
Total recursive functions
that are not primitive recursive

Contains transcriptions. . .

For my personal use only

Armando B. Matos,
June 21, 2016

1

Contents

1 The Ackermann function 4

1.1 History . 5

1.2 Definition and properties . 5

1.3 Table of values . 7

1.4 Expansion . 9

1.5 Functions that satisfy the general recurrence 11

1.6 Inverse . 11

2 A function related with the Paris–Harrington theorem 11

2.1 The strengthened finite Ramsey theorem 12

2.2 The Paris–Harrington theorem 12

3 The Sudan functions 13

4 The Goodstein function 15

4.1 Hereditary base-n notation . 15

4.2 Goodstein sequences . 16

4.3 More on weak sequence termination 24

5 Goodstein sequences again 26

6 Goodstein paper: definitions and notation 31

7 A 0-1 function obtained by diagonalisation 33

8 A few values of some total non primitive recursive functions 34

A Primitive recursive functions (from the Wikipedia) 34

A.1 Examples . 37

A.2 Relationship to recursive functions 38

A.3 Some common primitive recursive functions 41

B Primitive recursive functions: computation time 42

B.1 Loop programs: computation time lower bound 42

B.2 The computation time is also primitive recursive 43

B.3 Computation time of total recursive functions that are not prim-
itive recursive . 43

2

Abstract

It is well known that not all total recursive functions are primitive recur-
sive. A well known example is the Ackermann function. Other examples
include a function related with the Paris-Harrington Theorem, the Sudan
functions, and the Goodstein function. All these functions grow extremely
fast; however, we also describe another example of such a function that
only takes the values 0 and 1. Some background material on primitive
recursive functions is also included.
This text is for my personal study only. A lot of typos and a few references
are included.

3

We transcribe1 and comment several texts that describe several total recursive,
but not primitive recursive (TRNPR).

The functions mentioned in this work are

(i) the Ackermann function (page 4),

(ii) a function related with the Paris-Harrington Theorem (page 11),

(iii) the Sudan functions (page 13),

(iv) the Goodstein function (page 15 and 26),

(v) a function with codomain {0, 1} (obtained by diagonalisation, page 33).

Except for the function v, the information was basically obtained from the
literature. The example v shows that the TRNPR functions are not necessarily
“large”2.

Some characteristics of primitive recursive functions, including their time of
computation, are reviewed in Appendices A (page 34) and B (page 42).

Note. There is some overlap on the material on Goodstein sequences (different
transcriptions. . .) but this may be useful for the reader (me).

1 The Ackermann function

In computability theory, the Ackermann function, named after Wilhelm Ack-
ermann, is one of the simplest [1] and earliest-discovered examples of a total
computable function that is not primitive recursive. All primitive recursive
functions are total and computable, but the Ackermann function illustrates
that not all total computable functions are primitive recursive.

After Ackermann’s publication [2] of his function (which had three nonnegative
integer arguments), many authors modified it to suit various purposes, so that
today “the Ackermann function” may refer to any of numerous variants of the
original function. One common version, the two-argument Ackermann–Péter
function, is defined as follows for nonnegative integers m and n:

A(m,n) =


n+ 1 if m = 0

A(m− 1, 1) if m > 0 and n = 0

A(m− 1, A(m,n− 1)) if m > 0 and n > 0.

Its value grows rapidly, even for small inputs. For example, A(4, 2) is an integer
of 19,729 decimal digits [3].
1Essentially from the Wikipedia.
2However, every such function takes a very very long time to be computed.

4

1.1 History

In the late 1920s, the mathematicians Gabriel Sudan and Wilhelm Ackermann,
students of David Hilbert, were studying the foundations of computation. Both
Sudan and Ackermann are credited [4] with discovering total computable func-
tions (termed simply “recursive” in some references) that are not primitive
recursive. Sudan published the lesser-known Sudan function, then shortly af-
terwards and independently, in 1928, Ackermann published his function ϕ. Ack-
ermann’s three-argument function, ϕ(m,n, p), is defined such that for p = 0, 1,
2, it reproduces the basic operations of addition, multiplication, and exponen-
tiation as

ϕ(m,n, 0) = m+ n,
ϕ(m,n, 1) = m · n,
ϕ(m,n, 2) = mn,

and for p > 2 it extends these basic operations in a way that can be compared
to the hyper-operations: (aside from its historic role as a total-computable-
but-not-primitive-recursive function, Ackermann’s original function is seen to
extend the basic arithmetic operations beyond exponentiation, although not as
seamlessly as do variants of Ackermann’s function that are specifically designed
for that purpose –such as Goodstein’s hyper-operation sequence.)

In “On the Infinite”, David Hilbert hypothesised that the Ackermann function
was not primitive recursive, but it was Ackermann, Hilbert’s personal secre-
tary and former student, who actually proved the hypothesis in his paper On
Hilbert’s Construction of the Real Numbers ([2,5]).

Rózsa Péter and Raphael Robinson later developed a two-variable version of
the Ackermann function that became preferred by many authors [6].

1.2 Definition and properties

Ackermann’s original three-argument function ϕ(m,n, p) is defined recursively
as follows for nonnegative integers m, n, and p:

ϕ(m,n, p) =



ϕ(m,n, 0) = m+ n

ϕ(m, 0, 1) = 0

ϕ(m, 0, 2) = 1

ϕ(m, 0, p) = m for p > 2

ϕ(m,n, p) = ϕ(m,ϕ(m,n− 1, p), p− 1) for n > 0 and p > 0.

Of the various two-argument versions, the one developed by Péter and Robinson
(called “the” Ackermann function by some authors) is defined for nonnegative

5

integers m and n as follows:

A(m,n) =


n+ 1 if m = 0

A(m− 1, 1) if m > 0 and n = 0

A(m− 1, A(m,n− 1)) if m > 0 and n > 0.

It may not be immediately obvious that the evaluation of A(m,n) always termi-
nates. However, the recursion is bounded because in each recursive application
either m decreases, or m remains the same and n decreases. Each time that n
reaches zero, m decreases, som eventually reaches zero as well. (Expressed more
technically, in each case the pair (m,n) decreases in the lexicographic order on
pairs, which is a well-ordering, just like the ordering of single non-negative in-
tegers; this means one cannot go down in the ordering infinitely many times
in succession.) However, when m decreases there is no upper bound on how
much n can increase – and it will often increase greatly.

The Péter-Ackermann function can also be expressed in terms of various other
versions of the Ackermann function:

– the indexed version of Knuth’s up-arrow notation (extended to integer
indices ≥ 2):

A(m,n) = 2 ↑m−2 (n+ 3)− 3.
The part of the definition A(m, 0) = A(m − 1, 1) corresponds to 2 ↑m+1

3 = 2 ↑m 4.

– Conway chained arrow notation:

A(m,n) = (2→ (n+ 3)→ (m− 2))− 3 for m ≥ 3.
hence

2→ n→ m = A(m+ 2, n− 3) + 3 for n > 2.
(n = 1 and n = 2 would correspond with A(m,−2) = −1 and A(m,−1) =
1, which could logically be added.)

For small values of m like 1, 2, or 3, the Ackermann function grows relatively
slowly with respect to n (at most exponentially). For m ≥ 4, however, it grows
much more quickly; even A(4, 2) is about 2×1019728, and the decimal expansion
of A(4, 3) is very large by any typical measure.

Logician Harvey Friedman defines a version of the Ackermann function as fol-
lows (A(m,n) is defined for n ≥ 0 and m ≥ 1):

A(m, 0) = 1
A(1, n) = 2n (for n ≥ 1)
A(m,n) = A(m− 1, A(m,n− 1)) (for n ≥ 1, m ≥ 2).

He also defines a single-argument version A(n) = A(n, n) (see [7])

6

A single-argument version A(k) = A(k, k) that increases both m and n at the
same time dwarfs every primitive recursive function, including very fast-growing
functions such as the exponential function, the factorial function, multi- and
superfactorial functions, and even functions defined using Knuth’s up-arrow
notation (except when the indexed up-arrow is used). It can be seen that A(n)
is roughly comparable to fω(n) in the fast-growing hierarchy.

This extreme growth can be exploited to show that f , which is obviously com-
putable on a machine with infinite memory such as a Turing machine and so is
a computable function, grows faster than any primitive recursive function and
is therefore not primitive recursive. In a category with exponentials, using the
isomorphism

(A×B)→ C ∼= A→ (B → C)
(in computer science, this is called currying), the Ackermann function may be
defined via primitive recursion over higher-order functionals as follows:

Ack(0) = Succ
Ack(m+ 1) = Iter(Ack(m))

where Succ is the usual successor function and Iter is defined by primitive re-
cursion as well:

Iter(f)(0) = f(1)
Iter(f)(n+ 1) = f(Iter(f)(n)).

One interesting aspect of the Ackermann function is that the only arithmetic
operations it ever uses are addition and subtraction of 1. Its properties come
solely from the power of unlimited recursion. This also implies that its running
time is at least proportional to its output, and so is also extremely huge. In
actuality, for most cases the running time is far larger than the output; see
below.

1.3 Table of values

Computing the Ackermann function can be restated in terms of an infinite table.
We place the natural numbers along the top row. To determine a number in
the table, take the number immediately to the left, then look up the required
number in the previous row, at the position given by the number just taken.
If there is no number to its left, simply look at the column headed “1” in the
previous row. Here is a small upper-left portion of the table:

7

Values of A(m, n)

m\n 0 1 2 3 n

0 1 2 3 4 n + 1

1 2 3 4 5 n + 2 = 2 + (n + 3)− 3

2 3 5 7 9 2n + 3 = 2(n + 3)− 3

3 5 13 29 61 2n+3 − 3

4 13 =

222
- 3

65533 =

2222

- 3

265536 - 3 =

2222
2

-3

2265536
- 3

= 2222
22

- 3

. . .

5 2↑↑↑3− 3 2 ↑↑↑ 4−3 2 ↑↑↑ 5− 3 2 ↑↑↑ 6−3 2 ↑↑↑ (n + 3)− 3

6 2↑↑↑↑3−3 2↑↑↑↑4−3 2↑↑↑↑5− 3 2↑↑↑↑6−3 2 ↑↑↑↑ (n + 3)− 3

The numbers here which are only expressed with recursive exponentiation or
Knuth arrows are very large and would take up too much space to notate in
plain decimal digits.

Despite the large values occurring in this early section of the table, some even
larger numbers have been defined, such as Graham’s number, which cannot be
written with any small number of Knuth arrows. This number is constructed
with a technique similar to applying the Ackermann function to itself recur-
sively.

This is a repeat of the above table, but with the values replaced by the relevant
expression from the function definition to show the pattern clearly:

Values of A(m, n)

m\n 0 1 2 3 4 n

0 0 + 1 1 + 1 2 + 1 3 + 1 4 + 1 n+1

1 A(0,1) A(0,A(1,0))

= A(0, 2)

A(0,A(1,1))

= A(0,3)

A(0,A(1,2))

= A(0,4)

A(0,A(1,3))

= A(0,5)

A(0,A(1,n-1))

2 A(1,1) A(1,A(2,0))

= A(1,3)

A(1,A(2,1))

= A(1,5)

A(1,A(2,2))

= A(1,7)

A(1,A(2,3))

= A(1,9)

A(1,A(2,n-1))

3 A(2,1) A(2,A(3,0))

= A(2, 5)

A(2,A(3,1))

= A(2,13)

A(2,A(3,2))

= A(2,29)

A(2,A(3,3))

= A(2,61)

A(2,A(3,n-1))

4 A(3,1) A(3,A(4,0))

= A(3,13)

A(3,A(4,1))

= A(3,65533)

A(3,A(4,2)) A(3,A(4,3)) A(3,A(4,n-1))

5 A(4,1) A(4,A(5,0)) A(4,A(5,1)) A(4,A(5,2)) A(4,A(5,3)) A(4,A(5,n-1))

6 A(5,1) A(5,A(6,0)) A(5,A(6,1)) A(5,A(6,2)) A(5,A(6,3)) A(5,A(6,n-1))

8

1.4 Expansion

To see how the Ackermann function grows so quickly, it helps to expand out
some simple expressions using the rules in the original definition. For example,
we can fully evaluate A(1, 2) in the following way:

A(1, 2) = A(0, A(1, 1))

= A(0, A(0, A(1, 0)))

= A(0, A(0, A(0, 1)))

= A(0, A(0, 2))

= A(0, 3)

= 4.

To demonstrate how A(4, 3)’s computation results in many steps and in a large

9

number:

A(4, 3) = A(3, A(4, 2))

= A(3, A(3, A(4, 1)))

= A(3, A(3, A(3, A(4, 0))))

= A(3, A(3, A(3, A(3, 1))))

= A(3, A(3, A(3, A(2, A(3, 0)))))

= A(3, A(3, A(3, A(2, A(2, 1)))))

= A(3, A(3, A(3, A(2, A(1, A(2, 0))))))

= A(3, A(3, A(3, A(2, A(1, A(1, 1))))))

= A(3, A(3, A(3, A(2, A(1, A(0, A(1, 0)))))))

= A(3, A(3, A(3, A(2, A(1, A(0, A(0, 1)))))))

= A(3, A(3, A(3, A(2, A(1, A(0, 2))))))

= A(3, A(3, A(3, A(2, A(1, 3)))))

= A(3, A(3, A(3, A(2, A(0, A(1, 2))))))

= A(3, A(3, A(3, A(2, A(0, A(0, A(1, 1)))))))

= A(3, A(3, A(3, A(2, A(0, A(0, A(0, A(1, 0))))))))

= A(3, A(3, A(3, A(2, A(0, A(0, A(0, A(0, 1))))))))

= A(3, A(3, A(3, A(2, A(0, A(0, A(0, 2)))))))

= A(3, A(3, A(3, A(2, A(0, A(0, 3))))))

= A(3, A(3, A(3, A(2, A(0, 4)))))

= A(3, A(3, A(3, A(2, 5))))

= . . .

= A(3, A(3, A(3, 13)))

= . . .

= A(3, A(3, 65533))

= . . .

= A(3, 265536 − 3)

= . . .

= 22
65536

− 3.

10

1.5 Functions that satisfy the general recurrence

In [MP16] a closed form of a(m,n), which uses the Knuth superpower notation,

namely a(m,n) = 2
m−2
↑ (n + 3) − 3. Generalised Ackermann functions, that

is functions satisfying only the general recurrence and one of the boundary

conditions are also studied. In particular it is shown that the function 2
m−2
↑

(n+ 2)− 2 also belongs to the “Ackermann class”.

1.6 Inverse

Since the function f(n) = A(n, n) considered above grows very rapidly, its
inverse function, f−1, grows very slowly. This inverse Ackermann function f−1

is usually denoted by α. In fact, α(n) is less than 5 for any practical input

size n, since A(4, 4) is on the order of 2222
16

.

This inverse appears in the time complexity of some algorithms, such as the
disjoint-set data structure and Chazelle’s algorithm for minimum spanning
trees. Sometimes Ackermann’s original function or other variations are used
in these settings, but they all grow at similarly high rates. In particular, some
modified functions simplify the expression by eliminating the -3 and similar
terms.

A two-parameter variation of the inverse Ackermann function can be defined
as follows, where bxc is the floor function:

α(m,n) = min{i ≥ 1 : A(i, bm/nc) ≥ log2 n}.

This function arises in more precise analyses of the algorithms mentioned above,
and gives a more refined time bound. In the disjoint-set data structure, m
represents the number of operations while n represents the number of elements;
in the minimum spanning tree algorithm, m represents the number of edges
while n represents the number of vertices. Several slightly different definitions
of α(m,n) exist; for example, log2 n is sometimes replaced by n, and the floor
function is sometimes replaced by a ceiling.

Other studies might define an inverse function of one where m is set to a con-
stant, such that the inverse applies to a particular row [8].

2 A function related with the Paris–Harrington the-

orem

In mathematical logic, the Paris–Harrington theorem states that a certain com-
binatorial principle in Ramsey theory, namely the strengthened finite Ramsey
theorem, is true, but not provable in Peano arithmetic. This was the first “nat-
ural” example of a true statement about the integers that could be stated in
the language of arithmetic, but not proved in Peano arithmetic; it was already

11

known that such statements existed by Gödel’s first incompleteness theorem.

2.1 The strengthened finite Ramsey theorem

The strengthened finite Ramsey theorem is a statement about colorings and
natural numbers and states that:

For any positive integers n, k, m we can find N with the follow-
ing property: if we color each of the n-element subsets of S =
{1, 2, 3, . . . N} with one of k colors, then we can find a subset Y
of S with at least m elements, such that all n element subsets of Y
have the same color, and the number of elements of Y is at least the
smallest element of Y .

Without the condition that the number of elements of Y is at least the smallest
element of Y , this is a corollary of the finite Ramsey theorem in KPn(S), with N
given by: (

N

n

)
= |Pn(S)| ≥ R(m,m, . . . ,m︸ ︷︷ ︸

k

).

Moreover, the strengthened finite Ramsey theorem can be deduced from the
infinite Ramsey theorem in almost exactly the same way that the finite Ramsey
theorem can be deduced from it, using a compactness argument (see the article
on Ramsey’s theorem for details). This proof can be carried out in second-order
arithmetic.

The Paris–Harrington theorem states that the strengthened finite Ramsey the-
orem is not provable in Peano arithmetic.

2.2 The Paris–Harrington theorem

Roughly speaking, Jeff Paris and Leo Harrington showed that the strengthened
finite Ramsey theorem is unprovable in Peano arithmetic by showing that in
Peano arithmetic it implies the consistency of Peano arithmetic itself. Since
Peano arithmetic cannot prove its own consistency by Gödel’s theorem, this
shows that Peano arithmetic cannot prove the strengthened finite Ramsey the-
orem.

The smallest number N that satisfies the strengthened finite Ramsey theorem
is a computable function of n, m, k, but grows extremely fast. In particular
it is not primitive recursive, but it is also far larger than standard examples of
non primitive recursive functions such as the Ackermann function. Its growth is
so large that Peano arithmetic cannot prove it is defined everywhere, although
Peano arithmetic easily proves that the Ackermann function is well defined.

12

3 The Sudan functions

In the theory of computation, the Sudan function is an example of a function
that is recursive, but not primitive recursive. This is also true of the better-
known Ackermann function. The Sudan function was the first function having
this property to be published.

It was discovered (and published [1]) in 1927 by Gabriel Sudan, a Romanian
mathematician who was a student of David Hilbert. Definition

F0(x, y) = x+ y, ,

Fn+1(x, 0) = x, (n ≥ 0)

Fn+1(x, y + 1) = Fn(Fn+1(x, y), Fn+1(x, y) + y + 1), (n ≥ 0)

Value Tables

13

Values of F0(x, y)

y\x 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 6

2 2 3 4 5 6 7

3 3 4 5 6 7 8

4 4 5 6 7 8 9

5 5 6 7 8 9 10

6 6 7 8 9 10 11

Values of F1(x, y)

y\x 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 3 5 7 9 11 13

2 4 8 12 16 20 24 28

3 11 19 27 35 43 51 59

4 26 42 58 74 90 106 122

5 57 89 121 153 185 217 249

6 120 184 248 312 376 440 504

In general, F1(x, y) is equal to F1(0, y) + 2yx.

Values of F2(x, y)

y\x 0 1 2 3 4

0 0 1 2 3 4

1 1 8 27 74 185

2 19 F1(8, 10) =

10228

F1(27, 29) ≈
1.55× 1010

F1(74, 76) ≈
5.74× 1024

F1(185, 187) ≈
3.67× 1058

A Haskell program that computes Fn(x, y) (denoted by f n x y).)

f n x y

| n==0 = x+y

14

| y==0 = x

| otherwise= f (n-1) (f n x (y-1)) (f n x (y-1)+(y-1)+1)

It may be interesting to compare the general recursion schema for: the Acker-
mann function, the function g defined in [MP16], and for the Sudan functions:

A(m,n) = A(m− 1, A(m,n− 1)) Ackermann function

g(m,n) = g(m− 1, g(m,n− 1)) g function of [MP16]

Fp(m,n) = Fp−1(Fp(m,n− 1), Fp(m,n− 1), Fp(m− 1, n− 1) + n)

Sudan functions

Reference
Cristian Calude, Solomon Marcus, Ionel Tevy,

The first example of a recursive function which is not
primitive recursive, Historia Mathematica 6 (1979), no. 4,
pages 380–384.

4 The Goodstein function

In mathematical logic, Goodstein’s theorem is a statement about the natural
numbers, proved by Reuben Goodstein in 1944, which states that every Good-
stein sequence eventually terminates at 0. Kirby and Paris [1] showed that it is
unprovable in Peano arithmetic (but it can be proven in stronger systems, such
as second order arithmetic). This was the third example of a true statement
that is unprovable in Peano arithmetic, after Gödel’s incompleteness theorem
and Gerhard Gentzen’s 1943 direct proof of the unprovability of ε0-induction
in Peano arithmetic. The Paris–Harrington theorem was a later example.

Laurence Kirby and Jeff Paris introduced a graph theoretic hydra game with
behaviour similar to that of Goodstein sequences: the “Hydra” is a rooted tree,
and a move consists of cutting off one of its “heads” (a branch of the tree), to
which the hydra responds by growing a finite number of new heads according to
certain rules. Kirby and Paris proved that the Hydra will eventually be killed,
regardless of the strategy that Hercules uses to chop off its heads, though this
may take a very long time [1].

4.1 Hereditary base-n notation

Goodstein sequences are defined in terms of a concept called “hereditary base-n
notation”. This notation is very similar to usual base-n positional notation, but
the usual notation does not suffice for the purposes of Goodstein’s theorem.

In ordinary base-n notation, where n is a natural number greater than 1, an

15

arbitrary natural number m is written as a sum of multiples of powers of n:

m = akn
k + ak−1n

k−1 + . . .+ a0,

where each coefficient ai satisfies 0 ≤ ai < n, and ak 6= 0. For example3, in
base 2,

35 = 32 + 2 + 1 = 25 + 21 + 20.

Thus the base 2 representation of 35 is 100011, which means 25+2+1. Similarly,
100 represented in base 3 is 10201:

100 = 81 + 18 + 1 = 34 + 2 · 32 + 30.

Note that the exponents themselves are not written in base-n notation. For
example, the expressions above include 25 and 34.

To convert a base-n representation to hereditary base n notation, first rewrite
all of the exponents in base-n notation. Then rewrite any exponents inside
the exponents, and continue in this way until every number appearing in the
expression has been converted to base-n notation.

For example, while 35 in ordinary base-2 notation is 25 + 2 + 1, it is written in
hereditary base-2 notation as

35 = 222+1 + 2 + 1,

using the fact that 5 = 22 + 1. Similarly, 100 in hereditary base 3 notation is

100 = 33+1 + 2 · 32 + 1.

4.2 Goodstein sequences

The Goodstein sequence G(m) of a number m is a sequence of natural numbers.
The first element in the sequence G(m) is m itself. To get the second, G(m)(2),
write m in hereditary base 2 notation, change all the 2’s to 3’s, and then
subtract 1 from the result. In general, the (n + 1)st term G(m)(n + 1) of
the Goodstein sequence of m is as follows:

– take the hereditary base n + 1 representation of G(m)(n), and
replace each occurrence of the base n+1 with n+2 and then subtract
one. Note that the next term depends both on the previous term
and on the index n.
– Continue until the result is zero, at which point the sequence

3Most of the examples in Sections 4 and 5 are from: the Wikipedia entry on “Goodstein se-
quences”, the paper [Goo44], and the URLs http://www.xamuel.com/goodstein-sequences,
and http://blog.kleinproject.org/?p=674

16

Base Hereditary
notation

Value Notes

2 21 + 1 3 Write 3 in base 2 notation

3 31 + 1− 1 = 31 3 Switch the 2 to a 3, then subtract 1

4 41 − 1 = 3 3 Switch the 3 to a 4, then subtract 1

(now there are no more 4s left)

5 3− 1 = 2 2 No 4s left to switch to 5s. Just subtract 1

6 2− 1 = 1 1 No 5s left to switch to 6s. Just subtract 1

7 1− 1 = 0 0 No 6s left to switch to 7s. Just subtract 1

Figure 1: The sequence G(3). The rightmost column contains the corresponding
ordinals.

terminates.

Early Goodstein sequences terminate quickly. For example, G(3) terminates at
the sixth step:

Later Goodstein sequences increase for a very large number of steps. For ex-
ample, G(4) starts as seen in Figure 4.2, page 18.

Elements of G(4) continue to increase for a while, but at base 3 ·2402653209, they
reach the maximum of 3 · 2402653210 − 1, stay there for the next 3 · 2402653209

steps, and then begin their first and final descent.

The value 0 is reached at base 3 · 2402653211 − 1 (curiously, this is a Woodall
number: 3 ·2402653211−1 = 402653184 ·2402653184−1. This is also the case with
all other final bases for starting values greater than 4).

However, even G(4) doesn’t give a good idea of just how quickly the elements
of a Goodstein sequence can increase. G(19) increases much more rapidly, and
starts as follows:

17

Value Hereditary notation Ordinal

4 22 ωω

26 33 − 1 = 2 · 32 + 2 · 3 + 2 2 · ω2 + 2 · ω + 2

41 2 · 42 + 2 · 4 + 1 2 · ω2 + 2 · ω + 1

60 2 · 52 + 2 · 5 2 · ω2 + 2 · ω

83 2 · 62 + 2 · 6− 1 = 2 · 62 + 6 + 5 2 · ω2 + ω + 5

109 2 · 72 + 7 + 4 2 · ω2 + ω + 4

.

253 2 · 112 + 11 2 · ω2 + ω

299 2 · 122 + 12− 1 = 2 · 122 + 11 2 · ω2 + 11

.

Figure 2: Successive values of G(4). The first line corresponds to G(1)(1).The
“Ordinal” column contains the ordinals used in the proof of Goodstein Theorem.

Hereditary notation Value

222
+ 2 + 1 19

333
+ 3 7 625 597 484 990

444
+ 3 ≈ 1.3× 10154

555
+ 2 ≈ 1.8× 102184

666
+ 1 ≈ 2.6× 1036,305

777 ≈ 3.8× 10695,974

888 − 1 = 7 · 8(7·87+7·86+7·85+7·84+7·83+7·82+7·8+7)+

+7 · 8(7·87+7·86+7·85+7·84+7·83+7·82+7·8+6)+

· · ·+ 7 · 8(8+2) + 7 · 8(8+1) + 7 · 88 + 7 · 87 + 7 · 86+

+7 · 85 + 7 · 84 + 7 · 83 + 7 · 82 + 7 · 8 + 7 ≈ 6× 1015,151,335

...
...

In spite of this rapid growth, Goodstein’s theorem states that every Goodstein
sequence eventually terminates at 0, no matter what the starting value is.

18

Proof of Goodstein’s theorem
Goodstein’s theorem can be proved (using techniques outside Peano arithmetic,
see below) as follows: Given a Goodstein sequence G(m), we construct a par-
allel sequence P (m) of ordinal numbers which is strictly decreasing and [thus]
terminates. Then G(m) must terminate too, and it can terminate only when it
goes to 0. A common misunderstanding of this proof is to believe that G(m)
goes to 0 because it is dominated by P (m). In fact, the fact that P (m) domi-
nates G(m) plays no role at all. The important point is: G(m)(k) exists if and
only if P (m)(k) exists (parallelism). Then if P (m) terminates, so does G(m).
And G(m) can terminate only when it comes to 0.

More precisely, each term P (m)(n) of the sequence P (m) is obtained by apply-
ing a function f on the term G(m)(n) of the Goodstein sequence of m as follows:
take the hereditary base n+ 1 representation of G(m)(n), and replace each oc-
currence of the base n+ 1 with the first infinite ordinal number ω. For example
G(3)(1) = 3 = 21 + 20 and P (3)(1) = f(G(3)(1)) = ω1 +ω0 = ω+ 1. Addition,
multiplication and exponentiation of ordinal numbers are well defined.

The base-changing operation of the Goodstein sequence when go-
ing from G(m)(n) to G(m)(n + 1) does not change the value of f
(that’s the main point of the construction), thus after the minus 1
operation, P (m)(n + 1) will be strictly smaller than P (m)(n). For
example, f(3 ·444

+4) = 3ωω
ω

+ω = f(3 ·555
+5), hence f(3 ·444

+4)
is strictly greater than f((3 · 555

+ 5)− 1).

If the sequence G(m) did not go to 0, it would not terminate and would be in-
finite (since G(m)(k + 1) would always exist). Consequently, P (m) also would
be infinite (since in its turn P (m)(k+ 1) would always exist too). But P (m) is
strictly decreasing and the standard order < on ordinals is well-founded, there-
fore an infinite strictly decreasing sequence cannot exist, or equivalently, every
strictly decreasing sequence of ordinals does terminate (and cannot be infinite).
This contradiction shows that G(m) terminates, and since it terminates, goes
to 0 (by the way, since there exists a natural number k such that G(m)(k) = 0,
by construction of P (m) we have that P (m)(k) = 0).

While this proof of Goodstein’s theorem is fairly easy, the Kirby–Paris theorem,
[1] which shows that Goodstein’s theorem is not a theorem of Peano arithmetic,
is technical and considerably more difficult. It makes use of countable nonstan-
dard models of Peano arithmetic. What Kirby showed is that Goodstein’s
theorem leads to Gentzen’s theorem, i.e. it can substitute for induction up
to ε0.

19

Extended Goodstein’s theorem
Suppose the definition Goodstein sequence is changed so that instead of re-
placing each occurrence of the base b with b + 1 it was replaces it with b + 2.
Would the sequence still terminate? More generally, let b1, b2, b3,. . . be any
sequences of integers. Then let the (n + 1)st term G(m)(n + 1) of the ex-
tended Goodstein sequence of m be as follows: take the hereditary base bn
representation of G(m)(n), and replace each occurrence of the base bn with
bn + 1 and then subtract one. The claim is that this sequence still terminates.
The extended proof defines P (m)(n) = f(G(m)(n), n) as follows: take the
hereditary base bn representation of G(m)(n), and replace each occurrence of
the bn with the first infinite ordinal number ω. The base-changing operation
of the Goodstein sequence when going from G(m)(n) to G(m)(n+ 1) still does
not change the value of f . For example, if bn = 4 and if bn+ 1 = 9, then
f(3 · 444

+ 4, 4) = 3ωω
ω

+ω = f(3 · 999
+ 9, 9), hence the ordinal f(3 · 444

+ 4, 4)
is strictly greater than the ordinal f((3 · 999

+ 9)− 1, 9).

Sequence length as a function of the starting value
The Goodstein function, G : N → N, is defined such that G(n) is the length
of the Goodstein sequence that starts with n. (This is a total function since
every Goodstein sequence terminates.) The extreme growth-rate of G can be
calibrated by relating it to various standard ordinal-indexed hierarchies of func-
tions, such as the functions Hα in the Hardy hierarchy, and the functions fα in
the fast-growing hierarchy of Löb and Wainer:

– Kirby and Paris (1982) proved that
G has approximately the same growth-rate as Hε0 (which is the same as
that of fε0); more precisely, G dominates Hα for every α < ε0, and Hε0

dominates G.
(For any two functions f, g : N→ N, f is said to dominate g if f(n) > g(n)
for all sufficiently large n.)

– Cichon (1983) showed that
G(n) = HRω

2 (n+1)(1)− 1, where Rω2 (n) is the result of putting n in heredi-
tary base-2 notation and then replacing all 2s with ω (as was done in the
proof of Goodstein’s theorem).

– Caicedo (2007) showed that if n = 2m1 +2m2 + · · ·+2mk with m1 > m2 >

· · · > mk, then
G(n) = fRω

2 (m1)(fRω
2 (m2)(· · · (fRω

2 (mk)(3)) · · ·))− 2.

Some examples are shown in Figure 3, page 21.

Application to computable functions
Goodstein’s theorem can be used to construct a total computable function that
Peano arithmetic cannot prove to be total. The Goodstein sequence of a num-

20

n G(n)

1 20 2− 1 Hω(1)− 1 f0(3)− 2 2

2 21 21 + 1− 1 Hω+1(1)− 1 f1(3)− 2 4

3 21 + 20 22 − 1 Hωω (1)− 1 f1(f0(3))− 2 6

4 22 22 + 1− 1 Hωω+1(1)− 1 fω(3)− 2 [1]

5 22 + 20 22 + 2− 1 Hωω+ω(1)− 1 fω(f0(3))− 2 >A(4, 4)

6 22 + 21 22 + 2 + 1− 1 Hωω+ω+1(1)− 1 fω(f1(3))− 2 >A(6, 6)

7 22 + 21 + 20 22+1 − 1 Hωω+1(1)− 1 fω(f1(f0(3)))− 2 >A(8, 8)

8 22+1 22+1 + 1− 1 Hωω+1+1(1)− 1 fω+1(3)− 2 [2]

...
...

...
...

...
...

12 22+1 + 22 22+1 + 22 + 1− 1 Hωω+1+ωω+1(1)− 1 fω+1(fω(3))− 2 [3]

...
...

...
...

...
...

Figure 3: Some values of G(n). Notes: [1] equal to 3 · 2402653211 − 2, [2] greater than

A3(3, 3) = A(A(61, 61), A(61, 61)), [3] greater than fω+1(64), which is greater than Graham’s

number.

ber can be effectively enumerated by a Turing machine; thus the function which
maps n to the number of steps required for the Goodstein sequence of n to ter-
minate is computable by a particular Turing machine. This machine merely
enumerates the Goodstein sequence of n and, when the sequence reaches 0, re-
turns the length of the sequence. Because every Goodstein sequence eventually
terminates, this function is total. But because Peano arithmetic does not prove
that every Goodstein sequence terminates, Peano arithmetic does not prove
that this Turing machine computes a total function.

Here is a Haskell program due to John Tromp that computes the function
described above

g b 0 = b

g b n = g c ((s 0 n)-1) where

s _ 0 = 0

s e n = (n ‘mod‘ b) * c^(s 0 e) + (s (e + 1) (n ‘div‘ b))

c = b+1

In Figure 4 (page 22) we list the first 3 values of the weak and of the general
Goodstein sequence that starts in 266, base 2; see the program in Figure 5
(page 23).

21

Base Goodstein sequence Weak Goodstein sequence

2 266 266

3 44342648824303776994824963061\ 6590

9149892886

4 32317006071311007300714876688\ 65601

66995196044410266971548403213\

03454275246551388678908931972\

01411522913463688717960921898\

01949411955915049092109508815\

23864482831206308773673009960\

91750197750389652106796057638\

38406756827679221864261975616\

18380943384761704705816458520\

36305042887575891541065808607\

55239912393038552191433338966\

83424206849747865645694948561\

76035326322058077805659331026\

19270846031415025859286417711\

67259436037184618573575983511\

52301645904403697613233287231\

22712568471082020972515710172\

69313234696785425806566979350\

45997268352998638215525166389\

43733554360213543322960464531\

84786049521481935558536110595\

96231681

Figure 4: The first 3 values of the Goodstein sequence (second column) and of
the weak Goodstein sequence (third column). In both cases the first value is
266. The symbol “\” indicates that the number continues in the following line.

22

-- nton b x: convert x to base b
ntob b 0 = []
ntob b x = (x ‘mod‘ b):(ntob b (x ‘div‘ b))

-- next b x next element of Goodstein sequence
-- (current base is b)
-- 1) express ’x’ and recursively all exponents in base ’b’
-- 2) replace everywhere ’b’ by ’b+1’
-- 3) subtract 1
next b x = next’ b x - 1

next’ b x = (p_next b 0 xs)
where xs = ntob b x

p_next b p [] = 0
p_next b p (x:xs) = x*((b+1)^(next’ b p)) + (p_next b (p+1) xs)

-- st x number: list of the first ’number’ elements
st x n = (x:start 2 x n)

where
start _ _ 0 = []
start b x n = nbx:(start (b+1) nbx (n-1))
where nbx = next b x

-- The example used in the text: st 266 2

Figure 5: A Haskell program for the computation of the (general) Goodstein
sequence.

23

4.3 More on weak sequence termination

Ordinals can be either successor ordinals, say α + 1, or limit ordinals, say
limi→∞ αi, where αi+1 > αi for every i ∈ N. A limit ordinal has no predecessor.

The set of ordinals is totally ordered and well ordered. Well ordering means
that every set of ordinals has a least element. Or equivalently that there is no
infinite sequence α1 > α2 > α3 . . . The equivalence is easy to prove.

The ordinal ωω can be seen as the set of ordinals of the form

d1ω
e1 + d2ω

e2 + . . .+ dkω
ek (1)

where k ≥ 0, d1, . . . , dn, e1, . . . , ek ∈ N, d1 > 0 (if k = 0, the expression is null
and represents 0), e1 > e2 > . . . > ek. We simplify the notation, writing for
instance ω2 + 5ω + 3 instead of 1ω2 + 5ω1 + 3ω0.

Two sums of the form 1 can be compared in the usual way. That is, let

α = d1ω
e1 + . . .+ dkω

ek

α′ = d′1ω
e′1 + . . .+ d′kω

e′k .

We have α > α′ iff
e1 > e′1 or
e1 = e′1 and d1 > d′1 or
e1 = e′1 and d1 = d′1 and e2 > e′2 or
. . .

Relatively to the weak Goodstein sequence, the function f that maps an integer
written in some base b into the corresponding ordinal simply replaces every bn

in the expression by ωn. For instance, 8043 written in base 10 is 8·103+4·10+3,
so that it is transformed in

8ω3 + 4ω + 3.

Note that if 8043 was a representation of any number nb written in some
base b ≥ 9 (there is a digit 8!), we would get exactly the same ordinal.

When we subtract 1 from a number, the corresponding ordinal is also smaller.
An example using the first element n = 2 and the initial base b = 2 follows.

24

The elements of the sequence are underlined.

i (comment) b n nb ordinal

1 in base 2: 2 5 101 ω2 + 1

to base 3: 3 10 101 ω2 + 1

2 n← n− 1: 3 9 100 ω2

to base 4: 4 16 100 ω2

3 n← n− 1: 4 15 33 3ω + 3

to base 5: 5 18 33 3ω + 3

4 n← n− 1: 5 17 32 3ω + 2

.

62 0

Note that the sequence finishes with n = 0. It is interesting to display the entire
sequence:

5 9 15 17 19 21 23 24 25 26

27 28 29 30 31 31 31 31 31 31

31 31 31 31 31 31 31 31 31 31

31 30 29 28 27 26 25 24 23 22

21 20 19 18 17 16 15 14 13 12

11 10 9 8 7 6 5 4 3 2

1 0

Bibliography
Goodstein, R. (1944), “On the restricted ordinal theorem”, Journal of Symbolic
Logic 9: 33–41, doi:10.2307/2268019, JSTOR 2268019.

Cichon, E. (1983), “A Short Proof of Two Recently Discovered Independence
Results Using Recursive Theoretic Methods”, Proceedings of the American
Mathematical Society 87: 704–706, doi:10.2307/2043364, JSTOR 2043364.

Caicedo, A. (2007), “Goodstein’s function” (PDF), Revista Colombiana de
Matemáticas 41 (2): 381–391.

25

5 Goodstein sequences again

Note. This section was transcribed from
www.xamuel.com/goodstein-sequences/

The best math is the kind that makes you do a double-take, when you read
a theorem and can’t believe it’s true. That’s how Goodstein Sequences struck
me when I was introduced to them. These number-sequences have the property
that they grow for awhile but eventually stop growing and shrink down to zero.
The way they’re defined, at first glance you’d think, “no way, they’ll grow
forever”.

Number systems with different bases

We use decimal, which is the base 10 number system. Other popular systems
are binary (base 2) and hexadecimal (base 16). In general, for any base b >
l, there’s a base-b number system. You can write every number in “base b

representation” as a string of digits where each digit ranges from 0 to b − 1
(for example, the decimal digits range from 0 to 9). What’s actually going on
when a number n has representation, say, “5761” in base 10, that really means
n = 5 ∗ 103 + 7 ∗ 102 + 6 ∗ 101 + 1 ∗ 100.

For the (weak) Goodstein sequences, we’ll start with a number written in one
base, and then increase the base, without changing the digits.

For example, start with the binary number 11012, which is 23 + 22 + 20 = 13.
Now, leaving the digits the same, 1101, change the base to 3. The number
becomes 11013, which is 33 + 32 + 30 = 37. As you can see, performing this
operation usually makes the end number increase.

Intuitively, if you don’t pick some stupid number like 1 at the beginning, one
expects that “raising the base” should raise the number rather dramatically.
Raise the base repeatedly, and the number should explode toward infinity. But
what if every time we raise the base, we subtract 1? At first glance, subtracting 1
should be a drop in the bucket, compared to the huge growth which comes from
changing the base. But things are not how they seem. . .

Weak Goodstein Sequences

The “(weak) Goodstein Sequence starting with n” is defined as follows. The
first number in the sequence is n itself. If n = 0, the sequence stops there.
Otherwise, write n in binary, and then raise the base while keeping the digits
the same. Subtract 1 from whatever the result is. This gives you the next term
in the series. If it’s 0, stop. Otherwise, write this 2nd term in base 3, pump up
the base to 4, and subtract 1.

That’s the next number. Keep going like this forever (or until you hit 0).

Amazingly, whatever initial n you choose, you’ll always reach 0 eventually.

26

Example: n = 3
Let’s look at the n = 3 weak Goodstein sequence.

– First term: 3.

– Writing 3 in binary we get 112.
– Raising the base, we get 113 (which is 3+1=4).
– Subtracting 1, we get 103 (which is 3).

– Second term: 3.

– Writing 3 in base 3 now, we get 103.

– Raising the base, we get 104 (which is 4).

– Subtracting 1, we get 34 (which is 3).

– Third term: 2.

– Writing 3 in base 4, we get 34.

– Raising the base gives 35. Minus 1 makes 25 (which is 2).

– Fourth term: 2.

– Similarly the next terms are 1 and then 0.

The sequence goes 3, 3, 3, 2, 1, 0. But surely this is just because we chose
the initial n too small. Surely if we took something bigger, like n = 10, the
sequence would be less well-behaved.

Example: n=10
– First term: 10.

In binary, 10 is 10102. So we compute 10103 − 1 = 10023 = 29.

– Second term: 29.
In ternary, 29 is 10023. Compute 10024 − 1 = 10014 = 65.

– Third term: 65.
In base 4, 65 is 10014. Compute 10015 − 1 = 10005 = 125.

– Third term: 125.
125 is 10005. Compute 10006 − 1 = 5556 = 215.

– Fourth term: 215.

So far the sequence shows no sign of slowing down: it goes 10, 29, 65, 125, 215.
The next few terms are 284, 363, 452, 551, and 660. To compute the next term
after 660, you have to start using some new terminology for digits, because
digits above 9 start popping out. For digits above 9, one solution is to wrap
them in parentheses, so for example, 54(11)12 stands for 5*122+4*121+11.
Which, incidentally, is 779, the next number in the sequence. Using this digit
terminology, the sequence continues:

27

54(11)12 = 779

54(10)13 = 907

54914 = 1045

54815 = 1193

(And so on, eventually reaching. . .)

54023 = 2737, which gets followed by

53(23)24 = 2975

53(22)25 = 3222

(And so on for an awful long while, until. . .)

53047 = 11186

52(47)48 = 11663

(And much, much later on. . .)

500383 = 733445

4(383)(383)384 = 737279

If you’re only watching the numbers in decimal form, on the right, it seems
hopeless that they’ll ever stop growing, and absurd that they’ll ever reach zero.
But as you follow the structure on the left, you should start to notice what’s
going on. Although the base is getting larger and larger, the digits are slowly
wrapping down. But when we reach a 0 in the l’s place [. . .], we get b − 1
where b is the appropriate base. Thus, it takes a really long time before the
digits further to the left ever wrap down. Meanwhile, as the base increases, the
numbers on the right merrily increase with no sign of slowing down.

But sooner or later, that 4 in the “100’s place” is going to become a 3, and then
even later that will become a 2. . . and eventually, this sequence will reach 0.
Though, it’ll sure take a long time.

Formal proof ordinal arithmetic

In order to formally prove that the (weak) Goodstein Sequences eventually
shrink to 0, one uses what’s called “the well-foundedness of the ordinal ωω”. ωω

is a set, and its elements are ordered, and “ωω is well-founded” is the statement
that there is no sequence of elements of ωω which decreases forever. If you take
any sequence of elements of ωω and they seem to shrink and shrink, they have
to eventually stop shrinking. Another way of saying it is, every subset of ωω

has a least element.

So what are the elements of ωω? They can be very loosely thought of as numbers
in “base infinity”. Formally, they are (isomorphically, see the “Notes” below)
formal strings of the form (1), page 24.

28

[. . .]Given a number written in a (finite) base b, you can always map it to an
element of ωω by “replacing the b’s with ω’s”. For example, 1012 = 22 + 20,
gets mapped to ω2 + ω0, and 804310 = 8 · 103 + 4 · 101 + 3 gets mapped to
8ω3 + 4ω1 + 3.

The key is this. Given a number in a certain base, if you map it into ωω, you
get the same thing as if you raise the base first. For example, 1012 maps to
ω2 + 1, but so do 1013 and 1014 and even 1011000000. The numbers themselves
differ but they map to the same element of ωω.

But if you subtract 1 from a number before mapping it to ωω, that will result
in a smaller end result. For example, 1012 maps to ω2 + 1, but if we subtract 1
first, we get 1002, which maps to ω2. A smaller result.

To a monster living if “ωω space”, the Goodstein sequence doesn’t seem to grow
at all. It seems to shrink. That’s because the monster cannot “see” the bases.
But it can see the results of all those 1-subtractions! And, because cow is well-
founded, sequences in cow cannot decrease forever. The Goodstein Sequences
always decrease in ωω-land, but they can’t decrease forever, so they must some-
how stop – the only way for that to happen is if they reach 0 eventually.

A slightly stronger Goodstein sequence
In the standard (weak) Goodstein Sequences, we raised the base by 1 each time.
This fact is never really used in the proof. All the proof uses is that the digits
are the same before we subtract 1. So you could modify the Goodstein Sequence
and increase the bases at any arbitrary speed, and still the sequences would go
to zero. For example, you could start in base 2, then double the bases every
time, going from binary to base 4 to base 8 to base 16. This would cause the
initial terms of the sequence to blow up super-exponentially fast – but still the
sequences would have to go to zero.

Goodstein sequences

The “weak” Goodstein Sequences I just introduced are a watered down version
of the traditional sequences.

To get the “strong” Goodstein Sequences, instead of using base-b represen-
tation, one uses a modified version of “Cantor Normal Form”. In short, for
“base” b, you start by writing your number as a sum of powers of b times co-
efficients between 0 and b − 1. But then, recursively, you do the same for all
the exponents – and all their exponents, and so on until eventually you have a
“tree” of b’s with 0’s as leaves.

Example Take b = 3, n = 12100000000000000223.

– Start by writing n = 1 · 318 + 2 · 317 + 1 · 316 + 2 · 31 + 2 · 30.

– The exponents are 18, 17, 16, 1, and 0.

29

– Recursively, convert the exponents (besides 0) in the same way:

18 = 2 · 32

17 = 1 · 32 + 2 · 31 + 2 · 30

16 = 1 · 32 + 2 · 31 + 1 · 30

– The exponents of the exponents are 2, 1, and 0.

– Recursively, convert them (besides 0) in the same way:

2 = 2 · 30

1 = 1 · 30

– All the exponents-of-exponents-of-exponents are 0 and the recursion ends.

– The final result is:
n = 1 · 32·32·30

+ 2 · 31·32·30+2·31·30
+ 1 · 31·32·30+2·31·30+1·30

+ 2 · 31·30
+ 2 · 30

– This is the (modified) base-3 Cantor Normal Form of
12100000000000000223.

The idea behind the strong Goodstein Sequence is as follows. Start with an
initial number n. The first term is n. If n = 0, stop. Otherwise, to get the 2nd
term, write n in base-2 Cantor Normal Form as above. Then go through and
replace all the 2’s with 3’s. For small numbers, this is the same exact thing as
“raising the base”, but for larger numbers, “raising the Cantor-base” can make
them blow up in a cosmically large way.

Anyway, after replacing all the 2’s with 3’s, that gives you a new number;
subtract 1 to get the 2nd element of the sequence. If this 2nd element is 0,
stop. Otherwise, write this 2nd element in base-3 Cantor Normal Form, replace
the 3’s with 4’s, and subtract one, and so on.

Again, the resulting sequence is guaranteed to shrink to zero and stop.

Some mathematicians have been known to shake their heads in outright disbelief
after being told this fact. It seems like upping the Cantor- base should cause
the number to blow up in such a giant way that the 1-subtractions can never
hope to catch up. But sure enough, those 1- subtractions eventually kill off the
whole sequence.

The formal proof for the stronger Goodstein sequences reaching zero uses the
well-foundedness of the ordinal ε0 (“epsilon naught”). ε0 is defined as the
smallest ordinal x such that x = ωx. Just as the elements of ωω are the formal
sums of things of the form ωn where n is in ω (the set of natural numbers), ωω

ω

is the set of formal sums of things of the form ωn where n is in ωω. And ωω
ωω

is the set of sums with summands that look like ωn where n is in ωω
ω
. This

process continues; ε0 is the union of all of them: the union of ω, ωω, ωω
ω
, and

so on forever. Some example elements of ε0:

30

1

4ω + 3

8ω2ω+1 + 73ωω+7 + ωω+2 + 5ω43 + 8ω

3ω4ω2ω+9+12ωω+1
+ 834ω52ω + 2ω8 + 4

And basically any other “tree” of ω’s you can think of. . .

Just as numbers in base b map nicely into ωω, numbers in Cantor Normal Form
(base b) map nicely into ε0, in such a way that changing the b doesn’t change
the result at all: informally, replace all the b’s with ω’s. To a monster living
in “ε0 space”, the strong Goodstein Sequences don’t appear to grow at all, but
to shrink – and, like every other ordinal, ε0 is well-founded, so the Goodstein
Sequences are forced to terminate.

Independence results

The theorem, “(strong) Goodstein Sequences always shrink to 0”, is very inter-
esting to logicians. The proof uses the fact that ε0 is well-founded. Coinciden-
tally, ε0 is “the ordinal” of certain important proof systems including Peano
Arithmetic (PA). What this means is that ε0 is the first ordinal x such that PA
cannot prove x is well-founded. (Every ordinal is well-founded, but there are
only countably many possible proofs in PA, and there are uncountably many
ordinals, so PA can’t hope to have an individual well-foundedness proof for each
of them. And ε0 is the first one for which PA has no proof)

So, if you wanted to prove “Goodstein Sequences go to 0” using only the ax-
ioms of Peano Arithmetic, you’d have to come up with some clever alternate
proof: you can’t use the fact that ε0 is well-founded, because that can’t be
proven in PA. This suggests that maybe you can’t prove the theorem at all. . .
and sure enough, you can’t. With Peano Arithmetic alone, it’s impossible to
prove “Goodstein Sequences go to 0”. (Of course, the proof-of-no-proof is too
advanced for this essay. . .) This is one of the most important and surprising
nonprovability results of elementary arithmetic.

Notes
In order to clarify the connection between numbers in base b and ordinals, I
implicitly reversed the order of ordinal multiplication. Technically, the ordi-
nal 2ω is the same as ω, and what I have written here as 2ω, is actually usually
written ω · 2 (in ordinal arithmetic, a × b is not usually equal to b × a). But I
think you’ll agree that for the sake of demonstrating that Goodstein Sequences
die, the modified notation is far clearer.

6 Goodstein paper: definitions and notation

Note. The “Goodstein paper” is [Goo44] �

31

Expressing a positive integer:

ck · sak + ck−1 · sak−1 + . . .+ c2 · sa2 + c1 · sa1 + c0 (2)

Note. The base of the representation is denoted by s, instead of b. �

In (2):

s ≥ 2 is the base, here called “scale symbol”.

0 ≤ c0 < s.

0 < c1, c2, c3, . . . , ck < s (null terms, ci = 0, are not displayed).

k ≥ 0, 0 < a1 < a2 < a3 < . . . < ak (exponents decreasing).

Each ai, 1 ≤ i ≤ k, has the form (2). That is, exponents, their exponents
and so on, are also expressed in base s.

The form (2) is called the representation of n with digits 0, 1, 2,. . . , k − 1 and
base (or “scale symbol”) s.

φs(n): abbreviation of (2) �

Following (2) we can define
representation of n: csφs(a) + φs(n− csa).

where
a = max{e : se ≤ n}
csa = maxc′{c′sa : c′sa ≤ n}

Define also

– Sbxyα: the result of replacing x by y in α.

– Tm
x (n): Sbmx φm(n), that is, apply Sbmx to the entire expression φm(n)

(so that Sbmx φm(n) is not φx(n)).
Example. n = 106. In base 3,
n = 102203 = 34 + 2 · 32 + 2 · 3 = 33+1 + 2 · 32 + 2 · 3.
Now replace 3 by ω: T3

ω(106) = ωω+1 + 2ω2 + 2ω. �

– Ordinal < ε0: an element of Tm
ω (n) with m, n ≥ 2.

– Sxy(n): Sbxyφx(n) (base y).
Example: S3

4(34) = S3
4(33 + 2 · 3 + 1) = 44 + 2 · 4 + 1 = 265. �

Example: S2
4(16) = S2

4(222
) = 444

= 4256. �

Working in the other direction, and using Cantor Theory, every ordinal α < ε0
can be expressed as Tm

ω (n) where

– m is greater than every coefficient or exponent in the expression of α as
a sum of powers of ω.

32

– n is uniquely defined by α and m.

Example. Using the previous example, with α = ωω+1 + 2ω2 + 2ω, let m = 5
(or any m ≥ 3). We have T5

ω(102205) = α. �

Comparison of Tm
ω (n) ordinals.

Ordinals in ε0can be compared in the same way of the corresponding integers,
when we replace a base by a not smaller one. More precisely, let m1 ≥ m2 > 1.
Then

Tm1
ω (n1) > Tm2

ω (n2) if n1 > Sm1
m2

(n2).

Tm1
ω (n1) = Tm2

ω (n2) if n1 = Sm1
m2

(n2).

Tm1
ω (n1) < Tm2

ω (n2) if n1 < Sm1
m2

(n2).

This agrees to the usual ordinal comparison. �

Then, a decreasing sequence of ordinals is

Tm1
ω (n1), Tm2

ω (n2), Tm3
ω (n3), . . . , Tmr

ω (nr), . . .

where, for every r, we have
mr+1 ≥ mr and nr+1 < Smr

mr+1
(nr).

If the sequence of ordinals is constructive, the sequence mr is recursive (but
possibly not primitive recursive).

For a given sequence mr, the longest decreasing sequence of integers is nr+1 =
Smr
mr+1

(nr), because
Tm
ω (n) = 0 iff n = 0, and

n < nr implies Smr
mr+1

(n) < Smr
mr+1

(nr).

Restricted ordinal Theorem. For every non-decreasing function pr with p0 ≥ 2,
and for nr defined by nr+1 = Spr

pr+1(nr) ·− 1, there is an integer r such that
Tpr
ω (nr) = 0. �

This is equivalent to the number-theoretic proposition

P ?: For every non-decreasing function pr with p0 ≥ 2, every n0

and the function nr defined by nr+1 = Spr
pr+1(nr) ·− 1, there is an

integer r such that nr = 0. �

It makes no essential difference if we interchange the operations “change the
base pr → pr+1” and “reduce by 1”.

7 A 0-1 function obtained by diagonalisation

The example given in the section proves that there exist small total recursive
functions that are not primitive recursive.

33

Theorem 1 There is a total recursive function f with domain {0, 1} that is
not primitive recursive.

Proof. Consider the representation of primitive recursive function by Loop
programs and an index method for primitive recursive functions such that the
transformation of an index into a Loop program is primitive recursive; this
transformation does not need to be injective. Denote by Li the Loop program
associated to the index i. Define the function f(n) as

f(n) =

 1 if Ln(n) = 0

0 otherwise.

The function f is total recursive but it is obviously not implementable by any
Loop program. Otherwise, let Lm implement f , that is, f(x) = Lm(x) for
every x, where Lm(x) denotes the output of the corresponding computation
(that always halts). We would have Lm(m) = 0 iff Lm(m) 6= 0, a contradiction.
�

8 A few values of some total non primitive recursive

functions

A Primitive recursive functions (from the Wikipedia)

The primitive recursive functions are among the number-theoretic functions,
which are functions from the natural numbers (nonnegative integers) {0, 1, 2, . . .}
to the natural numbers. These functions take n arguments for some natural
number n and are called n-ary.

The basic primitive recursive functions are given by these axioms:

1. Constant function: The 0-ary constant function 0 is primitive recursive.

2. Successor function: The 1-ary successor function S, which returns the
successor of its argument (see Peano postulates), is primitive recursive.
That is, S(k) = k + 1.

3. Projection function: For every n ≥ 1 and each i with 1 ≤ 1 ≤ n, the n-
ary projection function Pni , which returns its i-th argument, is primitive
recursive.

More complex primitive recursive functions can be obtained by applying the
operations given by these axioms:

1. Composition: Given f , a k-ary primitive recursive function, and k m-ary
primitive recursive functions g1,. . . , gk, the composition of f with g1,. . . ,

34

m n A(m, n) g(m, n) F0(n, m) F1(n, m) G(m, n)

0 0 1 1 0 0

0 1 2 2 1 1

0 2 3 3 2 4

0 3 4 4 3 11

0 4 5 5 4 26

1 0 2 3 1 1

1 1 3 4 2 3

1 2 4 5 3 8

1 3 5 6 4 19

1 4 6 7 5 42

2 0 3 4 2 2

2 1 5 7 3 5

2 2 6 10 4 12

2 3 9 13 5 27

2 4 11 16 6 58

3 0 5 7 3 3

3 1 13 25 4 7

3 2 29 79 5 16

3 3 61 241 6 35

3 4 125 727 7 74

. .

m n 2
m−2

↑ (n + 3)−3 3
m−2

↑ (n + 2)−2

Figure 6: First values of some functions that are not primitive recursive:
A(m,n), (i) the Ackermann function, (ii) g(m,n) defined in [], (iii) . . .

35

gk, i.e. the m-ary function
h(x1, . . . , xm) = f(g1(x1, . . . , xm), . . . , gk(x1, . . . , xm))

is primitive recursive.

2. Primitive recursion: Given f , a k-ary primitive recursive function, and g, a
(k+2)-ary primitive recursive function, the (k+1)-ary function h is defined
as the primitive recursion of f and g, i.e. the function h is primitive
recursive when

h(0, x1, . . . , xk) = f(x1, . . . , xk) and

h(S(y), x1, . . . , xk) = g(y, h(y, x1, . . . , xk), x1, . . . , xk).

The primitive recursive functions are the basic functions and those obtained
from the basic functions by applying these operations a finite number of times.

Role of the projection functions
The projection functions can be used to avoid the apparent rigidity in terms of
the arity of the functions above; by using compositions with various projection
functions, it is possible to pass a subset of the arguments of one function to
another function. For example, if g and h are 2-ary primitive recursive functions
then

f(a, b, c) = g(h(c, a), h(a, b))
is also primitive recursive. One formal definition using projection functions is

f(a, b, c) = g(h(P 3
3 (a, b, c), P 3

1 (a, b, c)), h(P 3
1 (a, b, c), P 3

2 (a, b, c))).

Converting predicates to numeric functions
In some settings it is natural to consider primitive recursive functions that take
as inputs tuples that mix numbers with truth values {t = true, f = false}, or
that produce truth values as outputs (see Kleene [1952 pp. 226–227]). This
can be accomplished by identifying the truth values with numbers in any fixed
manner.

For example, it is common to identify the truth value t with the number 1
and the truth value f with the number 0. Once this identification has been
made, the characteristic function of a set A, which literally returns 1 or 0, can
be viewed as a predicate that tells whether a number is in the set A. Such
an identification of predicates with numeric functions will be assumed for the
remainder of this article.

Computer language definition
An example of a primitive recursive programming language is one that contains
basic arithmetic operators (e.g. + and−, or ADD and SUBTRACT), conditionals
and comparison (IF-THEN, EQUALS, LESS-THAN), and bounded loops, such
as the basic for loop, where there is a known or calculable upper bound to all
loops (FOR i FROM 1 to n, with neither i nor n modifiable by the loop body).

36

No control structures of greater generality, such as while loops or IF-THEN plus
GOTO, are admitted in a primitive recursive language. Douglas Hofstadter’s
Bloop in “Gödel, Escher, Bach” is one such. Adding unbounded loops (WHILE,
GOTO) makes the language partial recursive, or Turing-complete; Floop is such,
as are almost all real-world computer languages.

Arbitrary computer programs, or Turing machines, cannot in general be anal-
ysed to see if they halt or not (the halting problem). However, all primitive re-
cursive functions halt. This is not a contradiction; primitive recursive programs
are a non-arbitrary subset of all possible programs, constructed specifically to
be analysable.

A.1 Examples

Most number-theoretic functions definable using recursion on a single variable
are primitive recursive. Basic examples include the addition and truncated
subtraction functions. A

Addition
Intuitively, addition can be recursively defined with the rules:

add(0, x) = x,

add(n+ 1, x) = add(n, x) + 1.

To fit this into a strict primitive recursive definition, define:

add(0, x) = P 1
1 (x),

add(S(n), x) = S(P 3
2 (n, add(n, x), x)).

Here S(n) is “the successor of n” (i.e., n+1), P 1
1 is the identity function, and P 3

2

is the projection function that takes 3 arguments and returns the second one.
Functions f and g required by the above definition of the primitive recursion
operation are respectively played by P 1

1 and the composition of S and P 3
2 .

Subtraction
Because primitive recursive functions use natural numbers rather than inte-
gers, and the natural numbers are not closed under subtraction, a truncated
subtraction function (also called “proper subtraction”) is studied in this con-
text. This limited subtraction function sub(a, b) (or b .− a) returns b− a if this
is nonnegative and returns 0 otherwise.

The predecessor function acts as the opposite of the successor function and is
recursively defined by the rules:

pred(0) = 0,

pred(n+ 1) = n.

37

These rules can be converted into a more formal definition by primitive recur-
sion:

pred(0) = 0,

pred(S(n)) = P 2
1 (n, pred(n)).

The limited subtraction function is definable from the predecessor function in
a manner analogous to the way addition is defined from successor:

sub(0, x) = P 1
1 (x),

sub(S(n), x) = pred(P 3
2 (n, sub(n, x), x)).

Here sub(a, b) corresponds to b .− a; for the sake of simplicity, the order of the
arguments has been switched from the “standard” definition to fit the require-
ments of primitive recursion. This could easily be rectified using composition
with suitable projections.

Other operations on natural numbers
Exponentiation and primality testing are primitive recursive. Given primitive
recursive functions e, f , g, and h, a function that returns the value of g when
e ≤ f and the value of h otherwise is primitive recursive.

Operations on integers and rational numbers
By using Gödel numberings, the primitive recursive functions can be extended
to operate on other objects such as integers and rational numbers. If integers
are encoded by Gödel numbers in a standard way, the arithmetic operations
including addition, subtraction, and multiplication are all primitive recursive.
Similarly, if the rationals are represented by Gödel numbers then the field op-
erations are all primitive recursive.

A.2 Relationship to recursive functions

The broader class of partial recursive functions is defined by introducing an
unbounded search operator. The use of this operator may result in a partial
function, that is, a relation with at most one value for each argument, but does
not necessarily have any value for any argument (see domain). An equivalent
definition states that a partial recursive function is one that can be computed
by a Turing machine. A total recursive function is a partial recursive function
that is defined for every input.

Every primitive recursive function is total recursive, but not all total recursive
functions are primitive recursive. The Ackermann function A(m,n) is a well-
known example of a total recursive function that is not primitive recursive.
There is a characterisation of the primitive recursive functions as a subset of the
total recursive functions using the Ackermann function. This characterisation
states that a function is primitive recursive if and only if there is a natural

38

number m such that the function can be computed by a Turing machine that
always halts within A(m,n) or fewer steps, where n is the sum of the arguments
of the primitive recursive function.4

An important property of the primitive recursive functions is that they are a
recursively enumerable subset of the set of all total recursive functions (which is
not itself recursively enumerable). This means that there is a single computable
function f(e,n) such that:

– For every primitive recursive function g, there is an e such that g(n) =
f(e, n) for all n, and

– For every e, the function h(n) = f(e, n) is primitive recursive.

However, the primitive recursive functions are not the largest recursively enu-
merable set of total computable functions.

Limitations

Primitive recursive functions tend to correspond very closely with our intuition
of what a computable function must be. Certainly the initial functions are intu-
itively computable (in their very simplicity), and the two operations by which
one can create new primitive recursive functions are also very straightforward.
However the set of primitive recursive functions does not include every possible
total computable function – this can be seen with a variant of Cantor’s diago-
nal argument. This argument provides a total computable function that is not
primitive recursive. A sketch of the proof is as follows:

The primitive recursive functions of one argument (i.e., unary func-
tions) can be computably enumerated. This enumeration uses the
definitions of the primitive recursive functions (which are essentially
just expressions with the composition and primitive recursion op-
erations as operators and the basic primitive recursive functions as
atoms), and can be assumed to contain every definition once, even
though a same function will occur many times on the list (since
many definitions define the same function; indeed simply compos-
ing by the identity function generates infinitely many definitions of
any one primitive recursive function). This means that the n-th
definition of a primitive recursive function in this enumeration can
be effectively determined from n. Indeed if one uses some Gödel

4This follows from the facts that the functions of this form are the most quickly growing
primitive recursive functions, and that a function is primitive recursive if and only if its
time complexity is bounded by a primitive recursive function. For the former, see Linz,
Peter (2011), “An Introduction to Formal Languages and Automata”, p. 332. For the
latter, see Moore, Cristopher; Mertens, Stephan (2011), “The Nature of Computation, Oxford
University Press, p. 287

39

numbering to encode definitions as numbers, then this n-th defini-
tion in the list is computed by a primitive recursive function of n.
Let fn denote the unary primitive recursive function given by this
definition.

Now define the “evaluator function” ev with two arguments, by
ev(i, j) = fi(j). Clearly ev is total and computable, since one can
effectively determine the definition of fi, and being a primitive re-
cursive function fi is itself total and computable, so fi(j) is always
defined and effectively computable. However a diagonal argument
will show that the function ev of two arguments is not primitive
recursive.

Suppose ev were primitive recursive, then the unary function g de-
fined by g(i) = S(ev(i, i)) would also be primitive recursive, as it
is defined by composition from the successor function and ev. But
then g occurs in the enumeration, so there is some number n such
that g = fn. But now g(n) = S(ev(n, n)) = S(fn(n)) = S(g(n))
gives a contradiction.

This argument can be applied to any class of computable (total) functions that
can be enumerated in this way, as explained in the article “Machines that always
halt”. Note however that the partial computable functions (those that need not
be defined for all arguments) can be explicitly enumerated, for instance by
enumerating Turing machine encodings.

Other examples of total recursive but not primitive recursive functions are
known:

– The function that takes m to Ackermann(m,m) is a unary total recursive
function that is not primitive recursive.

– The Paris–Harrington theorem involves a total recursive function that is
not primitive recursive. Because this function is motivated by Ramsey
theory, it is sometimes considered more “natural” than the Ackermann
function.

– The Sudan function.

– The Goodstein function.

– The 0/1 diagonal function.

40

A.3 Some common primitive recursive functions

The following examples and definitions are from Kleene (1952) pp. 223-231 –
many appear with proofs. Most also appear with similar names, either as proofs
or as examples, in Boolos-Burgess-Jeffrey 2002 pp. 63-70.

In the following we observe that primitive recursive functions can be of four
types, where n is the arity of the function:

– functions for short: “number-theoretic functions” from {0, 1, 2, . . .}n to
{0, 1, 2, . . .},

– predicates: from predicates: from {0, 1, 2, . . .}n to truth values {t =
true, f = false},

– propositional connectives: from truth values {t, f}n to truth values {t, f},

– representing functions: from truth values {t, f} to {0, 1, 2, . . .}. Many
times a predicate requires a representing function to convert the predi-
cate’s output {t, f} to {0, 1} (note the order “t” to “0” and “f” to “1”
matches with ∼ sg() defined below). By definition a function φ(x) is a
“representing function” of the predicate P (x) if φ takes only values 0
and 1 and produces 0 when P is true”.

In the following the mark “′”, e.g. a′, is the primitive mark meaning “the
successor of”, usually thought of as “+1”, e.g. a+ 1 def= a′. The functions 16-20
and #G are of particular interest with respect to converting primitive recursive
predicates to, and extracting them from, their “arithmetical” form expressed
as Gödel numbers.

Addition: a+ b

Multiplication: a× b
Exponentiation: ab

Factorial a! : 0! = 1, a′! = a!× a′

pred(a): (Predecessor or decrement): If a > 0 then a− 1 else 0
Proper subtraction a .− b: if a ≥ b then a− b else 0
min(a1, . . . , an)
max(a1, . . . , an)
Absolute difference: |a− b| def= (a .− b) + (b .− a)
sg(a): NOT[signum(a)]: if a = 0 then 1 else 0
sg(a) : signum(a): if a = 0 then 0 else 1
a | b: (a divides b): if b = k × a for some k then 0 else 1
remainder(a, b): the leftover if b does not divide a “evenly”

(also called MOD(a, b))
a = b: sg|a− b|5 a < b: sg(a′ .− b)

5Kleene’s convention was to represent true by 0 and false by 1; presently, especially in com-
puters, the most common convention is the reverse, namely to represent true by 1 and false
by 0, which amounts to changing sg into ∼sg here and in the next item.

41

Pr(a): a is a prime number.
Pr(a) def= [a > 1] ∧ [NOT(∃c)1<c<a : c | a]

pi: the i+ 1-st prime number
(a)i: exponent of pi in a: the unique x such that [pxi | a] ∧ [NOT(px

′
i | a)]

lh(a): the “length” or number of non-vanishing exponents in a

lo(a, b): logarithm of a to the base b

In the following, the abbreviation x
def= x1, . . . xn; subscripts may be applied if

the meaning requires.

B Primitive recursive functions: computation time

We collect here some results related to the computation time of primitive re-
cursive functions.

B.1 Loop programs: computation time lower bound

Here we follow essentially the argument of Meyer and Ritchie in [MR67]. Denote
(x1, . . . , xn) by x. Suppose that f(x) is computed by some Loop program L.
The registers used in L include x and possibly other registers initialised with 0.

Following [MR67] we assume that the following Loop instructions take 1 unit
of time

(a) inc x,

(b) dec x,

(c) x← 0,

(d) x← y.

In a loop instruction forn 〈P 〉 the execution time is only assigned to P , and not
to the overhead time needed to implement the ’for’ instruction, say to translate
it in something like

c← n

L : if c == 0 then goto L′

〈P 〉

dec c

goto L

L′ . . .

Let m be the largest value contained in any register, Thus, m is a function
of time, say m(t). Initially m is the largest argument of f . When any of the
instructions (a) to (d), is executed, the value of m increases by at most 1 (this

42

increase happens only with the instruction (a)). As the output of the program
is one of the registers, say y, we have at the end of the computation,

y(tf) ≤ m(tf) ≤ max(x(0)) + t(x(0))

where the initial and final values of time are 0 and tf respectively. For instance,
the computation of f(0, 2, 5) = 1000 takes at least 995 units of time.

Theorem 2 Let f be a primitive recursive function. The time needed to com-
pute f(x) by a Loop program is at least f(x)−max(x).

Note that in this result x denotes a tuple of mathematical variables, not a tuple
of registers.

B.2 The computation time is also primitive recursive

Consider the computation of a primitive recursive function f by a Loop pro-
gram L. The computation time of f(x) can be obtained by a Loop program L′

that is similar to L, except that

(a) There an additional register t (initialised with 0).

(b) Immediately after any instruction of the forms (a), (b), (c), or (d) (see
page 42) a new instruction inc t is inserted.

(c) When the program halts the output is the contents of t.

We see that the computation time of f(x) can be computed by a Loop program,
so that t(x) is primitive recursive.

B.3 Computation time of total recursive functions that are not

primitive recursive

Consider any function f(x) that is total recursive but not primitive recursive.
The computation time (by a Turing machines) of f(x) grows extremely fast
with x, in fact it grows faster that any PR function t(x).

This statement can be proved by contradiction. Suppose that t(x) ≤ g(x),
where g(x) is PR, and consider the computation of f(x) by a Turing machine.
Use the following variant of the Kleene Normal Form Theorem ([Odi89, BBJ07,
Kle52]):

f(x) = U(e,x, µy : [T (e,x, y) = 1])

where
f ≡ ϕe (e is an index of f),
T (e,x, y) = 0 iff the computation ϕe(x) halts in ≤ y steps,
U(e,x, y) “runs” y steps the computation ϕe(x)

43

Once f is total recursive, the value of µy : [T (e,x, y) = 1] is defined; denote it
by yf . Thus f(x) = U(e,x, yf).

Consider a Loop program Le(x) that computes f(x) in a minimum possible
time.

Let e be an index for f such that Le(x) is a “fastest time” computation of Le(x).
Denote this time by t(x) (we should of course measure this time in terms of
some convenient “order of magnitude”). We can interpret t(x), the running
time of f(x), as µy : T (e,x, y) = 1.

As above let yf = µy : [T (e,x, y) = 1]. We assume that for every y ≥ yf we
have T (e,x, y) = 1, and that U(e,x, y) = U(e,x, yf).

Let g(x) be an upper bound of the computation time. Consider the following
computation of f(x), where {. . . } denotes a programming comment.

Input: x, output f(x).

1. 1. Compute z = g(x). {we know that T (e, x, z) = 1}}

2. Run as T (e, x, z) {which halts} and output the corresponding result.

By assumption, g is primitive recursive; the Normal Form Theorem states
that U and T are also primitive recursive. It follows that f is primitive re-
cursive, a contradiction.

References

[BBJ07] George S. Boolos, John P. Burgess, and Richard C. Jeffrey. Com-
putability and Logic. Cambridge University Press, 2007. Fifth Edition.

[Goo44] R. L. Goodstein. On the restricted ordinal theorem. The Journal of
Symbolic Logic, 9(2):33–41, 1944.

[Kle52] Stephan Cole Kleene. Introduction to Metamathematics. North-
Holland, 1952. Reprinted by Ishi press, 2009.

[MP16] Armando B. Matos and António Porto. Ackermann and the super-
powers (revised in 2011 and 2016). ACM SIGACT, 12(Fall 1980),
1980/1991/2016.

[MR67] A. R. Meyer and D. M. Ritchie. The complexity of loop programs. In
Proceedings of 22nd National Conference of the ACM, pages 465–469.
Association for Computing Machinery, 1967.

44

[Odi89] Piergiorgio Odifreddi. Classical Recursion Theory – The Theory of
Functions and Sets of Natural Numbers, volume I. Studies in Logic
and the Foundations of Mathematics. Elsevier North Holland, 1989.

45

	The Ackermann function
	History
	Definition and properties
	Table of values
	Expansion
	Functions that satisfy the general recurrence
	Inverse

	A function related with the Paris–Harrington theorem
	The strengthened finite Ramsey theorem
	The Paris–Harrington theorem

	The Sudan functions
	The Goodstein function
	Hereditary base-n notation
	Goodstein sequences
	More on weak sequence termination

	Goodstein sequences again
	Goodstein paper: definitions and notation
	A 0-1 function obtained by diagonalisation
	A few values of some total non primitive recursive functions
	Primitive recursive functions (from the Wikipedia)
	Examples
	Relationship to recursive functions
	Some common primitive recursive functions

	Primitive recursive functions: computation time
	Loop programs: computation time lower bound
	The computation time is also primitive recursive
	Computation time of total recursive functions that are not primitive recursive

