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Abstract

This note is for personal use. It was written with the goal of understand-
ing the paper “On Axiomatizability Within a System” by William Craig.
Some of its consequences are also explored. Parts of two other papers on
this subject are also transcribed and studied. These three papers are (or
were) freely available at the internet. The recursion theoretic properties
of a set of axioms are studied.

1 Introduction

This note is about the application of a recursion theoretical result discovered by
Craig to logical formal systems. We transcribe and study parts of three papers
related that result, known as Craig’s Theorem or Craig’s observation. We hope
that some readers may enjoy this note, which is essentially a collection of views
on the same subject.

General comments on formal deduction systems

Due to Gödel incompleteness theorem, a sufficiently strong consistent theory
(view as the set of its theorems) cannot be decidable. Such a theory will be a
recursively enumerable (or Σ0

1) set.

Similarly, the set of axioms is also usually infinite, not decidable but recursively
enumerable. We quote a Wikipedia entry on Gödel’s incompleteness theorems.

Many theories of interest include an infinite set of axioms [. . . ] To
verify a formal proof when the set of axioms is infinite, it must be
possible to determine whether a statement that is claimed to be an
axiom is actually an axiom. This issue arises in first order theories
of arithmetic, such as Peano arithmetic, because the principle of
mathematical induction is expressed as an infinite set of axioms (an
axiom schema).
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A formal theory is said to be effectively generated if its set of axioms
is a recursively enumerable set. This means that there is a computer
program that, in principle, could enumerate all the axioms of the
theory without listing any statements that are not axioms. This is
equivalent to the existence of a program that enumerates all the the-
orems of the theory without enumerating any statements that are
not theorems. Examples of effectively generated theories with infi-
nite sets of axioms include Peano arithmetic and Zermelo–Fraenkel
set theory.
In choosing a set of axioms, one goal is to be able to prove as many
correct results as possible, without proving any incorrect results. A
set of axioms is complete if, for any statement in the axioms’ lan-
guage, either that statement or its negation is provable from the
axioms. A set of axioms is (simply) consistent if there is no state-
ment such that both the statement and its negation are provable
from the axioms. In the standard system of first-order logic, an in-
consistent set of axioms will prove every statement in its language
(this is sometimes called the principle of explosion), and is thus au-
tomatically complete. A set of axioms that is both complete and
consistent, however, proves a maximal set of non-contradictory the-
orems. Gödel’s incompleteness theorems show that in certain cases
it is not possible to obtain an effectively generated, complete, con-
sistent theory.

A formal deduction system has several parts, namely: the set of theorems,
also called “the theory”, a recursively enumerable (or equivalently Σ0

1) set of
axioms, (possibly) a partial recursive function that extends the sets of axioms,
a function that checks the correctness of a proof. This is a partial recursive
function check(p) such that, if p is a proof, the computation check(p) halts with
output true; otherwise it may output false or diverge. We also assume the
existence of a total recursive function theorem that, given a proof p, outputs
the theorem t that is proved, t = theorem(p). Notice that
` t iff ∃p : [check(p) ∧ (theorem(p) = t)].

It is easy to show that, if those two functions (theorem and check) exist, then
the set of theorems as well as the set of formal proofs are recursively enumerable
sets.

Given a formal system F , it is possible to extend it with a partial recursive
function A, resulting in a formal system F ′. If A is surjective (onto) with
obtain exactly the same set of theorems.

`F ′ t ⇔ `F t ⇔ ∃x : (A(x) = p) ∧ check(x) ∧ (theorem(p) = t)

Although A will usually be used only once at the beginning of a proof, it could
be in principle be used anywhere in a proof to deduce t, and we write x

A` t if
A(x) = p, check(p) holds, and t = theorem(p).
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If we use a standard universal Turing machine U (which is surjective) as the
partial recursive function A, we have the following results.

Theorem 1 Suppose that in the formal system F a theorem t has a proof with
length |p|. Then, in F + U , t has a proof of length K(p).

In fact a stronger statement is possible.

Theorem 2 In F+U , every theorem t has a proof with Kolmogorov complexity
K(p) ≤ K(t) + c where c is a constant.

Proof. Use a Turing machine that enumerates the proofs of F until a proof of t
is found. �

Organization of this note

The more general and abstract result, Theorem 4 (page 10) is only presented
in Section 4 (page 10), after two motivating sections. Theorem 4 is a purely
recursion theoretic result, not mentioning any logic concept; it’s about recursive
enumerability, binary relations and closures. When applying it to Logic, the
sets are usually sets of axioms (“axiomata”) or of theorems (“theories”), while
the binaries relations are related to the logic deduction relation. In Sections 3
(page 7) and 2 (page 3) several particular results are proven; these results can
also be seen as corollaries of Theorem 4. Although obvious from the titles, I
should stress that Sections 2, 3, and 4 are directly based on the papers [5], [1],
and [2], respectively.

When transcribing parts of a paper, my observations are interspersed with the
transcribed text. I apologize for that. A part of text that is not transcribed is
indicated by “[. . .]”.

2 Mainly from Putman, “Craig’s theorem” ([5])

In this section we present a partial transcription of [5] where the result men-
tioned in 4.3 (page 12) is proved and explained. The existence of recursive and
of primitive recursive axiomatizations are proved in separate.

2.1 Craig’s observation

In Craig’s paper [2], the result (I) below is in the Applications Section (see
below, page 11), being thus a corollary of general Theorem 4, page 10. While
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this theorem is a recursion theoretic result, not mentioning any logic concept
(like axiom, deduction. . . ), the result (I) is in fact an application Theorem 4 to
formal system theory. As Craig writes in [2], “This observation [Theorem 4] can
be applied to many formal systems S, by letting R correspond to the relation
of deducibility in S. . . ”.

The “observation”, as expressed by Putman in [5] is

(I) Every theory that admits a recursively enumerable set of axioms
can be recursively axiomatized.

2.2 General concepts

Some explanations are in order here:

1. A theory is an infinite set of wffs (well-formed formulas) which is closed
under the usual rules of deduction. One way of giving a theory T is to
specify a set of sentences S (called the axioms of T ) and to define T to
consist of the sentences S together with all sentences that can be derived
from (one or more) sentences in S by means of logic.

2. If T is a theory with axioms S, and S′ is a subset of T such that every
member of S can be deduced from sentences in S′, then S′ is called an
alternative set of axioms for T . Every theory admits of infinitely many
alternative axiomatizations-including the trivial axiomatization, in which
every member of T is taken as an axiom (i.e., S = T ).

3. A set S is called recursive if and only if it is decidable-i.e., there exists
an effective procedure for telling whether or not an arbitrary wff belongs
to S. [. . . ] For “effective procedure” one can also write “Turing machine”.
A theory is recursively axiomatizable (often simply “axiomatizable”, in
the literature) if it has at least one set of axioms that is recursive. Every
finite set is recursive; thus all theories that can be finitely axiomatized are
recursively axiomatizable. An example of a theory that can be recursively
axiomatized but not finitely axiomatized is Peano arithmetic1

Although Peano would have considered this a single “axiom”, to write
it down we have to write down an infinite set of wffs, one instance of 1
(page 5) for each wff S, that can be built up out of the symbols 0, E, S,
T , F and logical symbols. Thus Peano arithmetic has an infinite set of
axioms (and it has been proved that no finite alternative set of axioms
exists). However, the usual set of axioms is recursive. To decide whether
or not a wff is an axiom we see if it is one of the axioms that are not of
the form 1 (one of seven axioms. . . ), and, if it is not, we then see whether
or not the wff in question has the form 1 (the “axiom” of mathematical
induction; This can be effectively decided. Thus theories with an infinite
set of axioms play an important role in actual mathematics; however, it
is always required in practice that the set of axioms be recursive. For, if

1See the description at the end of this section, page 5.
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there were no procedure for telling whether or not a wff was an axiom,
then we could not tell whether or not an arbitrary sequence of wffs was a
proof!

4. A set is recursively enumerable if the members of the set are also the
elements S1, S2, S3,. . . of some sequence that can be effectively produced
(i.e., produced by a Turing machine that is allowed to go on “spinning
out” the sequence forever). [. . . ]

The set of theorems of T , where T is any recursively axiomatized theory, is
also a recursively enumerable set. This can be shown by arranging all the
proofs in T in an effectively produced sequence (say, in order of increasing
number of symbols). If one replaces the ith proof in the resulting sequence
Proof1, Proof2,. . . by the wff that is proved by Proofi, one obtains a listing
of all and only the theorems of T (with infinitely many repetitions, of
course – however, these can be deleted if one wishes).

Note. An axiomatization of Peano arithmetic

The primitive predicates are E(x, y) (also written x = y), S(x, y, z) (also written
x+y = z), T (x, y, z) (also written x ·y = z or xy = z), and F (x, y) (also written
y = x′ or y = x+ 1).

The axioms are Peano axioms for number theory plus the four formulas that
recursively define addition and multiplication which, in slighly abbreviated no-
tation, are:

∀x : x+ 0 = x, ∀x ∀y : x+ y′ = (x+ y)′,
∀x : x · 0 = 0, ∀x ∀y : x · y′ = xy + x

The “axiom” of mathematical induction says

[S0 ∧ ∀x∀y : (Sx ∧ (y = x′)⇒ Sy)]⇒ ∀x : Sx (1)

where Sx is any wff not containing ‘y’, Sy contains ‘y’ where and only where Sx

contains free ‘x’, and S0 contains the individual constant ‘0’ whenever Sx con-
tains free ‘x’.

2.3 Proof of Craig’s observation

Is every recursively enumerable set recursive? According to a fundamental
theorem of recursive-function theory, the answer is “no”. There is a recursively
enumerable set D of positive integers that is not recursive. In other words,
there is a sequence al, a2,. . . of numbers that can be effectively continued as
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long as we wish, but such that there is no method in principle that will always
tell whether or not an arbitrary integer eventually occurs in the sequence.

The set of theorems of quantification theory (first-order logic) is another ex-
ample of a recursively enumerable non-recursive set. The theorems can be
effectively produced in a single infinite sequence; but there does not exist in
principle an algorithm by means of which one can tell in a finite number of
steps whether a wff will or will not eventually occur in the sequence – i.e., the
“decision problem” for pure logic is not solvable.

We now see what the observation (I), see page 4, comes to. It says that all
recursively enumerable theories can be recursively axiomatized. If the theory T
is recursively enumerable (this is equivalent to having a recursively enumerable
set of axioms), then a recursive set S can be found which is a set of axioms
for T .

Craig’s Proof of observation (I). Craig’s proof of (I) is so remarkably simple
that we shall give it in full.

Proof. Let T be a theory with a recursively enumerable set S of axioms, and
let an effectively produced sequence consisting of these axioms be S1, S2,. . .
We shall construct a new set S′ which is an alternative set of axioms for T .
Namely, for each positive integer i, S′ contains the wff Si ∧ (Si ∧ (. . .)), with i

conjuncts Si.

Clearly, each Si can be deduced from the corresponding axiom in S′ by the rule
A ∧B implies A. Also, each axiom is S′ can be deduced from the correspond-
ing Si by repeated use of the rules: A implies A ∧A, and A, B imply A ∧B. It
remains to show that S′ is recursive.

Let A be a wff, and consider the problem of deciding whether or not A belongs
to S′. Clearly, if A 6= S1 and A is not of the form (B ∧ (. . .)), A is not in S′.
If A is of the form (B ∧ (. . .)) with k B’s, then A belongs to S′ if and only if
B = Sk. So we just continue the sequence S1, S2,. . . until we get to Sk and
compare B with Sk. If B = Sk, A is in S′; otherwise A is not in S′. The proof
is complete! �

Notice that, although we have given a method for deciding whether or not a
wff A is in S′, we still have no method for deciding whether or not an arbitrary
wff C is in S, even though S and S′ are trivially equivalent sets of sentences,
logically speaking. For we don’t know how long an initial segment S1,. . . Sk

we must produce before we can say that if C is not in the segment it is not in S
at all. The fact that S′ is decidable, even if S is not, constitutes an extremely
instructive example.
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Note. In the above proof the axioms of S′ contain information about a specific
Turing machine (TM) that enumerates the axioms of S. There are infinitely
ways of enumerating them, depending on the order in which they are printed
by M . So, to define an axiom of S′ we need a particular enumerating TM. . .
and perhaps a proof that this machine enumerates in fact the axioms of S′. �

2.4 Craig’s Theorem about predicate letters

We now state and prove another theorem from Craig. Essentially it states
that in a theory T we can select any set VB of predicate letters used in T and
recursively axiomatize those formulas of T that only mention the letters in VB.

Theorem 3 (Craig’s Theorem about predicate letters) Let T be a re-
cursively enumerable theory, and consider any division of the predicate letters
of T into two disjoint sets, say VA = {T1, T2, . . .} and VB = {O1, O2, . . .}. Let
TB consist of those theorems of T which contain only predicate letters from VB.
Then TB is a recursively axiomatizable theory.

Proof. Let S1, S2,. . . be an effectively produced sequence consisting of the the-
orems of T . By leaving out all wffs which are not in the sub-vocabulary VB, we
obtain the members of TB, say as V1, V2,. . . Thus TB is a recursively enumer-
able theory, and possesses a recursively enumerable axiomatization (take TB

itself as the set S of axioms). Then, by observation (I), TB is recursively ax-
iomatizable. �

The reader will observe that the proof assumes that the sets of predicate let-
ters VA and VB are themselves recursive; strictly speaking we should have stated
this. In practice these sets are usually finite sets, and thus trivially recursive.

Some philosophical implications of this result are discussed in [5].

3 Mainly from the Oxford Dictionary of Philosophy

([1])

We now transcribe the entry “Craig’s Theorem” in the Oxford Dictionary of
Philosophy, “Craig’s theorem: a theorem in mathematical logic, held to have
implications in the philosophy of science”.

The logician William Craig at Berkeley showed how, if we partition the vocab-
ulary of a formal system (say, into the T or theoretical terms, and the O or
observational terms), then if there is a fully formalized system T with some
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set S of consequences containing only O terms, there is also a system O con-
taining only the O vocabulary but strong enough to give the same set S of
consequences.

The theorem is a purely formal one, in that T and O simply separate formulae
into the preferred ones, containing as non-logical terms only one kind of vo-
cabulary, and the others. The theorem might encourage the thought that the
theoretical terms of a scientific theory are in principle dispensable, since the
same consequences can be derived without them.

However, Craig’s actual procedure gives no effective way of dispensing with
theoretical terms in advance, i.e. in the actual process of thinking about and
designing the premises from which the set S follows. In this sense O remains
parasitic upon its parent T .

3.1 Recursive axiomatization

Let A1, A2,. . . be an enumeration of the axioms of a recursively enumerable
set T of first-order formulas. Construct another set T ? consisting of

Ai ∧ . . . ∧Ai︸ ︷︷ ︸
i

(2)

for each positive integer i. The deductive closures of T ? and T are thus equiva-
lent; the proof will show that T ? is a decidable set. A decision procedure for T ?

lends itself according to the following informal reasoning. Each member of T ?

is either A1 or of the form
Bj ∧ . . . ∧Bj︸ ︷︷ ︸

j

.

Since each formula has finite length, it is checkable whether or not it is A1 or of
the said form. If it is of the said form and consists of j conjuncts, it is in T ? if
it is the expression Aj ; otherwise it is not in T ?. Again, it is checkable whether
it is in fact An by going through the enumeration of the axioms of T and then
checking symbol-for-symbol whether the expressions are identical.

Slight reformulation

Let B1, B2,. . . be an enumeration of the axioms of a recursively enumerable
set B = {B1, B2 . . .} of axioms. The closure of B under the binary deduction
relation R is denoted by C = BR, the theory (set of theorems) generated by B.
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Construct another set of axioms

A = {Bi ∧ . . . ∧Bi︸ ︷︷ ︸
i

| i = 1, 2 . . .} = {B1, B2 ∧B2, B3 ∧B3 ∧B3, . . .}

The deductive closures of B and A (under R) are thus equivalent.

We now show that A is a decidable (recursive) set. A decision procedure for A
is

Input: first-order formula F .
Output: 1 if F ∈ A, 0 otherwise

enumerate the first element B1 of B.
if F = B1 output 1 and stop.

check if F is the conjunction of i ≥ 2 equal formulas H.
if it is not, output 0 and stop.

if it is:
enumerate the ith element Bi of B.

if F = Bi output 1 else output 0

3.2 Primitive recursive axiomatizations

The proof above shows that for each recursively enumerable set of axioms there
is a recursive set of axioms with the same deductive closure. A set of axioms is
primitive recursive if there is a primitive recursive function that decides mem-
bership in the set. To obtain a primitive recursive axiomatization, instead of
replacing a formula Ai with

Ai ∧ . . . ∧Ai︸ ︷︷ ︸
i

(3)

one instead replaces it with
Ai ∧ . . . ∧Ai︸ ︷︷ ︸

f(i)

(4)

where f(x) is a function that, given i, returns [an integer that encodes] a com-
putation history showing that Ai is in the original recursively enumerable set of
axioms. It is possible for a primitive recursive function to parse an expression
of form (4) to obtain Ai and j. Then, because Kleene’s T predicate is primi-
tive recursive, it is possible for a primitive recursive function to verify that j is
indeed a computation history as required.
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4 Mainly from Craig, “On axiomatizability within a

system” [2]

This is the more general and abstract section. Many of the previous results are
consequences of Theorem 4 below. This recursion theoretic result is not about
Logic; it’s about sets, binary relations and closures.

4.1 An “observation”. . .

A setX is closed under a (binary) relation R if x ∈ X and R(x, y) implies y ∈ X.
This property could be called “forward closure” and we could similarly define
“backward closure” by the property x ∈ X and R(y, x) implies y ∈ X; however,
we will not use other forms of closure. The closure of the set X under the
relation R is the smallest set Y that contains X and is closed under R. Such
set always exist. We denote it by XR. It is

XR =
⋂
Y

[Y ⊇ X] ∧ [Y is closed under R] (5)

Theorem 4 Suppose that
1. R is a (binary) relation.
2. B is a recursively enumerable set. Let C = B`S

3. There is a primitive recursive relation Q such that (i) Q is a
symmetric sub-relationa of R and (ii): ∀m ∈B, ∃∞n : Q(m,n)
where “∃∞” means “there exist infinitely many”.

Then there is a primitive recursive set A, such that AR = BR = C. �

aThat is, Q ⊆ R and ∀m, n : Q(m, n)⇒ Q(n, m).

That is, under the conditions stated, there is a primitive recursive set A that
generates the closure of B under R. In the corollaries below (pages 11–13)
we will typically have that R(F,G) is a deduction relation (that is, F ` G)
and B will be a set of axioms; in this case the theorem states that there is
a primitive recursive set of axioms from which the same consequences can be
deduced. These corollaries of Theorem 4 contain in a condensed form the results
mentioned in Sections 2 (page 3, based on [5]) and 3 (page 7, based on [1]).

Proof. It is well known that a non-empty set is recursively enumerable if and
only it is the range of a primitive recursive function. Let f be a primitive
recursive function that enumerates B. Define

A = {n | ∃p : (p ≤ n) ∧ (Q(f(p), n))}
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We show that A has the desired properties. Using the definition of A and
property 3.(ii) above, we see that for every m ∈ B there is a n ∈ A (in fact
there are infinitely many such n’s) such that Q(m,n) and thus Q(n,m). There-
fore m ∈ AQ and thus B ⊆ AQ ⊆ AR, which, given the property (5), implies
BR ⊆ AR.
Conversely, for every n ∈ A there is a m ∈ B such that Q(m,n). Thus A ⊆ BQ

and, since Q is a sub-relation of R, A ⊆ BR. From (5) it follows that AR ⊆ BR.
Thus AR = BR.
Finally, that A is primitive recursive follows from [3], page 80; for an alterna-
tive justification consider the following LOOP schematic program2 P (n) that
outputs 1 if n ∈ A and 0 otherwise.

for p=0 to n:
m← f(p) // f(p) is a primitive recursive function

if Q(m,n): // Q(m,n) is a primitive recursive relation

output 1 else output 0

�

4.2 Corollary: application to formal systems

Theorem 4 (page 10) can be applied to many formal systems by letting R

correspond to the relation of deducibility in S, that is, R(m,n) iff m is the
Gödel number of a formula or sequence of formulas of S from which, together
with the axioms of S, a formula with the Gödel number n can be obtained by
application of the rules of inference of S. In symbols,

R(m,n) ⇔ pFq = m, pGq = n, F `S G (6)

where F and G are formulas or sequences of formulas of S.
Consider a system S in which, if F is a formula and F ∧ . . . ∧F is a conjunction
from an arbitrary number of occurrences of F , then F and F ∧ . . . ∧F are
deducible from each other. In symbols, F `S F ∧ . . . ∧F and F ∧ . . . ∧F `S F .

Note. Other properties of S could have been chosen, for instance, that any
formula F of S has infinitely many variants G such that F and G are deducible
in S from one another, two formulas being variants if they are obtainable from
one another by one or more substitutions thorough one variable by another. �

Let Q(m,n) be the primitive recursive relation which holds between m and n

2LOOP programs compute exactly the primitive recursive functions, [4].
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iff, for some formula of S, pFq = m and pF ∧ . . . ∧Fq = n or vice versa. In
symbols,

Q(m,n) ⇔ ∃F : pFq = m and pF ∧ . . . ∧Fq = n or vice versa (7)

Consider any recursively enumerable set B and let C = B`S be the set of
formulas deducible in S from B. We apply Theorem 4 (page 10) with the
correspondences:

N ↔ Gödel numbers of S-formulas

R ↔ see (6) above

Q ↔ see (7) above

Then from Theorem 4 we conclude that there is a primitive recursive set A of
formulas of S, such that, if A is considered as the axiom set of S, then the
theorems of the resulting system constitute B`S , or, in symbols, A`S = B`S .
The set of theorems C = B`S , that is, those that are originally deducible in S,
is then called a primitive recursive axiomatizable in S, meaning that, under the
assumptions mentioned above, we can replace the recursively enumerable set of
axioms B by a primitive recursive set of axioms A.

4.3 Corollary: primitive recursive axiomatization

As a particular case of the general application of Theorem 4 to formal systems
(Section 4.2, page 11), suppose that C is the set of formulas of S that are
theorems of a system T , where T contains all the axioms and rules of inference
of S and also other formulas or rules of inference. Then, provided the set of
formulas of S and the set of theorems of T are recursively enumerable, C can
be primitive recursively axiomatized in S, and hence formalized without the aid
of additional formulas or rules of inference. Indeed C can be formalized with
the only rule of inference F ∧ . . . ∧F → F .

Example. If T is a system employing higher type quantifiers which expresses
an analytic theory of numbers, then there exists a system which expresses the
corresponding elementary theory of numbers, its theorems being those theorems
of T which contain no higher type quantifiers.
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4.4 A corollary (apparently) with philosophical interest

The following corollary of Theorem 4, page 10, has already been independently
mentioned and proved above, see Theorem 3, page 7. Philosophers seem to
have found this interesting, see for example [5].

If K is any recursive set of non-logical (individual, function, predicate) con-
stants, containing at least one predicate constant, then there exists a system
whose theorems are exactly those theorems of T in which no constant, other
than those of K occur.

In particular, suppose that T expresses a portion of a natural science, that the
constants of K refer to things or events regarded as “observable”, and that the
other constants do not refer to “observables” and hence may be regarded as
“theoretical” or “auxiliary”. Then there exists a system which does not employ
“theoretical” or “auxiliary” constants and whose theorems are the theorems
of T concerning observables.

4.5 Corollary: no additional formulas or rules of inference needed

Suppose that S is completable and hence that there exists a complete and
consistent system T whose set of theorems is recursively enumerable and whose
axioms and rules of inference include those of S.

Then, provided the set of formulas of S is recursively enumerable, S can be
completed without the use of additional formulas or rules of inference.

4.6 Kleene-Mostowski hierarchy: generalization of Theorem 4

Consider the Kleene-Mostowski hierarchy and let “{η1}”, “{η2}”, “{η3}”. . .
stand for ∀k1”, ∀k1 ∃k2”, ∀k1 ∃k2 ∀k3”,. . . and “η1”, “η2”, “η3”. . . for “k1”,
“k2”, “k3”. . .

Suppose that C, B, R and Q are as described earlier, except that B and Q,
instead of being recursively enumerable and primitive recursive respectively, are
{m|∃p {ηr}P (m, p, ηr)} and {m,n|{ηr}N(m,n, ηr)}, respectively for some r ≥ 1
and some recursive P and N . Now, let

A = {n | ∃m ∃p : [m ≤ n ∧ p ≤ n ∧ {ηr}P (m, p, ηr){ηr}N(m,n, ηr)]}

Then C is the closure under R of A.

13



5 General comments

[In construction] The new axioms are dependent on the enumerating Tur-
ing machine that is chosen to enumerate the old axioms. See for instance 3.1
(page 8), where the number of times that Ai, the ith formula printed by M , oc-
curs in the new axiom is i, and in 4 (page 9), where the number of times that Bi

occurs specifies (is an encoding of) the computation history of M until Bi is
printed. Thus, in these constructions of one new axiomata from another,

– The new axioms may contain a lot of information about the enumeration
of the old axioms.

– That information (and the new axioms) are highly dependent on the Tur-
ing machine that is selected (or constructed) for the enumeration of the
initial set of axioms.

In my view these properties are undesirable.
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