions to syntactical entities like AtomicWff(x)
and Proof(x). Again, one cannot show there exist any x such that AtomicWff(x).
But one can show that, *if* AtomicWff(x), then x has all the properties that
it should have.

So, given that x cannot prove there exist any syntactical entities, how can it
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prove its own consistency? Because consistency means there is no proof of
“not 0 = 0”. So a proof of consistency is not a proof that something exists,
but a proof that something does not exist. It *assumes* the existence of a
syntactical entity, in this case a proof of “not 0 = 0”, and shows that the
assumption of the existence of this entity leads to a contradiction. Thus F is
able to prove a system’s consistency. (What F cannot prove is prove that a
system is inconsistent; because then it would have to prove that there exists
something, namely a proof of “not 0 = 0”, and that it cannot do.)

Anyway, all this is described in gory detail in the link that I gave.

“The infinity of syntax comes from assuming that there are an infinite number
of variables; F doesn’t make this assumption.”

This is not correct. A propositional language L with a single unary connec-
tive ¬ and a single atom p has infinitely many formulas. So, Form(L) =
{p,¬p,¬¬p, . . .} and

|Form(L)| = ℵ0

The potential infinity here is a consequence of the implicit assumptions govern-
ing the concatenation operation *. Formulas are, strictu dictu, finite sequences
of elements of the alphabet. It is assumed that sequences are closed under
concatenation. If α, β are sequences, then α ∗ β is a sequence.

“I guess a stickler might say this is no longer second- (or first-) order logic
because these assume that there are an infinite number of variable symbols.”

As noted, it has nothing to do with variables. The strings of the propositional
language L above form an ω-sequence. In general, if α and β are strings from
the language L, then α ∗ β is a string. This is simply assumed.

“But I would hope most would agree this is not an essential feature of the logic.”
That any standard language L for propositional logic (containing at least one
atom and one connective) or first-order logic has cardinality ℵ0 is usually a
preliminary exercise in logic.

Posted by: Jeffrey Ketland

Well, obviously I wouldn’t assume the totality of the concatenation operator.

“As noted, it has nothing to do with variables.” This is not correct. Your
language is infinitary if the number of variables is infinitary.

“That any standard language L for propositional logic (containing at least one
atom and one connective) or first-order logic has cardinality ℵ0 is usually a
preliminary exercise in logic.”

Of course. But it’s not an essential feature of the logic, in the sense one could
give an adequate description of the logic without this feature.

Posted by: t

Indeed, the infinitude of variable symbols is entirely a red herring. For those
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who want a finite alphabet, the standard (AIUI) solution is to have a symbol x
and a symbol ′ such that x is a variable and v′ is a variable whenever v is.
(Thus the variable symbols are x, x′, x′′, etc.)

Posted by: Toby Bartels

t, “One gives the usual recursive definitions to syntactical entities like AtomicWff(x)
and Proof(x).”

What, exactly, are these entities AtomicWff(x) and Proof(x)? How many sym-
bols do they contain? Are they distinct? How does one prove this? Have you
ever tried to estimate how many symbols occur in the arithmetic translation of
the sentence

“the formula ∀x : (x = x) is the concatenation of ∀x with (x = x)”?

You’re assuming something that you then claim to “doubt”. You do not, in
fact, “doubt” it: you assume it.

One never says, in discussing the syntax of a language, “if the symbol ∀ is
distinct from the symbol v . . . ”. Rather, one says, categorically, “the symbol ∀
is distinct from the symbol v”. The claim under discussion amounts to the
view that one ought to be “agnostic” about the distinctness of, for example,
the strings ∀x : (x = 0) and ∀y : (y 6= 0).

One can write down a formal system of arithmetic which has a “top” – called
“arithmetic with a top”. But it is not as extreme as F . Such theories have been
studied in detail by those working in computational complexity and bounded
arithmetic (see, e.g., the standard monograph by Hajek and Pudlak, which I
don’t have with me).

See, e.g., this: [http://www.math.cas.cz/~thapen/nthesis.ps]

Agnosticism about numbers = agnosticism about syntax. You can’t have your
“strict finitist” cake, while eating your syntactic cake, as they’re the same cake!

Jeff

“What, exactly, are these entities AtomicWff(x) and Proof(x)?”

They are syntactical entities. I could write them down for you explicitly here,
but as you can probably tell, I’m not gifted writing down logical symbols in
these comments. Or you can look at the top of page 110 and on page 111 of
the link, where you will find them already written down explicitly.

“Are they distinct? How does one prove this?”

I’m not sure whether you are talking about meta-theory or theory. In the
theory F , if you assume there exists something which represents AtomicWff(x)
and another thing which represents Proof(x), then you would be able to prove
these things distinct, because their ith symbols will be different for some i. But
one doesn’t need to prove this, certainly not in the proof that the system is
consistent. In the meta-theory the two syntactical entities are different, and
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you see this by writing them down.

“You’re assuming something that you then claim to “doubt”.”

No I’m not. Again you seem to be confusing meta-theory with theory, or
assuming that there must be some tight connection between them. You can’t
prove that 1 exists in F . You agree, right? So F makes no assumptions that I
doubt. Sure I can write down a formula in F which has more than one symbol.
So? That has no bearing on what F does or does not assume. In any case
my doubts are not that 1 exists, or that 10 exists, but that *every* natural
number has a successor. And the fact that I can write down a formula with 1
million symbols (well, if you pay me enough) cannot erase my doubts, nor has
any bearing on these doubts.

“One never says, in discussing the syntax of a language, “if the symbol ∀ is
distinct from the symbol v . . . ”.

Your manner of expression is again not clear. “One never says. . . ” Are you
talking theory, meta-theory, what? F can prove: “if the symbols ∀ and v exist
(or to be more precise, if the numbers used to represent them exist), then they
are distinct.”

“Rather, one says, categorically, “the symbol ∀ is distinct from the symbol v”.”
Well, F cannot prove that the numbers representing the symbols exist. But, in
order to prove the consistency of itself, F doesn’t need to. Proving the consis-
tency of a system, does not require F to show that anything exists. Rather, it
has to show that something does *not* exist.

“The claim under discussion amounts to the view that one ought to be “ag-
nostic” about the distinctness of, for example, the strings ∀x : (x = 0) and
∀y : (y 6= 0).”

No, no, no. For some reason you are hung up on distinctness. F can prove
distinctness. Again, it can prove that if these strings (or more precisely, the se-
quences representing them) exist, then they are distinct. So F is most certainly
not agnostic about their distinctness. All that F cannot prove is: the strings
exist.

“One can write down a formal system of arithmetic which has a “top” - called
“arithmetic with a top”. But it is not as extreme as F. ”

Again, you are making imprecise claims. F allows for the possibility of the
standard model. Formal systems with a “top” do not. Everything that F
proves will be true in PA. There are things that “top” formal systems prove
that are false in PA. So what on earth does “extreme” mean?

Posted by: t

“So what on earth does ‘extreme’ mean?”

A theory of syntax that doesn’t prove that ∀ is distinct from =?
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ROTFL. Ok, you win. I’ll grant you that F doesn’t “prove that symbols are
distinct” in the sense of “prove that they exist.” And I’ll grant you that this
means that its “theory of syntax” is “extreme.”

Still, in order to prove that a system is consistent, one can work with an “ex-
treme” “theory of syntax” which doesn’t “prove that symbols are distinct”
because, to prove a system is consistent, one needs to prove that something
*doesn’t* exist, not to prove that something *does*. (In your terminology,
would this be, “one needs to prove that something isn’t distinct, not to prove
that something is”??) If you or anyone else thinks that F is inconsistent, then
you must come up with a proof of “not 0 = 0”. And, by the mere fact of that
proof supposedly existing, F can show that it is able to model truth-in-{0} for
the statements in the proof and so that “not 0 = 0” cannot be a statement in
the proof. Contradiction. Therefore you, or anyone else, cannot come up with
a proof. And since all this reasoning can be done in F , F can prove its own
consistency. It’s that simple.

Posted by: t

t, I see what you wish to do with this theory F . But you lack numerals, since S
is not a function symbol. So, instead, for example, one might express 0 6= 1 by
a formula

∀x∀y : ((0(x) ∧ 1(y)) =⇒ x 6= y)

where the formulas n(x) are given by a recursive definition

0(x) ⇔ x = 0
n+ 1(x) ⇔ ∃y : (n(y) ∧ S(x, y))

So, to assert the existence of the number 7, for example, you have ∃x : (7(x)).
And, presumably, for all k ≤ n,

F ` ∃x : (n(x)) =⇒ ∃x(k(x))

Then define NotEqn,m to be the formulas

∀x∀y : ((n(x) ∧ k(y)) =⇒ x 6= y)

Then I believe one has: for all n, k ∈ N,

if n 6= k, then F ` NotEqn,k

As for syntactic coding, since ∀ is coded as 6 and = as 3, then F can define,
e.g.,:

∀(x) ⇔ 6(x)
=(x) ⇔ 3(x)

Then (I think), F does prove the distinctness of ∀ and = in a conditional
manner, namely,

F ` ∀x∀y : ((∀(x) ∧=(y)) =⇒ x 6= y)

But no, I don’t accept that F “proves its own consistency”. Just to begin with,
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one doesn’t have a proof predicate which strongly represents the proof relation
for F .

And to return to the central issue, you are assuming the existence of a language
LF whose cardinality (the cardinality of its set of formulas) is ℵ0 . You’re as-
suming this already in the metatheory. You already have ℵ0 syntactical entities.
What is the point of being “agnostic” about, say, the number 1 if you are already
assuming, in your informal metatheory, the existence of ℵ0-many syntactical en-
tities? In other words, I am doubting your “agnosticism”. You’re simply trying
to have your syntactic cake while eating (i.e., professing) the “strict finitism”
cake. It doesn’t work, because they are the same cake.

To repeat: form the point of view of ontology, interpretability, etc., syntax =
arithmetic. The same thing. They can be modelled in each other. To “doubt”
arithmetic while accepting syntax is incoherent.

To make it work, you need to develop a separate “strictly finite” syntax, for
example, a la Quine and Goodman 1947. It would have to drop the totality of
concatenation on syntactical entities. It really is not worth bothering with, as
it doesn’t work, though. At the very best, you simply end up reinventing, in
a weird way, all the things that have been discussed countlessly many times in
the very rich research literature about nominalism. See, for example,

Burgess, J and Rosen, G. 1997. A Subject with No Object. OUP. Jeff

Posted by: Jeffrey Ketland

“(a lot of things snipped)”

You clearly haven’t read the linked paper, or even (I imagine) glanced over it,
right? That doesn’t seem to faze you in the least, though, in making various
definitive pronouncements.

“Just to begin with, one doesn’t have a proof predicate which strongly repre-
sents the proof relation for F .”

Well, you will have to give a reasoned argument why (the technical notion of)
representability is essential to (the intuitive notion of) expressability. Con-
sider the simpler case of even(x), which can be defined in F as (there ex-
ists y)(y + y = x). Because of F ’s ontological limitations, even(x) doesn’t rep-
resent evenness. Yet even(x) clearly expresses the notion of evenness. I think
you can be most succinct in your point by noting that the Hilbert-Bernays con-
ditions of provability do not hold for the provability predicate in F . But as I
mention in the linked paper, the Hilbert-Bernays conditions do not adequately
capture the (intuitive) notion of provability.

“And to return to the central issue, you are assuming the existence of a language
LF whose cardinality (the cardinality of its set of formulas) is ℵ0.”

If that’s the central issue, then you are wrong, as I am not. Look, you obviously
haven’t read or thought hard about what I’ve done or written, so perhaps you
should stop saying that I am making assumptions which I do not make. Right?
That’s only fair, right?

“It would have to drop the totality of concatenation on syntactical entities.”
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Obviously. I see now you have replied in another place about this, so I will now
switch there.

Posted by: t

I’m trying to understand this discussion. It seems to me that Jeffrey Ketland
is saying, roughly, that because our usual theory of syntax can prove that the
system F has infinitely many formulas, while F has finite models (as well as
infinite ones), the system F is “incoherent” as a theory of arithmetic. For
example, he says:

To repeat: form the point of view of ontology, interpretability, etc., syntax
= arithmetic. The same thing. They can be modelled in each other. To
“doubt” arithmetic while accepting syntax is incoherent.

So the language LF itself is countably infinite. Denying the existence of
numbers while asserting the existence of infinitely many syntactical enti-
ties is incoherent, as one of Gödel’s basic insights is: syntax = arithmetic.

But this is puzzling in two ways. First of all, I don’t think F “denies the
existence of numbers”: any model of Peano arithmetic will be a model of F,
so you can have all the natural numbers you might want. There’s a difference
between denying something and not asserting something.

But more importantly, I don’t really care whether F is “incoherent” from the
point of view of “ontology” due to some claimed mismatch between the syntax
of theory F (which has infinitely many formulas, according to standard math-
ematics) and the models F has (which include finite ones). “Incoherent” and
“ontology” are philosophical notions, but I’m a mere mathematician. So I’m
much more interested in actual theorems about F .

If these theorems are proved in a metatheory that can prove F has infinitely
many formulas, that’s fine! — just make sure to tell me what metatheory is
being used. And if someone has proved some other theorems, in a metatheory
that can’t prove F has infinitely formulas — in other words, a metatheory that
more closely resembles F itself — that’s fine too! All I really want to know is
what’s been proved, in what framework.

But I guess it all gets a bit tricky around Gödel’s 2nd incompleteness theorem.
What does it mean for F to “prove its own consistency”? I guess it means
something like this. (I haven’t thought about this very much, so bear with me.)
Using some chosen metatheory, you can prove

F ` Con(F )

where Con(F) is some statement in F that according to the chosen metathe-
ory states the consistency of F. The Hilbert-Bernays provability conditions
[http://en.wikipedia.org/wiki/Hilbert%E2%80%93Bernays provability conditions]
are supposed to help us know what “states the consistency of F” means, but if
you want to use some other conditions, that’s okay — as long as you tell me
what they are. I can then make up my mind how happy I am.

From the reference above:
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Let T be a formal theory of arithmetic with a formalized provability pred-
icate Prov(n), which is expressed as a formula of T with one free number
variable. For each formula φ in the theory, let #(φ) be the Gödel number
of φ. The Hilbert–Bernays provability conditions are:

1. If T proves a sentence φ then T proves Prov(#(φ)).

2. For every sentence φ, T proves Prov(#(φ)) =⇒ Prov(#(Prov(#(φ)))).

3. T proves that Prov(#(φ =⇒ Ψ)) and Prov(#(φ)) imply Prov(#(Ψ))

Posted by: John Baez

13 Some open questions and work to do

1. Search the following books to see if the AH can be “started” with the PR-sets ←
and alternating quantifiers [16, 15, 4, 8, 14, 17, 1] – [9, 10, 7, 21].

– [16], Rogers: Chapters 14, 15. Hypersimple, creative, T-complete.
Pages 78 (def.) 316, 330 (AH), 380, 396 (AnH).

– [15], Odifreddi, pages 306, 341-349 (complete r.e.), 370, 372, 451 (com-
plete in the AH), 362, 375, 381, 392, 393, 511-417, 438.

– [10]: Kozen, arithmetic hierarchy.

– [4]: Davis, Kleene hierarchy, Chapter 6.

– [17]: Sipser, read Chapter 6, self reference. No hierarchies.

2. [2]: read Brandt (arithmetic hierarchy). ←

3. Modify the Kleene normal form to show that the following goal (see previous
item) is possible: start from a PR-relation to generate all AH.

4. The set of recursive sets (and functions) is not enumerable; the set of PR-sets
is. Characterization by a “model of computation” implies r.e.

5. The class Σ0
1 (and ΣPR

1 ) are recursively enumerable. Then, in the AH, ←
only ∆ – and possibly ∆0

1, . . . – are not r.e. However, the class PR is
r.e.!

6. Are there non-complete problems in Σ0
1 \∆? References? Is there a Ladner-

type theorem?

7. What are PR-sets, are there other definitions? Closure properties. Study the
characterization of PR-sets by PR functions.

8. Codomain of a PR function: class Σ0
1. Prove.

1. Suppose that f ′(x, y) is the relation associated with the function f which
is total but not PR. Can f ′(x, y, z) be PR? In particular, let a(x, y) be
the Ackermann function; is a′(x, y, z) PR?

2. Let f(x) be an unbounded and non decreasing PR function. Is the inverse

function f−1(y) = min{x : f(x) ≥ y} PR? Particular case: f(x) =
x
↑.
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3. Is the following function PR, where a(x, y) is the Ackermann function?

a(m,n, d) =

 0 if the dth bit of a(m,n) is 0
1 if the dth bit of a(m,n) is 1
2 if a(m,n) has less than d bits
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