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On complexity



Complexity classes

1. Some complexity classes:

L ⊆ NL ⊆ P ⊆ NP ⊆ PH ⊆ PSPACE

L: log-space, N: non-deterministic, P: polynomial.

Are the inclusions proper?
What is known can be summarized by NL≠ PSPACE

2. Polynomial reductions.

3. Complete problems in a class.

(Concepts similar to those of Logic and Computability)



Complexity classes

1. Some complexity classes:

L ⊆ NL ⊆ P ⊆ NP ⊆ PH ⊆ PSPACE

L: log-space, N: non-deterministic, P: polynomial.

Are the inclusions proper?
What is known can be summarized by NL≠ PSPACE

2. Polynomial reductions.

3. Complete problems in a class.

(Concepts similar to those of Logic and Computability)



Complexity classes

1. Some complexity classes:

L ⊆ NL ⊆ P ⊆ NP ⊆ PH ⊆ PSPACE

L: log-space, N: non-deterministic, P: polynomial.

Are the inclusions proper?
What is known can be summarized by NL≠ PSPACE

2. Polynomial reductions.

3. Complete problems in a class.

(Concepts similar to those of Logic and Computability)



Complexity classes

1. Some complexity classes:

L ⊆ NL ⊆ P ⊆ NP ⊆ PH ⊆ PSPACE

L: log-space, N: non-deterministic, P: polynomial.

Are the inclusions proper?
What is known can be summarized by NL≠ PSPACE

2. Polynomial reductions.

3. Complete problems in a class.

(Concepts similar to those of Logic and Computability)



A note on problem reductions

A ≤P B:
In complexity a many-to-one polynomial reduction between the
languages A and B is a polynomial time computable function f
mapping instances of the first problem into instances of the second
problem, such that x ∈ A (the answer to x is yes) iff f (x) ∈ B (the
answer to f (x) is yes).

A very weak reduction power seems often enough, say the first or
second in the sequence

≤FO, ≤L, ≤P , ≤TM

. . . it is surprising that the vast majority of natural complete problems remain

complete via first-order reductions (Immerman)
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Running away from concrete models. . .

An early example.
Blum axioms for computational complexity.

The descriptive complexity approach.
Complexity class ↔ expressivity in a logic
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On logic and model theory



Finite and infinite models

Classical logic on infinite structures arose from paradoxes of the
infinite and from the desire to understand the infinite. Central
constructions of classical logic yield infinite structures and most of
model theory is based on methods that take infiniteness of
structures for granted. In that context, finite models are anomalies
that deserve only marginal attention.

Finite model theory arose as an independent field of logic from
consideration of problems in theoretical computer science. Basic
concepts in this field are finite graphs, databases, computations
etc. . . . Many of the problems of complexity theory and database
theory can be formulated as problems of mathematical logic,
provided that we limit ourselves to finite structures.

(Väänänen, “A short course on FMT”)
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Finite and infinite models. . .

An example of two contrasting results.
Let L be a language containing a non unary relation symbol.

▸ The set of valid first-order sentences over L is r.e. but not
co-r.e.

▸ The set of first-order sentences over L that are valid over
finite structures is co-r.e. but not r.e.
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Concepts. . .

▸ Vocabulary τ , ρ: relational, functional, constant symbols
Examples: ⟨E 2

⟩, ⟨E 2, x , y⟩, ⟨≤
2,S1

⟩.

▸ Structures A on a vocabulary:
universe ∣A∣ (assumed to be {0,1, . . . ,n − 1}),
for each Rk in τ a relation of arity k defined on ∣A∣, etc.
Examples:
A graph: ⟨{0,1,2},{(1,2), (2,1)}⟩,
Word 1101: ⟨{0,1,2,3},≤2

= {(0,0), (0,1), . . .},
S1

= {0→ T ,1→ T ,2→ F ,3→ T}⟩

▸ (Arity will be often omitted)
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More concepts. . .

▸ STRUCT(τ): set of structures A with vocabulary τ

▸ Truth value of a logical formula ψ (with vocabulary τ) in a
structure A (with vocabulary τ); in symbols A ⊧ ψ (if true)

▸ Language L: L ⊆STRUCT(τ)

▸ Language L(ψ) defined by the logical formula ψ: set of
structures A with vocabulary τ for which ψ is true

L(ψ) = {A ∶ A ⊧ ψ}

▸ Example. Vocabulary τ = ⟨E , x , y⟩, language
L = {(V ,E) ∶ there is a path x ↝ y}
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On spectra

Spectra of FO sentences: one of the first studied problems of FMT
(by Fagin and others).

Spectrum.
Let ρ be a logical sentence; the integer n belongs to the spectrum
of ρ iff there is a structure satisfying ρ whose universe has
cardinality n.

Example.
The spectrum of the (conjunction of) the axioms of field theory is
the set of powers of primes, {2,3,4,5,7,8,9,11 . . .}.

Open problem (Asser problem).
In first order logic, is the class of spectra closed under complement?
For the example above, if the answer is yes, {1,6,10,12, . . .}
would be a spectrum.
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FO: preview

1. Classical results

2. Examples of properties expressed in FO

3. The 0/1 law
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Some classical results

1. Completeness Theorem, Gödel. Ψ is a consequence of Φ iff Ψ
is provable from Φ.

2. Corollary. The set of valid sentences is r.e.

3. Compactness.
(i) if Ψ is a consequence of Φ, it is a consequence of a finite
subset of Φ.
(ii) If every finite subset of Ψ is satisfiable, then Ψ is
satisfiable.

4. Löwenheim-Skolem. If Ψ has a model, it has a model which is
countable or finite (upper bound on the minimum cardinality).
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Finite models only (“in the finite”)

1. Trakhtenbrot. The set of sentences of FO that are valid in the
finite is not r.e.!

2. The Completeness and the Completness Theorems fail in the
finite.



Finite models only (“in the finite”)

1. Trakhtenbrot. The set of sentences of FO that are valid in the
finite is not r.e.!

2. The Completeness and the Completness Theorems fail in the
finite.



Finite models only (“in the finite”)

1. Trakhtenbrot. The set of sentences of FO that are valid in the
finite is not r.e.!

2. The Completeness and the Completness Theorems fail in the
finite.



Expressing some graph properties in FO

Instance is a graph. Vocabulary E , universe {0,1, . . . ,n − 1}.

▸ Property: (V ,E) is an undirected graph.
FO: ∀x ∀y ¬E(x , x) ∧ (E(x , y) → E(y , x))

▸ Property: Every vertex has in-degree at least 2.
FO: ∀x ∃y ∃z x ≠ y ∧ x ≠ z ∧ y ≠ z ∧ E(y , x) ∧ E(z , x)

▸ Property: The graph is complete.
FO: Exercise

▸ Property: There is a path with length at most 3.
FO: Exercise

▸ Property: The graph is bipartite.
FO: . . . not possible

▸ Property: Given ⟨(V ,E), x , y⟩, there is a path from x to y .
FO: . . . not possible
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The 0/1 law of FO

ψ: first order sentence.
µn(ψ): fraction of structures with an universe {0,1, . . . ,n − 1} that
satisfy ψ.

Definition.
ψ is almost surely true if limn→∞ µn(ψ) = 1.
ψ is almost surely false if limn→∞ µn(ψ) = 0.

Theorem (the 0/1 law). Every FO sentence is almost surely true or
almost surely false.
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The 0/1 law of FO (cont.)

Fact. For the problem a EVEN (“is the cardinality of the universe
even?”) the limit limn→∞ µn(ψ) does not exist.

Corollary. the predicate EVEN is not expressible in FO

Theorem. The problem of deciding if a first-order sentence is
almost surely false or almost surely true is PSPACE-complete.

Summary. A sentence of FO could in principle be

▸ almost surely false (the limit is 0)

▸ almost surely true (the limit is 1)

▸ neither (the limit does not exist or /∈ {0,1})

The last case never happens!
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First order logic with

“transitive closure” (TC)

and “least fixed point” (LFP)

operators



Preview: extending FO with TC and LFP

▸ FO has very low expressivity

▸ SO is too powerful
▸ The power of FO can be increased with:

▸ TC, the operator of transitive closure of relations
▸ LFP, least fixed point, a more general operator.

▸ Restriction to positive forms (posTC and posFP) are often
used.

▸ Characterization of complexity classes: NL = (FO+posTC),
P=FO+LFP



Weakness of FO

FO has very low expressive power. For instance

▸ EVEN (cardinality of the universe) can not be expressed

▸ “Is a graph connected?” can not be expressed

▸ FO ⊆ L



TC and LFP operators

Vocabulary of graphs with 2 endpoints, ⟨E , x , y⟩
Consider a expression involving a relation R

ψ(R, x , y) ≡ (x = y) ∨ ∃z (E(x , z) ∧ R(z , y))

The expression ψ is monotone on R.
The least fixed point (LFP) of ψ(R, x , y) is the relation:
“there is a path from x to y”

In this example TC (transitive closure) is the same as LFP.
In general, LFP is stronger than TC
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TC

Let x ≡ (x1 . . . xk) and y ≡ (y1 . . . yk) be k-tuples.
Let φ(x , y) be a relation (arity 2k).

Definition. TC(φ) is the reflexive symmetric closure of φ.

Definition. (FO+TC) is the set of properties (complexity class)
expressible FO plus the operator TC.
(FO+posTC) similar, but uses only positive applications of the
operator TC.
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Some results involving TC

Theorem. NL = (FO+posTC)

Theorem. Some predicates expressible (FO+posTC):

▸ PLUS(x , y , z) ≡ (x + y = z)

▸ ODD(x)

▸ ON(w ,b): (b < log n) and the bit b of the word w is 1

▸ PATH(E , x , y).
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LFP

Theorem
If R is a new relation symbol with arity k and if ψ(R, x1, . . . , xk) is
a monotone FO expression, then, for any structure A, the least
fixed point (LFP) of ψA exists and it is equal to the least r such
that (ψA(∅))

r
= (ψA(∅))

r+1
◻

Previous example: algorithm to find the LFP → algorithm to solve
“is there a path from x to y?”
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FO + LFP

FO+LFP: FO + least fixed point of monotone relations (inductive
definition):

Let ψ(R, x1, . . . , xk) be a FO+LFP formula, which is monotone
(positive) relatively to R (arity k). Then, a new k-ary relation
symbol can be used to denote LFP(ψ).
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Examples

▸ ⟨E , x , y⟩, is there a path from x to y?
May be expressed as
LFP(ψ(R, x , y)) ≡ (x = y) ∨ ∃z (E(x , z) ∧ R(z , y))

▸ ⟨E , α, x , y⟩, is there a path from x to y in the alternating
graph?
Alternating graph: A vertex z is either “universal” (if α(z) holds) or

“existential”. Existential z → a path that passes by z may follow any

edge (z ,w). Universal z : the path must follow all edges (z ,w) (and

there must be at least one).

May be expressed as
LFP(φ(R, x , y)) ≡ (x = y) ∨

[∃z (E(x , z) ∧ R(z , y)) ∧A(x) → ∀z(E(x , z) → R(z , y))])
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2 results

▸ Theorem. (again) NL = FO+posTC

▸ Theorem. With linear order, P = FO+LFP
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Second order logic (SO)



Second order logic (SO)

Relations can be quantified – second order quantification.

▸ Second order quantifiers can be placed at the beginning of
any SO formula (one of the following forms)

∃R1∃R2 . . .∀R ′
1∀R ′

2 . . .∃R
′′

1∃R
′′

2 . . . ψ(R1,R2,R
′
1,R

′
2, . . .)

∀R1∀R2 . . .∃R
′
1∃R

′
2 . . .∀R ′′

1∀R ′′
2 . . .ψ(R1,R2,R

′
1,R

′
2, . . .)

where ψ is a FOL formula.

▸ Special case: SO∃ logic, when there are only existential
second order quantifiers, ∃R1∃R2 . . . ψ(R1,R2, . . .)
where ψ is a FOL formula.
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Expressing 3-colourability in SO∃

▸ Property: (V ,E) is 3-colourable.
Expression in in SO∃: (R, G and B are unary relations)

∃R ∃G ∃B
Each vertex has at least one color:
[∀x R(x) ∨G(x) ∨B(x)∧

But not 2 colors:
¬(R(x) ∧G(x)) ∧ ¬(G(x) ∧B(x)) ∧ ¬(B(x) ∧ R(x))]∧

Edge condition:
∀x ∀y E(x , y) →
¬(R(x) ∧ R(y)) ∧ ¬(G(x) ∧G(y)) ∧ ¬(B(x) ∧B(y))
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FO and complexity classes

Theorem (Fagin). NP = SO∃

Theorem. PH = SO
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Complexity classes and expressivity in logic

Complexity

LogicFO+posTC FOFO+LFP

L NL P NP PH

FOEFO



A more detailed picture (Immerman)

FO(REGULAR)

FO(CFL)

co−r.e.
complete

Arithmetic Hierarchy
FO (N)

FO E(N)FO A(N)

r.e.
completer.e.co−r.e.

Polynomial−Time Hierarchy NP
complete

co−NP
complete

co−NP NP 

NP co−NP

P

NC 2

FO[n       ]O(1)

FO(LFP)

SO−Horn
A SO E

FO[2        ]
n O(1)

SO[n       ]O(1) FO(PFP) SO(TC)

SO[2        ]
n O(1) SO(LFP)

SO

SO

SO−Krom

NCFO[(log n)       ]O(1)

FO(M)

FO(TC)

NC

ThC

"truly feasible"

0

NSPACE[log n]

Logarithmic−Time HierarchyFO AC

FO(DTC) DSPACE[log n]

PSPACE

EXPTIME

Primitive Recursive

Recursive

1

0

1sAC

Neil Immerman Short Survey of Descriptive Complexity Plus . . .



Expressing complexity in logic. . .

Surprisingly, it turns out that, in some cases, we can characterize
complexity classes (like NP) in terms of logic, where there is no
notion of machine, computation or time. Fagin

Comments

▸ Certain concepts are robust relatively to the model of
computation used.

▸ Codification can change the class of a problem; for instance
partition is

▸ NP-complete when integers are codified in binary (say an
unary relation on the universe).

▸ P when an integer m is codified as sm
(0) (s(s(. . . s(0) . . .)),

m applications of s).
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From Turing machines to logic (part I)

An NP problem π characterized by predicate p(x , y).
Notation:

▸ TM: (deterministic) Turing machine

▸ NDTM: non-deterministic Turing machine

▸ p(x , y): predicate computable in polynomial time (in terms
of ∣x ∣). If y is used, as we assume, ∣y ∣ must be bounded by a
polynomial in ∣x ∣.

▸ q(n): a polynomial.

x ∈ Lπ ↔ ∃y , p(x , y)

where the evaluation of p(x , y) can be made in polynomial time
in ∣x ∣.



From Turing machines to logic (part II)
Expressing the NP problem “given x , ∃y p(x , y)?”

▸ NDTM M: There is an accepting computation of M with
input x and time ≤ q(∣x ∣).

▸ 2-phase NDTM M: the non-deterministic phase (the first
part) of M can be such that the deterministic phase (the
second part) of M finishes in an accepting state, and the
overall time ≤ q(∣x ∣).

▸ TM with a part of the input tape unspecified M: The initial
contents of the tape is ⟨y , x⟩; where y is an initially
unspecified tape segment with length q(∣x ∣). The machine M
can (depending on y) finish in an accepting state in
time ≤ q(∣x ∣).

▸ FO∃: ∃Y ψ(X ,Y ) where x is represented by the unary
relation X , y is represented by the unary relation Y , the
formula ψ “corresponds” to the problem in question π.

Where is the execution time in the last case?
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Where is the execution time?

I do not know; but the answer may be related to

▸ Typically, only one universe is used, with a size which is
polynomially related with the input length. Thus, possibly,
numbers much larger than the input can not be represented.

▸ A FO formula can be computed in polynomial time: each
existential or universal quantifier corresponds to a loop
“for i=0 to n-1...”.

▸ Testing the existence of a certain relation (FO∃ logic) may, in
principle, need exponential time.



Things we didn’t talk about:

▸ Reductions (FO, etc.)

▸ Complete problems

▸ The Ehrenfeucht-Fräissé method
▸ Specific applications

▸ Database theory
▸ Unary relations only
▸ FO + ATC
▸ Real numbers
▸ FA



Some references

∎ Fagin, Finite-model theory – a personal perspective

∎ Flum, Finite Model Theory, (book)

∎ Gurevich, Toward logic tailored for computational complexity

∎ Kolaitis, Combinatorial games in Finite model theory

∎ Immerman, Descriptive Complexity, (book)

∎ Immerman, Languages that capture complexity classes

∎ Väänänen, A Short Course on Finite Model Theory



The end
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Note on the The Ehrenfeucht-Fräissé method I

The game has m moves. There are 2 players, the Spoiler (S) and
the Duplicator (D). There are 2 structures, A and B, known to the
players. In each move

▸ S selects an element from A or from B

▸ D selects an element from B or from A

After finishing there are 2 sets of elements

{a1, . . . , am}, {b1, . . . ,bm}

If the mapping a1 ↔ b1,. . . , am ↔ bm, is an isomorphism (induced
by the structures A and B), then the player D wins.
Otherwise S wins.



Note on the The Ehrenfeucht-Fräissé method II

The player D wins iff there is an winning strategy.

The EF game is the main method for the study of the definability
of classes of finite structures in FOL.



Unary symbols

Vocabulary τ = {f }, only one unary function symbol.
Vocabulary τk = {f ,R1, . . . ,Rk}, only one unary function symbol
and (only) k unary relation symbols..
Some results in: Durand, Fagin, Loesher, “Spectra with only unary function

symbols”.

1. Equivalent statements.
(i) S is the spectra of a FO τ -sentence. (ii) For some fixed k ∈ N, S is the

spectra of a FO τk -sentence. (iii) S is ultimately periodic (possibly finite).

(iv) S is the set of the lengths of the words belonging to a regular

language.

2. Corollary. The class of spectra involving only one functional symbol is

closed under complement (Asser problem).

3. More than one. There is a spectrum with only 2 unary function

symbols, which is not a spectrum corresponding to a vocabulary involving

only 1 unary function symbol.
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The role of ordering

FO+LFP only captures P in the presence or ordering, (Chandra,
Harel, Immerman, Vardi)

To characterize some complexity classes, FO descriptive complexity requires
ordering on its universe. Such an ordering, however, is irrelevant to the
properties of the graphs or databases that we want to compute. It is easy to
prove lower bounds on languages without ordering; on ordered structures these
arguments do not work. Furthermore, for databases, the ordering is a low-level
implementation issues – how entries are stored in memory or disk – which
should be invisible to the person writing queries. For all these reasons, the
descriptive characterization of order-independent queries computable in a given
complexity class is a fundamental open problem.

Immerman



Generalized spectra

1. Relation quantification.
If all the relations of a FO sentence ψ(R1, . . . ,Rk) are existentially

quantified, ψ′ = ∃R1 . . .∃Rkψ, the vocabulary becomes empty.

2. Generalized spectra.
Only some relations of a FO sentence ψ(P1,P2, . . . .Pm,R1, . . . ,Rk) are

existentially quantified, ψ′ = ∃R1 . . .∃Rkψ, the vocabulary is

{P1, . . . ,Pm}.

3. Example.
A graph is 3-colourable, ∃R∃G∃Bψ(E ,R,G ,B). the vocabulary is {E}.

4. Theorem (Fagin)
The class of generalized spectra is closed under complement, iff NP is

closed under complement (NP=co-NP).

5. Theorem (Fagin)
The complement of a generalized spectrum is a generalized spectrum iff

the class of graphs that are not 3-colourable is a generalized spectrum

(pure logic, no complexity involved!).
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FO+ATC (a more general form of TC)

ATC: alternating relation closure
Consider formulas φ(x , y) where x and y have arity k and
α(x).
For any structure A, an alternating graph Gψ,α is defined by φ
and α.

ATC operator: is there a path x → y?
Formally: ATC(φ,α) = LFP(Ψ(φ,α,R)) where

Ψ(φ,α,R) ≡ (x = y) ∨

∃z(φ(z , x) ∧ R(z , y)) ∧ (α(x) → ∀z(φ(x , z) → R(z , y)))
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