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Cutland, [2], Chapter 10

Once we have studied effectively computable operations on numbers it is natural

to ask whether there is a comparable notion for operations on functions. The es-

sential difference between functions and numbers as basic objects is that functions

are usually infinite rather than finite. With this in mind, in §1 of this chapter we

discuss the features we might reasonably expect of an effective operator on partial

functions: this leads to the formulation of the definition of recursive operators on

partial functions.

In §2 we shall see that there is a close connection between recursive operators and

those effective operations on computable functions that we discussed in Chapter 5,

§3. In §3 we prove the important fixed point theorem for recursive operators

known as the first Recursion theorem. The final part of this chapter provides a

discussion of some of the applications of this theorem in computability and the

theory of programming.

1. Recursive operators

Let us denote by Fn, (n ≥ 1) the class of all partial functions from NN to N. We

use the word operator to describe a function Φ : Fm → Fn; the letters Φ, Ψ,. . .

will invariably denote operators in this chapter. We shall confine our attention

to totally defined operators Φ : Fm → Fn; i.e. such that the domain of Φ is the

whole1 of Fm.

1At this stage we are dealing with mathematical partial functions. When referring to recursive
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The chief problem when trying to formulate the idea of a computable (or effective)

operator Φ : F1 → F1, say, is that both an “input” function f and the “output”

function Φ(f) are likely to be infinite objects, and hence incapable of being given

in a finite time. Yet our intuition about effective processes is that in some sense

they should [sometimes] be completed within a finite time.

To see how this problem can be overcome, consider the following operators

from F1 to F1:

(a) Φ1(f) = 2f .

(b) Φ2(f) = g, where g(x) =
∑

y≤x f(y).

These operators are certainly down to earth and explicit. Intuitively we might

regard them as effective operators: but why? Let f ∈ F1 and let g1 = Φ1(f);

notice that any particular value g1(x) (if defined) can be calculated in finite

time from the single value f(x) of f ; if we set g2 = Φ2(f), then to calculate

g2(x) (if defined) we need to know the finite number of values f(0), f(1), f(x).

Thus in both cases any defined value of the output function (Φ1(f) or Φ2(f))

can be effectively calculated in a finite time using only a finite part of the input

function f . This is essentially the definition of a recursive operator given below2.

One consequence of the definition will be the following: suppose that Φ(f)(x) = y

is calculated using only a finite part θ of f ; then if g is any other function having θ

as a finite part we must expect that Φ(g)(x) = y also3.

To frame our definition precisely there are some technical considerations. First,

let us agree that by a “finite part” of a function f we mean a finite function θ

extended by f . (We say that θ is a finite function if its domain is a finite set.)

For convenience we adopt the convention

θ always denotes a finite function in this chapter.

The above discussion shows that the definition of recursive operator will involve

effective calculations with finite functions. We make this precise by coding each

partial functions, we can see an operator Φ as a function transforming indices into indices. In
the book, the partial recursive functions are denoted by R.

2Here, the author is talking about recursive (partial recursive) functions.
3Notice that the finite part of f which is used, denoted by θ below, depends in general on the
value of x. Thing of the the functional Φ(f)(x) = f (f(1))(f(0)) = f(. . . f(f(0)), where the last
expression has f(1) + 1 symbols f .
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finite function θ by a number θ̃ and using ordinary computability. A suitable

coding for our purposes is defined as follows: suppose that θ ∈ Fn. The n-tuple

x = (x1, x2, . . . , xn) is coded by the number 〈x〉 = px1+1
1 px2+1

2 . . . pxn+1
n ; then define

the code θ̃ for θ by4
θ̃ =

∏
x∈Dom(θ)

p
θ(x)+1
〈x〉 provided that Dom(θ) 6= ∅,

θ̃ = 0 if Dom(θ) = ∅
(in which case θ = f∅)

[From now on we drop the bar over the tuple variables, writing x instead of x,

etc.]

There is a simple effective procedure to decide for any number z whether z = θ̃ for

some finite function θ; and if so, to decide whether a given x belongs to Dom(θ),

and calculate θ(x) if it does.

Now we have our definition:

1.1. Definition

Let Φ : Fm → Fn. Then Φ is a recursive operator if there is a computable

function φ(z, x) such that for all f ∈ Fm and x ∈ Nn, y ∈ N

[Φ(f)(x) = y] iff [∃ finite θ ⊆ f : φ(θ̃, x) ' y].

(Note that φ is not required to be total.)5 �

1.2. Example

The operator Φ(f) = 2f is a recursive operator: to see this define φ(z, x) by

φ(z, x) =

{
2θ(x) if z = θ̃ and x ∈ Dom(θ),

undefined otherwise

By Church’s thesis, φ is computable: now for any f , x, y we have

Φ(f)(x) ' y ⇔ x ∈ Dom(f) and y = 2f(x)

⇔ there is θ ⊆ f with x ∈ Dom(f) and y = 2θ(x)

⇔ there is θ ⊆ f such that φ(θ̃, x) ' y

4In the second alternative why do not define θ̃ = 1? This would avoid the need for an alternative.
5I would prefer: the function φf with an oracle for f , given x, computes [Φ(f)](x), if any. Of
course, in any finite computation, only a finite part of f is used.
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Hence Φ is a recursive operator.

Further examples will be given in 1.6 below.

An important feature of recursive operators is that they are continuous and mono-

tone in the following sense.

Definition 1.3

Let Φ : Fm → Fn be an operator.

(a) Φ is continuous if for any f ∈ Fm and all x, y:

Φ(f)(x) ' y iff there is finite θ ⊆ f with Φ(θ)(x) ' y;

(b) Φ is monotone if whenever f, g ∈ Fm with f ⊆ g, then

Φ(f) ⊆ Φ(g). �

[Notes.

(1) In general, the “finite θ” above depends on x and y.

(2) Notice that (a) implies that, if Φ(f)(x) ' y, then a finite part of f is sufficient

to “compute” y. In the effective world, we would add: f and φ are partial recursive

functions; θ can be effectively computed from x (and y?). ]

These properties are easily established for recursive operators, and as we shall

see they aid the recognition of such operators.

Theorem 1.4

A recursive operator is continuous and monotone.

Proof. Let Φ : Fm → Fn be a recursive operator, with computable function φ as

required by the definition. Suppose that Φ(f)(x) ' y, and let θ ⊆ f be such that

φ(θ̃, x) ' y. Since θ ⊆ θ, it follows immediately that Φ(θ)(x) ' y. Conversely, if

θ ⊆ f and Φ(θ)(x) ' y, there is θ1 ⊆ θ such that φ(θ̃1, x) ' y; but then θ1 ⊆ f ,

so we have that Φ(f)(x) ' y. Hence Φ is continuous.

Monotonicity follows directly from continuity: suppose that f ⊆ g and Φ(f)(x) '
y. Take θ ⊆ f , such that Φ(θ)(x) ' y; then θ ⊆ g, so by continuity, Φ(g)(x) ' y.

�

The use of the term continuous to describe the property 1.3(a) is justified infor-

mally as follows. Suppose that Φ : F1 → F1 satisfies 1.3(a) and f ∈ F1. Then

given any x1,. . . , xk for which Φ(f)(xi) (1 ≤ i ≤ k) are defined, using 1.3(a) we

can obtain a finite6 θ ⊆ f such that Φ(θ)(xi) = Φ(f)(xi) (1 ≤ i ≤ k). Thus,

6Each of the xi for 1 ≤ i ≤ k defines a finite function θi ⊆ f . Of course, the same finite function
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whenever g ⊇ θ, by 1.3(a) again, we have Φ(g)(xi) = Φ(f)(xi) (1 ≤ i ≤ k) i.e.

if g is “near” to f (in the sense that they agree on the finite set Dom(θ) then Φ(g)

“near” to Φ(f) (in the sense that they agree on the finite set x1,. . . , xk). Thus,

informally, Φ is continuous.

The continuity property 1.3(a) specifies that a value Φ(f)(x) is determined (if at

all) by a finite amount of positive information about f . This means information

asserting that f is defined at certain points and takes certain values there, as

opposed to negative information that would indicate points where f is not defined.

Using this idea the term continuous can be rigorously justified as follows.

The positive information topology7 on Fm is defined by taking as base of open

neighbourhoods sets of the form

Uθ = {f : θ ⊆ f} θ ∈ Fm, finite.

Thus f belongs to Uθ iff θ is correct positive information about f . It is then an

easy exercise to see that an operator is continuous with respect to the positive

information topology precisely when it possesses property 1.3(a).

The following characterisation of recursive operators using continuity will make

it easy to establish recursiveness of various operators.

Theorem 1.5.

Let Φ : Fm → Fn be an operator. Then Φ is a recursive operator iff

(a) Φ is continuous,

(b) the function φ(z, x) given by{
φ(θ̃, x) ' Φ(θ)(x) for θ ∈ Fm,

φ(z, x) is undefined for all other z,

is computable.

Proof. Suppose that Φ is recursive with computable function φ1 such that

Φ(f)(x) ' y iff ∃θ : θ ⊆ f and φ1(θ̃, x) ' y

∪1≤i≤kθi may be “used” for each of those xi.
71 The reader unfamiliar with topology will lose nothing in further development by omitting
this paragraph.
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Then taking Φ as given in the theorem, we have

φ(θ̃, x) ' y ⇔ ∃θ1 : θ1 ⊆ θ and φ1(θ̃1, x) ' y;

the relation on the right is partially decidable, so φ is computable by theorem

6-6.13.

Conversely, suppose that conditions (a) and (b) of the theorem hold; then

Φ(f)(x) ' y ⇔ ∃θ : θ ⊆ f and Φ(θ, x) ' y (by (a))

⇔ ∃θ : θ ⊆ f and φ(θ̃, x) ' y (by (b))

whence Φ is a recursive operator. �

This theorem enables us to show quite easily that the following operators are all

recursive:

Examples 1.6.

(a) (The diagonalisation operator) Φ(f)(x) ' f(x, x) (f ∈ F2) is obviously con-

tinuous, and φ(θ̃, x) ' θ(x, x) is computable.

(b) Φ(f)(x) '
∑

y≤x f(y) (f ∈ F1).
This is the second example discussed at the beginning of this section. We saw
there that Φ is continuous; and clearly φ(θ̃, x) '

∑
y≤x θ(y) is computable.

(c) Let g ∈ F1 be computable. Define Φ : Fn → Fn by Φ(f) = g ◦f . Obviously Φ

is continuous, and φ(θ̃, x) = g(θ(x)) is computable.

(d) (The Ackermann operator). Let Φ : F2 → F2 be given by

Φ(f)(0, y) = y + 1
Φ(f)(x+ 1, 0) ' f(x, 1)
Φ(f)(x+ 1, y + 1) ' f(x, f(x+ 1, y))

To see that Φ is continuous, note that Φ(f)(x, y) depends on at most two
particular values of f . For recursiveness, it is immediate by Church’s thesis
that the function φ given by

φ(θ̃, 0, y) = y + 1
φ(θ̃, x+ 1, 0) ' θ(x, 1)
φ(θ̃, x+ 1, y + 1) ' θ(x, θ(x+ 1, y))

is computable.

(e) (The µ-operator.) Consider Φ : Fn+1 → Fn, given by Φ(f)(x) ' µy :
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[f(x, y) = 0]. It is immediate that this operator is continuous, and that the

function φ given by φ(θ̃, x) ' µy : [f(x, y) = 0] is computable.

When the definition 1.1 of a recursive operator Φ : Fm → Fn is extended to the

case n = 0, we have what is called a recursive functional. The members of F0 are

0-ary functions; i.e. constants. Just as Fn (n ≥ 1) includes the function that is

defined nowhere, F0 includes the “undefined” constant, which is denoted by ω.

Thus F0 = N∪{ω}, and an operator Φ : Fm → F0 a recursive functional if there

is a computable function φ(x) such that for any f ∈ Fm → F0, and y ∈ N:

Φ(f) ' y iff [∃θ : θ ⊆ f and φ(θ̃) = y

We write Φ(f) = ω if Φ(f) is undefined; this emphasises that Φ is still thought

of as being a total operator.

We should point out that in some texts the term partial recursive functional

Fm → Fn is used to describe recursive operators, including the case n = 0. In

such contexts the word “partial” describes the kind of object being operated on

rather than the domain of definition of the operation.

We shall not discuss here the extension of the ideas of this section to partially

defined operators and the corresponding partial recursive operators Φ : Fm → Fn.

The reader is referred to [3] for a full discussion of these and related matters.

Exercises 1.7

1. Show that the following operators are recursive.

(a) Φ(f) = f 2 (f ∈ F1).

(b) Φ(f) = g (f ∈ Fn), where g is a fixed computable function in Fn.

(c) Φ(f) = f ◦ g (f ∈ F1), where g is a fixed computable function in Fn.

(d) Let h ∈ Fn+1 be a fixed computable function; define Φ : Fn+1 → Fn+1

by

Φ(f)(x, y) '

{
0 if h(x, y) = 0,
f(x+ 1, y) + 1 if h(x, y) is defined and 6= 0
undefined otherwise

(The significance of this operator will be seen later.)

2. Prove that if Φ is a recursive operator and f is computable then so is Φ(f).
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3. Decide whether the following operators Φ : F1 → F1 are (i) monotonic,
(ii) continuous, (iii) recursive.

(a)

Φ(f)(x) =

{
f(x) if Dom(f) is finite,
undefined if Dom(f) is infinite.

2. Effective operations on computable functions

In chapter 5 §3 we considered that certain operations on computable functions

should be called effective because they can be given by total computable functions

acting on indices. For instance, in example 5-3.1(2) we saw that there is a total

computable function g such that for all e ∈ N, (φe)
2 = φg(e).

We shall see in this section that any recursive operator Φ, when restricted

to computable functions, yields an effective operation of this kind on indices.

This is the first part of a theorem of Myhill and Shepherdson. They proved,

moreover, that all such operations on indices of computable functions arise in

this way.

We shall prove the two parts of the Myhill-Shepherdson result separately, taking

the easier part first.

Theorem 2.1 (Myhill-Shepherdson, part I)

Suppose that Ψ : Fm → Fn is a recursive operator. Then there is a total

computable function h such that

Ψ(φ(m)
e ) = φ

(n)
h(e) (e ∈ N)

Proof. Let ψ be a computable function showing that Ψ is a recursive operator

according to definition 1.1. Then for any e we have

Ψ(φ(m)
e )(x) ' y ⇔ [∃θ : θ ⊆ φ(m)

e and ψ(θ̃, x) ' y.

We shall show that the function g defined by

g(e, x) ' Ψ(φ(m)
e )(x)

is computable, by showing that the relation g(e, x) ' y is partially decidable. To

this end, consider the relation R(z, e, x, y) given by

R(z, e, x, y) = ∃θ : z = θ̃ and θ ⊆ φ(m)
e and ψ(Θ, x) ' y.
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Then R is partially decidable, with the following informal partial decision proce-

dure.

(1) Decide whether z = θ̃ for some θ; if so obtain x1 x2, . . . , xk ∈ Nm and
y1, y2, . . . , yk such that Dom(θ) = {x1, . . . , xk} and θ(xi) = yi (1 ≤ i ≤ k);
then

(2) for i = 1,. . . , k compute φ
(m)
e (xi); if, for 1 ≤ i ≤ k, φ

(m)
e (xi) is defined and

equals yi, then

(3) compute ψ(z, x) and if defined check whether it equals y.

If R(z, e, x, y) holds, this is a mechanical procedure that will tell us so in finite

time, as required.

Since R(z, e, x, y) is partially decidable, so is the relation ∃z : R(z, e, x, y) (by

Theorem 6-6.5): but

∃z : R(z, e, x, y) ⇔ Ψ(φ(m)
e )(x) ' y (from the definition of R)

⇔ g(e, x) ' y (from the definition of g)

Thus g(e, x) ' y is partially decidable, so by theorem 6-6.13, g is computable.

Now the s-m-n theorem provides a total computable function h such that

φ
(n)
h(e)(x) ' g(e, x)

' Ψ(φ(m)
e )(x)

from which we have φ
(n)
h(e) = Ψ(φ

(m)
e ). �

Notice that the function h given by this theorem for a recursive operator Ψ :

F1 → F1 is extensional in the following sense.

Definition 2.2

A total function h : N → N is extensional if for all a, b, if φa = φb then φh(a) =

φh(b). �

Now we can state the other half of Myhill and Shepherdson’s result.

Theorem 2.3 (Myhill-Shepherdson, part II)

Suppose that his an extensional total computable function. Then there is a

unique recursive operator Ψ such that Ψ(φe) = φh(e) for all e.
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Proof. At the heart of our proof lies an application of the Rice-Shapiro theorem

(theorem 7-2.16).

Let h be an extensional total computable function. Then h defines an operator

Ψ0 : C1 → C1 by

Ψ0(φ(e)) = φh(e)

Ψ0 is well defined since h is extensional. We have to show that there is a unique

recursive operator Ψ : F1 → F1 that extends Ψ0.

First note that Ψ0(θ) is defined for all finite θ, since finite functions are com-

putable. Thus any recursive operator Ψ extending Ψ0, being continuous, must

be defined by

[Ψ(f)(x) ' y] ≡ [∃θ : θ ⊆ f and Ψ0(θ)(x) ' y.] (2.4)

So such a Ψ, if it exists, is unique. To prove the theorem we must now show that

(i) (2.4) does define an operator Ψ,

(ii) Ψ extends Ψ0.

(iii) Ψ is recursive.

We first use the Rice-Shapiro theorem to show that Ψ0 is continuous in the

following sense: for computable functions f

[Ψ0(f)(x) ' y] ⇔ [∃θ : θ ⊆ f and Ψ0(θ)(x) ' y] (2.5)

To see this, fix x, y and let A = {f ∈ C1 : Ψ0(f)(x) ' y}. Then the set

A = {e : φe ∈ A} = {e : φh(e)(x) ' y} is r.e.; so by the Rice-Shapiro theorem,

if f is computable then

f ∈ A ⇔ [∃θ : θ ⊆ f and θ ∈ A]

which is precisely (2.5).

Now we establish (i), (ii), (iii) above.

(i) Let f be any partial function; we must show that for any x, (2.4) defines

Ψ(f)(x) uniquely (if at all). Suppose then that θ1, θ2 ⊆ f and Ψ0(θ1)(x) '
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y1 and Ψ0(θ2)(x) ' y2. Take a finite function θ ⊇ θ1, θ2 (say, θ = fDom(θ1)∪Dom(θ2);

by (2.5)

y1 ' Ψ0(θ1)(x) ' Ψ0(θ)(x) ' Ψ0(θ2)(x) ' y2

Thus (2.4) defines an operator Ψ unambiguously.

(ii) This is immediate from (2.5) and the definition (2.4).

(iii) We show that Ψ satisfies the conditions of theorem 1.5. Clearly Ψ is con-

tinuous, from the definition. For the other condition we must show that the

function ψ given by

ψ(θ̃, x) ' Ψ(θ)(x)

ψ(z, x) is undefined if z 6= θ̃

is computable. Now it is easily seen by using Church’s thesis that there is

a computable function c such that for any finite function θ, c(θ̃) is an index

for θ; i.e. θ = φc(θ̃). Thus

ψ(θ̃, x) ' Ψ(φc(θ̃))(x)

' φh(c(θ̃))(x)

so ψ is computable, since h and c are. Hence Ψ is a recursive operator. �

Remarks

1. The proof of theorem 2.3 actually shows that for any extensional computable h

there is a unique continuous operator Ψ : F1 → F1 such that Ψ(φe) = φh(e), all e,

and that this operator is recursive.

2. Theorem 2.3 extends in a natural way to cover operators from Fm → Fn.

The proof is almost identical, using the natural extension of the Rice-Shapiro

Theorem to subsets of Cm; see exercise 2.6(2) below.

Exercises 2.6

1. Suppose that Φ, Ψ are recursive operators F1 → F1; knowing that Φ ◦ Ψ
is continuous (exercise 1.7(7)) use the two parts of the Myhill-Shepherdson
Theorem together with the first remark above to show that Φ◦Ψ is recursive.

2. State and prove a general version of theorem 2.3 for operators from Cm →
Cn.
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3. Formulate and prove versions of the Myhill-Shepherdson Theorem (both
parts) appropriate for the operators you have defined (a) in exercise 1.7(5),
(b) in exercise 1.7(8).

3. The first Recursion Theorem

The first Recursion Theorem of Kleene is a fixed point theorem for recursive

operators, and is often referred to as the Fixed point Theorem (of recursion

theory). We shall see later that it is a very useful result.

3.1. The first Recursion Theorem (Kleene)

Suppose that Φ : Fn → Fm is a recursive operator. Then there is a computable

function fΦ that is the least fixed point of Φ; i.e.

(a) Φ(fΦ) = fΦ.

(b) if Φ(g) = g, then fΦ ⊆ g.

Hence, if fΦ is total, it is the only fixed point of Φ.

Proof. We use the continuity and monotonicity of Φ to construct the least fixed

point fΦ as follows. Define a sequence of functions {fn} (n ∈ N) by

f0 = f∅ (the function with empty domain),

fn+1 = Φ(fn)

Then f0 = f∅ ⊆ f1; and if fn ⊆ fn+1, by monotonicity we have that fn+1 =

Φ(fn) ⊆ Φ(fn+1) = fn+2. Hence fn ⊆ fn+1 for all n. Now let

fΦ =
⋃
n∈N

fn

by which we mean

fΦ(x) ' y iff ∃n such that fn(x) ' y.

We shall show that fΦ is a fixed point for Φ.

For all n, fn ⊆ fΦ

hence

fn+1 = Φ(fn) ⊆ Φ(fΦ)

thus

fΦ ⊆ Φ(fΦ)
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Conversely, suppose that Φ(fPhi)(x) ' y; then there is finite θ ⊆ fΦ such that

Φ(θ)(x) ' y; take n such that θ ⊆ fn; then by continuity Φ(fn)(x) ' y. That is,

fn+1(x) ' y. Hence fΦ(x) ' y. Thus Φ(fΦ) ⊆ fΦ, and so Φ(fΦ) = fΦ as required.

To see that fΦ is the least fixed point of Φ, suppose that Φ(g) = g; then clearly

f0 = f∅ ⊆ g, and by induction we see that n ⊆ g for all n. Hence fΦ ⊆ g, as

required. Moreover, if fΦ is total, then fΦ = g, so fPhi is the only fixed point

of Φ.

Finally we show that fΦ is computable. Use theorem 2.1 to obtain a total com-

putable function h such that for all e

Φ(fe) = φh(e)

Let e0 be an index for f0; define a computable function k by

k(0) = e0

k(n+ 1) = h(k(n))

Then fn = φk(n) for each n; thus

fΦ(x) ' y ⇔ ∃n : φk(n)(x) ' y

The relation on the right hand side is partially decidable, and hence fφ is com-

putable. �

Remark. The recursiveness of the operator Φ was used in this proof only in show-

ing that fΦ is computable. The first part of the proof shows that any continuous

operator has a least fixed point.

We shall see in the following examples that a recursive operator may have many

fixed points, and that the least fixed point is not necessarily a total function.

3.2. Examples

1. Let Φ be the recursive operator given by

Φ(f)(0) = 1
Φ(f)(x+ 1) = f(x+ 2)

Then the least fixed point is

{
fΦ(0) = 0
fΦ(x+ 1) = undefined
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Other fixed points of Φ take the form

{
fΦ(0) = 0
fΦ(x+ 1) = a

2. Recall the definition of the Ackermann function 0 in example 2-5.5:{
ψ(0, y) = y + 1
ψ(x+ 1, 0) ' ψ(x, 1)
ψ(x+ 1, y + 1) ' ψ(x, ψ(x+ 1, y))

The first Recursion Theorem gives a neat proof that these equations do
define a unique function ψ and that ψ is total and computable. Let Φ be
the Ackermann operator given in example 1.6(d). The fixed points of Φ
are the functions that satisfy the above equations. Let ψ = fΦ; then ψ is
a computable function satisfying these equations, so we have only to show
that ψ is total. Clearly, ψ(0, y) is defined for all y; if ψ(x, y) is defined for
all y, then by induction on y we see that ψ(x + 1, y) is defined for all y.
Hence ψ(x, y) is defined for all x, y; i.e. ψ is total.

3. Let h(x, y) be a fixed computable function and let Φ be the recursive opera-
tor given in exercises 1.7(1d). Then the least fixed point fΦ is a computable
function satisfying

fΦ(x, y) =

{
0 if h(x, y) = 0
fΦ(x+ 1, y) + 1 if h(x, y) is defined and not 0
undefined otherwise

But what is this rather strange looking function? We can quite easily check
that

fΦ(x, y) ' µz : h(x+ z, y) = 0

as follows. First suppose that [µz : h(x + z, y) = 0] = m; then h(x + z, y)
is defined and not 0 for all z < m, and h(x+m, y) = 0. Hence

fΦ(x, y) = fΦ(x+1, y)+1 = . . . = fΦ(x+z, y)+z(z ≤ m) = fΦ(x+m, y)+m = 0+m = m

Suppose on the other hand that fΦ(x, y) = m; then from the equations this
must be because

m = fΦ(x, y) = fΦ(x+ 1, y) + 1 = . . . = fΦ(x+m, y) +m

and h(x + z, y) is defined and not 0 for z < m; then fΦ(x + m, y) = 0, so
h(x+m, y) = 0. Thus m = µz : h(x+ z, y) = 0.

We can infer from this example that the function fΦ(0, y) ' (µz : h(z, y) = 0) is

computable; of course, there is no use pretending that we have a new and clever

proof of the closure of C under the µ operator, since we have used this property

of C implicitly in our proof of the first Recursion Theorem. (In Kleene’s equation

calculus approach (see chapter 3 §1), however, the first Recursion Theorem is

proved without the use of the µ-operator, so closure under the µ-operator is

established by this example.)
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We can see from the above examples why the first Recursion Theorem is so called.

The general idea of recursion is that of defining a function “in terms of itself”.

A simple instance of this is primitive recursion, discussed in chapter 2. We have

seen more general forms of recursion in the definitions of Ackermann’s function,

and the function fΦ, in example 3.2(3) above.

We were able to see quite easily in Chapter 2 that primitive recursive definitions

are meaningful, but with more complex recursive definitions this is not so obvious;

conceivably there are no functions satisfying the proposed definition. This is

where the first Recursion theorem comes in. Very general kinds of definition by

recursion are represented by an equation of the form

f = Φ(f) (3.3)

where Φ is a recursive operator. The first Recursion Theorem shows that such a

definition is meaningful; there is even a computable function satisfying it. Since

in mathematics we require that definitions define things uniquely, we can say that

the recursive definition (3.3) defines the least fixed point of the operator Φ. Thus,

according to the first Recursion Theorem, the class of computable functions is

closed under a very general form of definition by recursion.
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1 A Paper by Paul Young

This is a commented transcription of the paper

Paul R. Young,
An effective operator, continuous but not partial recursive,
Proceedings of the American Mathematical Society. 02/1968; 19(1).

Introduction. It is known that under many conditions, effective operators will

be partial recursive, ([MS], [KLS], [L]). On the other hand, certain pathological

examples have been constructed by Friedberg [F] and Pour-El [P] to show that

effective operators are not always partial recursive. Pour-El has observed that

although it is well known that all partial recursive operators are continuous, the

effective but not partial recursive operators of [F] and [P] are not continuous,

and she has raised the question of the existence of effective operators which are

continuous but not partial recursive. It is easy to see that all partial recursive

operators are not just continuous, but are in fact “effectively continuous”. This

enables us to answer Pour-El’s question by constructing an effective operator

which is continuous but not “effectively continuous”. Since it is continuous,

our example of an effective but not partial recursive operator is perhaps less

pathological than earlier examples8.

Notation and definitions. N is the set of all nonnegative integers. P is the set

of all partial functions mapping N to N, and Pr is the set of all partial recursive

elements of P . {ϕe} is a standard effective enumeration of Pr. In this paper we

will be concerned only with operators mapping subsets of Pr into Pr.

A function is finite if its domain is finite.

If f and g are partial functions mapping Nm to N we say that f ⊆ g if,

whenever f(x) is defined and has the value y, then g(x) is also defined

and has the value y.

We will topologize the functions f : Nm → N by defining as basic open

sets the “cylinders” o|h
def
= {ψ : h ⊆ ψ}, where the function h is finite.

We will let f be a fixed total recursive function for which ϕf(i) is a one-one enumer-

ation of all finite members of P (equivalently of Pr) and for which each f(i) is a

canonical index; i.e., we can effectively compute the cardinality of ϕf(i) from f(i).

8The referee informs me that C. E. M. Yates has also constructed an example (unpublished) of
an effective operator which is continuous but not partial recursive.
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The set of all finite functions can be effectively enumerated. Of course,

every finite function is partial recursive. Let the enumeration be φf(0),

φf(1). . . From i ∈ N we can get the properties of φf(i), such as the cardi-

nality of the domain, the value of φf(i)(n) for n in the domain, etc. Note

however that, given an i ∈ N it is undecidable if φi (based on a standard

enumeration of all partial recursive functions) if a finite function. That

is, although we can effectively enumerate all finite functions (through in-

dices) as a subsequence of the standard (index) enumerations (and, if we

want, without function repetitions), we cannot effectively use an index

enumeration which is the subsequence of all the indices that correspond

to the partial recursive functions that are finite.

A similar situation occurs for other effectively enumerable classes of total

recursive functions, such as the class of primitive recursive functions.

P is topologized by taking as basic open sets all sets of the form {ψ : ϕf(i) ⊆ ψ}
and we denote {ψ : ϕf(i) ⊆ ψ} by o|f(i). This topology yields a relative topology

on Pr and we denote o|f(i) ∩ Pr = {ϕe : ϕf(i) ⊆ ϕe} also by o|f(i), relying on the

context to make the usage clear.

Intuitively, we are simultaneously dealing with two very different concepts:

mathematical partial functions and effective partial functions. Later in

the paper the author limits its attention to (i) effective partial functions;

(ii) enumerable (using f , see above) basic open sets; (iii) effective open

sets, that is, open sets that can be effectively enumerated as a sequence

of basic open sets, (iv) Effectively continuous operators (which need not

be continuous). . .

Intuitively, we want an operator Φ with domain D ⊆ P to be effectively contin-

uous if, given ψ ∈ D and a neighbourhood M of Φ(ψ), we can effectively find a

neighbourhood M ′ of ψ such that ψ′ ∈M ′∩D implies that Φ(ψ′) ∈M . However

we restrict ourselves to working with domains in Pr and to basic open sets as

neighbourhoods.

This is the usual definition of continuity. Instead “neighbourhood” we

can use “basic open set”.

For the purpose of this paper, we adopt the following
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Definition. An operator Φ on the domain D ⊆ Pr is effectively continuous if there

is a partial recursive function c(e, y) such that, if φe ∈ D and Φ(φe) ∈ o|f(y), then

c(e, y) is defined, φe ∈ o|f(c(e,y)), and if φx ∈ o|f(c(e,y)) ∩ D then Φ(φx) ∈ o|f(y). �

Consider a partial function φe whose transform Φ(φe) is in o|f(y), the basic

open set defined by the index y; in symbols: Φ(φe) ∈ o|f(y). Then there

is a basic open set o|f(c(e,y)) determined by the index c(e, y), such that

Φ(o|f(c(e,y))) is included in o|f(y).

More simply: for every basic open set O containing the image of a func-

tion φe we can effectively obtain a basic open set containing φe whose

image is entirely contained in O.

We remark in passing that an effectively continuous operator need not be an

effective operator, even when its range is contained in Pr. To see this we consider

the domain D consisting of all finite functions and consider operators mapping D
into D. For each set S ⊆ N we define the operator ΦS by

Φs(φe) = φe/S

where φe/S denotes the restriction of to S. One easily verifies that distinct sets S

and S ′ give rise to distinct operators ΦS and ΦS′ .

Furthermore each such operator is effectively continuous because the identity

function c(e, y) = y witnesses the effective continuity of each ΦS. Since there

are uncountably many operators ΦS but only countably many effective operators

on any given domain, not all effectively continuous operators can be effective

operators. On the other hand, it may be that placing additional conditions on

the operator will assure that effective continuity of an operator will imply effec-

tiveness of the operator. For example, we do not know whether every effectively

continuous operator mapping all of Pr into Pr is effective. We also lack an exam-

ple of an effectively continuous effective operator which is not partial recursive.

Definition [MS]. An operator Φ is effective on the domain D ⊆ Pr if there is a

total recursive function g such that for all φe ∈ D, Φ(φe) = φg(e). �

Remark. An immediate consequence of this definition is that if φe ∈ D and

φx = φe then φg(x) = φg(e).
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Main result.

Lemma 1. Let Φ be a partial recursive operator on the domain D. If D′ = {φx :

φx ⊆ φe for some φe ∈ D}, Φ can be extended to a partial recursive operator

on D′ and there is a total recursive function g such that, for all φe ∈ D′, Φ(φe) =

φg(e). Finally, if t is a recursive function such that

φt(n) ⊆ φe ∈ D′, and lim
n
φt(n) = φe,

then

φg(t(n)) ⊆ φg(e), and lim
n
φg(t(n)) = φg(e).

Proof. This is well known. E.g., it is an immediate consequence of the definition of

partial recursive operator and Lemmas 3.1’ and 3.2’ given in [L], (bearing in mind

that every partial recursive operator is a Banach-Mazur operator). Since we will

be working only with domains and ranges contained in Pr, the reader unfamiliar

with partial recursive operators may take the existence of such extensions as the

defining property for partial recursive operators. �

Lemma 2. Every partial recursive operator is effectively continuous on its domain.

Proof. We simply give the usual proof of continuity, observing that the calcula-

tions are effective: Let Φ be partial recursive on the domain D. Let g and D′ be

as in Lemma 1. Given φe and φf(y), begin enumerating φe, letting

φf(h(n,c)) = φ(n)
e = the set of elements of φe enumerated in φe by stage n.

By Lemma 1,

φg(e) = lim
n
φg(f(h(n,e)))

if φe ∈ D′, so if φf(y) ⊆ φg(e) we eventually find n0 such that φf(y) ⊆ φg(f(h(n0,e))).

Also by Lemma 1, if φf(h(n0,e)) ⊆ φz and φz ∈ D′ then φg(f(h(n0,e))) ⊆ φg(z). Thus

if we define φc(e,y) = φf(h(n0,e)), c will witness the effective continuity Φ. �

The proof of our result blends two techniques. One is the technique introduced

by Friedberg to construct effective operators which are not partial recursive. The

other is a rate-of-growth argument: Given a basic open set φf(y) in the range of

the operator Φ we are going to find a basic open set φf(c(e,y)) in the domain of Φ

in such a way that the function c will establish the continuity of Φ. However, to

establish continuity, for some fixed e the rate of growth of |φ(f(e,y))| with respect
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to |φf(y)| will have to be so great that c cannot be a recursive function. (|φf(x)|
is the cardinality of φf(x).)

Theorem. (A) There is an effective operator, Φ, which is continuous on its domain

but which is not effectively continuous. (A fortiori, it is not partial recursive.)

((B) The operator Φ of (A) has the following property: It is the union of a

partial recursive operator Φ0 on a completely recursively enumerable domain, C,
together with the trivial operator Φ1(ω) = ω defined only on a certain constant

function ω.)

(Remark. The relevance of (B), whose proof the reader may ignore in proving (A),

is that any effective operator Φ′0 on a completely recursively enumerable domain C
may be trivially extended to an effective operator Φ′0’ on all Pr simply by defin-

ing Φ′0(φx) to be the nowhere defined function for φx 6∈ C. By [MS], any effective

operator defined on all of Pr is in fact partial recursive, and hence effectively

continuous. Thus Φ, which differs almost trivially from Φ0, is not effectively con-

tinuous even though Φ is continuous and Φ0 can be extended to an effectively

continuous operator on all of Pr.

Proof. Let ψ be a partial recursive function which can be majorized by no total

recursive function. (E.g., if ψ(x) = φx(x) + 1, the assumption that φe is a total

function majorizing ψ leads to an immediate contradiction.)

An element m in of the domain of ψ is called maximal if n < m implies ψ(n) <

ψ(m) wherever ψ(m) is defined. It is easy to see that any function with a largest

maximal element is bounded. Therefore Ψ has no largest maximal element. Since

n = µy : [ψ(y) is defined] is maximal, ψ has infinitely many maximal elements.

We cannot define the operator Φ which we are seeking directly from the enumer-

ations of the φe’s, for if we did Φ would be partial recursive. Consequently we

adopt the technique introduced by Friedberg in [F] to produce effective opera-

tors which are not partial recursive. We let R = {e : φe(x) = 0 for all x ≤ e}
and let ω be the function ω(x) = 0 for all x. We let ωn be the function

{〈0, 0〉, 〈1, 0〉, . . . , 〈n, 0〉} = ω/{0, 1, . . . , n}.

We now construct the total recursive function g which computes Φ.

We find it convenient to use a marker, Λ, in the course of construction. Although

distinct members may be simultaneously marked by Λ, once Λ is introduced

beside a number it is never moved from the number nor are priority methods
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used in the construction.

First begin enumerating R; whenever we find e ∈ R we place ω into φg(e).

We also enumerate ψ and whenever we find m in the domain of ψ we look for

the smallest r > 0 such that

φf(i)
def
= ωψ(m)−1 ∪ {〈ψ(m), r〉} (?)

is not yet known to have an extension φe, with e ∈ R and such that the marker λ

does not appear beside the canonical index f(i). We then place the marker λ

beside f(i) and we place ωm−1 into φg(a) for every extension φa of φf(i).

For each f(i) with the marker λ beside it, φf(i) defined by (?), we also do the

following: if we find e ∈ R with φe an extension of φf(i), we place ω into φg(a) for

every extension φa of φp(i). When this occurs, we also find the smallest r′ ≥ 0 for

which

φf(i′)
def
= ωψ(m)−1 ∪ {〈ψ(m), r′〉}

is not yet known to have an extension φe with e ∈ R and such that the marker Λ

has not been placed beside the canonical index f(i′). We place the maker Λ

beside f(i′) and we place ωm−1 into φg(a) for every extension φa of φf(i′)

This completes our description of g.

Let C be the set of the φe such that φe extends some φf(i) where f(i) has the

marker, Λ, placed beside it in the course of the construction. (Since C is the class

of all r.e. supersets of a r.e. sequence of canonically enumerable finite sets, C is

completely recursively enumerable by a standard characterisation of completely

enumerable classes given in [MS] and [R].)

It is clear from our construction of g that φx = φy and if φx ∈ C, then φg(x) = φg(y).

(In fact we know that either φg(x) = ω or φg(x) = ωm−1 for some m in the domain

of ψ.) Also, if φe = ω, then e ∈ R, so that φg(e) = ω. Thus g determines an

effective operator, Φ, on C ∪ ω.

We now show that Φ is continuous at each point of its domain, C ∪ {ω} If

φx ∈ C, then for some z belonging to the domain of ψ and for some r > 0,

φx extends ωψ(z)−1 ∪ {(ψ(z), r)}. Furthermore, for all y such that ψy extends
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ωψ(z)−1 ∪ {(ψ(z), r)}, φx ∈ C and

Φ(φy) = Φ(ωψ(z)−1 ∪ {(ψ(z), r)})

Thus if φf(i) ⊆ Φ(φx) and ωψ(z)−1 ∪ {(ψ(z), r)}) ⊆ φy, then φf(i) ⊆ Φ(φy).

This establishes that Φ is continuous at each point of C. To establish continuity

at ω, suppose φf(i) ⊆ Φ(ω) (= ω). Let ni be a maximal element of the domain of ψ

such that φf(i) ⊆ ωni−1. Clearly ωψ(ni)−1 ⊆ ω. Suppose φx ∈ C and ωψ(ni)−1 ⊆ φx.

Then there is an element z belonging to the domain of ψ and an r > 0 such that

ωψ(z)−1 ∪ {(ψ(z), r)} ⊆ φx.

By the construction,

ωz−1 ⊆ Φ(ωψ(z)−1 ∪ {(ψ(z), r)} = Φ(φx)

Since ψ(ni) ≤≤ ψ(z) and ni is maximal, ni ≤ z. Thus

φf(i) ⊆ ωni−1 ⊆ ωz−1 ⊆ Φ(φx)

establishing the continuity of Φat ω.

It remains to show that Φ is not effectively continuous on C ∪ {ω}.

We first show that for eachm in the domain of ψ there is some extension of ωψ(m)−1

which gets mapped to ωm−1. It is in fact clear from our construction that this will

happen unless ωψ(m)−1 ∪{〈ψ(m), r〉} gets mapped to ω for infinitely many r > 0.

But for ωψ(m)−1∪{〈ψ(m), r〉} to get mapped to w (r > 0), there must be some φe,

extending ωψ(m)−1 ∪ {〈ψ(m), r〉} with e ∈ R, i.e. with φe(x) = 0 for all x ≤ e.

Since this implies that e < ψ(m), there are at most finitely many such e’s, and

so for each m in the domain of ψ, there is some r > 0 with ωψ(m)−1 ∪{〈ψ(m), r〉}
mapped to ωm−1.

Now suppose that Φ were effectively continuous. Since Φ(ω = ω, given n, since

ωn ≤ ω, we could effectively find φf(s(n)) ⊆ ω such that each extension of φs(n) in

the domain of Φ has an image which extends ωn. Letting t be the total recursive

function such that

t(n) = max{y : 〈y, 0〉 ∈ φf(s(n))}

we would have that ωt(n) ⊆ φe and φe ∈ C ∪ {ω} implies
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ωn ⊆ Φ(φe). But for m in the domain of ψ there is some r > 0 such that

Φ(ωψ(m)−1 ∪ {〈ψ(m), r〉}) = ωm−1

Since t(m) ≤ ψ(m) implies

ωt(m) ⊆ ωψ(m)−1 ∪ {〈ψ(m), r〉}

t(m) < ψ(m) implies ωm ⊆ ωm−1, a contradiction. Thus t(m) ≥ ψ(m) for all m

for which ψ(m) is defined. This means that t majorizes ψ, and this contradiction

shows that Φ is not effectively continuous, completing our proof. �
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