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Abstract

Entropy is widely used as a measure of the information contained
in a message. It is usually assumed that the symbols of the message
are statistically independent. This has as a consequence that the en-
tropy is only a function of the symbol probabilities. However, in prac-
tice this assumption is often not justified. In this paper we present
a first step towards the characterization of non-independent entropy.
Assuming simple symbol Markov generators, we give closed formulas
for the Shannon and Rényi entropies associated with non-independent
sequences of symbols. Inspired by the seminal work of Shannon [5] we
propose a definition for the Rényi entropy that takes into account the
statistical dependencies between symbols. As a corollary we get a for-
mula for the min-entropy of an infinite sequence with non-independent
symbols. Larger alphabets and more complex symbol dependencies are
modeled by ergodic Markov chains in order to obtain general formulas
for the entropy associated with sequences of non-independent symbols.
Some simulation and experimental tests are presented in the appendix.
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1 Introduction

Shannon entropy ([5, 4]) is widely used in various disciplines as a measure of
information. An important generalization of Shannon entropy is the Rényi
entropy ([2]) which has found several applications to unconditionally secure
cryptosystems ([1]). An important assumption underlying the definitions of
Shannon and Rényi entropies is that the symbols of the message are sta-
tistically independent. This has as a consequence that the entropy depends
only on the symbol probabilities. However, in practice this is often not
the case. In this paper we discuss the concept of dependent entropy, that
is the entropy of sequences of non-independent symbols. In fact, the en-
tropy associated with a Markov process has already been briefly considered
by Shannon (see [5]) and our work is in some sense a development of that
seminal paper.

The following example illustrates an erroneous application of Shannon
entropy formula to a sequence of non-independent symbols.

Example 1 Consider an infinite sequence of bits b1, b2, · · · with

pr(0) = pr(1) = 0.5

where, with large probability, each bit is equal to the previous one. The
random process that generates the sequence is the following.

bi =







bi−1 with probability β
0 with probability (1 − β)/2
1 with probability (1 − β)/2

For β = 0.8, a typical sequence is

1111100011111111100000000100000000000011111111111110

Using the Shannon formula, we get that the information contents of each bit
is

HS =
1

2
log 2 +

1

2
log 2 =

1

2
+

1

2
= 1

This result is obviously wrong because in the Shannon formula (like in the
formulas for others forms of entropy) it is assumed that the symbols are in-
dependent random variables. This is clearly not the case. It seems that each
symbol contains much less than one bit of information; this loss corresponds
to what is usually called redundancy.
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In this paper we extend the concept of Rényi entropy to non-independent
sequences of symbols1, deriving some closed formulas for some simple ran-
dom bit generators. Based on this extension and using some know properties
of Rényi entropy we obtain a formula for the min-entropy associated with
infinite sequences of non-independent symbols, that we believe can be useful
in cryptography.

The main idea behind the methodology we use to compute the entropy
associated with sequences of non-independent symbols can be summarized
as follows. By assuming that large blocks of bits are independent, the effects
caused by the dependences between successive bits are “translated” into the
probabilities associated to the block symbols (a block symbol is a sequence
of n bits where n is the block size; see the definition in Section 2); large de-
pendences will correspond to very different probabilities. We then compute
the entropy that corresponds to a block alphabet {0, 1}n and divide it by n;
the entropy per bit is the limit of this fraction when n → ∞.

Let us consider again Example 1. If we divide the sequence in blocks
of n bits, we should obtain, if n is large enough, a value for Hs/n which is
less than 1; for instance, for n = 4, the block alphabet has 24 = 16 symbols
and the sequence given in the example should be seen as

1111 1000 1111 1111 1000 0000 0100 0000 0000 0011 1111 1111 1110

In the new alphabet, the symbols are not equiprobable; for instance, 1111
is much more probable than 0101. As a consequence, we should get a value
less than 1 for the entropy per bit (HS/4).

The remainder of this paper is organized as follows. In the next Sec-
tion some general definitions related to the concept of entropy are given. In
Section 3 we characterize two simple Markov random bit generators. In Sec-
tion 4 the probabilities associated with the corresponding block symbols are
calculated. Closed formulas for the dependent Shannon entropy and depen-
dent Rényi entropy are derived respectively in Sections 5 and 6. In Section 7
Markov chains are used to model larger alphabets and more complex sym-
bol dependencies in order to obtain more general and possibly more useful
results. In the concluding Section we summarize the main results of this
paper and give some prospects for future work.

1This concept is based on the statistical dependence between the successive symbols
of a message and it should not be confused with the concept of conditional entropy.
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2 Definitions

Let X be a discrete random variable. Shannon entropy of X is defined as

HS =
∑

x∈X

PX(x) log

(

1

PX(x)

)

Instead of PX(x) we will write simply pi where i is an integer corresponding
to the value of x in some standard enumeration of the values associated with
the random variable.

The Rényi entropy is a generalization of the Shannon entropy and is
defined as

Hα
r =

1

1 − α
log
∑

x∈X

PX(x)α

where α is a nonnegative parameter. The Rényi entropy includes as partic-
ular cases: the logarithm of the alphabet size (α = 0), the Shannon entropy,
(α = 1) and the minimum entropy (α = ∞) which is a standard measure of
randomness in several cryptographic applications (see for instance, [6] for a
description of the use of minimum entropy in the theory of extractors and
dispersers). Varying α from 0 to ∞ amounts to a shift on the symbol weight
from a situation where all n bit blocks have the same weight to the other
extreme where only the most probable one matters, by accentuating still
more and more probable subsequences.

Through this paper the alphabet is {0, 1}; the symbols will also be called
bits. For a fixed integer n ≥ 1 a block is a sequence of n bits.

Definition 2 (Block alphabet) Let Σ = {0, 1} be the initial alphabet and
let n be the size of each block. The block alphabet of size n is Σn. We
denote by pn

i , for 1 ≤ i ≤ |Σ|n, the probability of symbol number i. The
probability of a specific block symbol x ∈ Σn is denoted by pn(x).

Definition 3 (Entropy for sequences of non-independent symbols)
Assume that, for some n ≥ 1, the alphabet is {0, 1}n. The Shannon entropy
per bit, hS is defined as

hS =
1

n
HS = lim

n→∞

1

n

(

2n
∑

i=1

pi log
1

pi

)

where, for 1 ≤ i ≤ n, pi denotes the probability associated with symbol
number i of the block alphabet.
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The Rényi entropy per bit, hα
r is defined similarly as

hα
r =

1

n
Hα

r = lim
n→∞

1

n

(

1

1 − α
log

(

2n
∑

i=1

pα
i

))

We will not discuss in detail conditions for the existence of the limits
mentioned in Definition 3. However, we can expect that they exist if we
assume that the dependences between block symbols decrease to zero when
their size increase to infinity and that the process is in some intuitive sense
stationary2. This is certainly true for the random bit generators used in this
paper.

We can also use computed symbol probabilities instead of probabilities.
This has the advantage of being a property of a single sequence, not requiring
the previous knowledge of the probabilities involved.

Definition 4 (Single sequence non-independent entropy) The single
sequence Shannon per bit entropy, hs

S is defined as

hs
S = lim

n→∞

1

n
lim

m→∞

2n
∑

i=1

cpm,n
i log

1

cpm,n
i

where cpm,n
i is the relative frequency (or “computed probability”) of the

symbol number i in a sequence s of m block symbols with size n (that is,
s ∈ (Σn)m) and is defined as

cpm,n
i =

Number of occurrences of symbol number i in sequence s

m2n

The single sequence Rényi per bit entropy, hs
r is defined similarly:

hα,s
r = lim

n→∞

(

1

n
lim

m→∞

1

1 − α
log

(

2n
∑

i=1

(cpm,n
i )α

))

where the cpm,n
i are as defined above.

3 Generators

In this paper we begin by considering only two simple bit generators. More
general generators seem to introduce unnecessary complications in the for-
mulas and obscure the general ideas behind our definitions. Later, in Sec-
tionmarkov, we will study ergodic Markov chains as symbol generators.

2In particular, this happens if the probabilities involved are the stationary state proba-
bilities if an irreducible Markov chain where all states are ergodic ([3]); see also Section 7.
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We are only interested in the assimptotic behavior of (infinite) sequences.
In one of the generators, denoted “+”, each bit, with a certain probability β,
equals the previous one; in the other, each bit, with probability β, is the
opposite of the previous one.

Both generators can be modeled by a two state Markov chain with ap-
propriate transition probabilities. But we prefer to use models with an
independent parameter (β, see below) that corresponds to the degree of
dependence between successive bits.

Definition 5 (Generator +β) The first bit b1 is either 0 or 1 with prob-
ability 0.5. And, for i ≥ 2

bi =







bi−1 with probability β
0 with probability (1 − β)/2
1 with probability (1 − β)/2

The parameter β will be called dependence factor as it represents the influ-
ence of the previous bit on the current one.

Definition 6 (Generator –β) The first bit b1 is either 0 or 1 with proba-
bility 0.5. And, for i ≥ 2

bi =







¬bi−1 with probability β
0 with probability (1 − β)/2
1 with probability (1 − β)/2

where ¬0 = 1 and ¬1 = 0.

Although these generators may be suitable for time sequences of random
bits, they seem to introduce a somewhat artificial “time arrow” which may
be inadequate for some cryptographic applications. Notice however that, in
the stationary state, there no preferred the direction; this is a consequence of
the fact that the block symbol probabilities computed in Section 4 are time-
symmetrical, that is, for every x ∈ {0, 1}n, we get p(x) = p(xr) where xr

denotes the reversal of x.

4 Block symbol probabilities

In this section we compute the probability of each block symbol s ∈ {0, 1}n

where it is assumed that the symbols are generated by a +β or by a –β
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process and that the block size n is large so that the block symbols may be
considered independent.

Let us begin with the +β generator. Consider a symbol of {0, 1}n:

b1b2 · · · bn

To compute the probability of a specific symbol notice that, with probability
(1−β)/2, there is a “transition” (from 0 to 1 or from 1 to 0) and that, with
probability β +(1−β)/2 = (1+β)/2, there is no transition. So, if a symbol
has t transitions, its probability is

p+(β, t) =

(

1 − β

2

)t(1 + β

2

)n−t

where we are ignoring the influence of the last bit of the previous symbol
on b1; however, as we are looking for limits like limn→∞ · · · , this approxi-
mation is justified.

Just to check the formula, we have: (i) p(1, 0) = 1, the symbol must
be 0n or 1n, and (ii) p(0, n) = 2−n, if the symbols are independent, all
symbols are equiprobable.

For the –β symbol generator we get the following probabilities.

p−(β, t) =

(

1 + β

2

)t(1 − β

2

)n−t

Notice that, for any fixed parameter β, the probability of a block sym-
bol depends only on the number of transitions; in particular, this has as a
consequence that

∀x ∈ {0, 1}n p(x) = p(xr)

where xr denotes the reversal of x.

5 Shannon entropy

We now compute the Shannon entropy per bit corresponding to a block
alphabet of size n.

hS = −
1

n

∑

i

pi log pi =
1

n

∑

t

m(t)p(α, t) log(p(α, t))

where

m(t) =

(

n

t

)
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is the number of symbols with t transitions.
For the +β generator we get

p+(β, t) =

(

1 − β

2

)t(1 + β

2

)n−t

=

(

1 + β

2

)n(1 − β

1 + β

)t

and

log(p+(β, t)) = −n(1 − log(1 + β)) + t log
1 − β

1 + β

so that the generalized Shannon entropy per bit is

h+(β, n) = − 1
n

∑

t m(t)p+(β, t) log p+(β, t)

= − 1
n

(

1+β
2

)n
∑
(

n
t

)

(

1−β
1+β

)t

log(p+(β, t))

= − 1
n

(

1+β
2

)n
∑
(

n
t

)

(

1−β
1+β

)t [

−n(1 − log(1 + β)) + t log 1−β
1+β

]

= (1 − log(1 + β))
(

1+β
2

)n
∑
(

n
t

)

(

1−β
1+β

)t

− 1
n

(

1+β
2

)n
∑
(

n
t

)

(

1−β
1+β

)t (

t log 1−β
1+β

)

= (1 − log(1 + β))
(

1+β
2

)n (

1 + 1−β
1+β

)n

− log 1+β
1−β

(

1+β
2

)n
∑
(

n−1
t−1

)

(

1−β
1+β

)t

= (1 − log(1 + β))( 1+β
2 )n( 2

1+β
)n − (1+β

2 )n( 2
1+β

)n−1(1−β
1+β

) log 1−β
1+β

= 1 − log(1 + β) − 1−β
2 log 1−β

1+β

where we have used the following identities

∑

i

(

n

i

)

xi = (1 + x)n

and

i

(

n

i

)

= n

(

n − 1

i − 1

)

Notice that the value of n (the block length) does not appear in the
per bit entropy formula; this is due to the assumption we have done on
the computation of the block symbol probabilities: the value of n is large
enough so that the influence of the previous block on the current one can be
discarded. In conclusion, we do not need to compute the limit mentioned in
Definition 3.

We state the formula of the per bit Shannon entropy as a Theorem.
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Theorem 7 The per bit Shannon entropy of a sequence of non-independent
symbols produced by with the +β generator is

h+(β) = 1 − log(1 + β) −
1 − β

2
log

1 − β

1 + β
(1)

For the –β generator, the Shannon entropy per bit is

h−(β) = 1 − log(1 − β) −
1 + β

2
log

1 + β

1 − β
(2)

Notice that, if we replace in formula (1) β by −β, we get formula 2.
Notice also that

h+(β) = h+(−β) = h−(β) = h−(−β)

although negative values of β (negative probabilities) do not have of course
physical meaning. This symmetry is obvious from the equivalent formula

h+(β) = h−(β) = 1 −
1

2
(log(1 − β2) + β log(1 + β) − β log(1 − β))

In Figure 1 we can see graphical representations of h−(β) (on the left)
and h+(β) (on the right).

To check the formula (1) we consider two limit cases.

– When β = 0 the symbols are independent and we get that the entropy
per bit is in fact 1:

lim
β→1

h+(β) = 1

– When β is very close to 1, each symbol is, with great probability equal
to the previous one and the message conveys no information:

lim
β→1

h+(β) = 1 − 1 − lim
β→1

1 − β

2
log

1 − β

1 + β
= 0

In Appendix A we give some simulation results which support formu-
las (1) and (2).

6 Rényi entropy

Using again the +β generator we can compute the non-independent Rényi
entropy; the calculations are similar to those leading to Shannon entropy
(formula (1)) and we present only the resulting formulas.
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Figure 1: Shannon generalized entropy as a function of β for the genera-
tors –β (left) and +β (right).

Theorem 8 The per bit Rényi entropy of a sequence of non-independent
symbols produced by with the +β generator is

hα
+(β) =

α

α − 1

(

1 − log(1 + β) −
1

α
log

(

1 +

(

1 − β

1 + β

)α))

(3)

For the –β generator the per bit Rényi entropy is

hα
−(β) =

α

α − 1

(

1 − log(1 − β) −
1

α
log

(

1 +

(

1 + β

1 − β

)α))

(4)

Using again the +β generator, let us consider some particular values of
the Rényi parameter α.

First we compute the minimum entropy

lim
α→∞

hα(β) = 1 − log(1 + β)

This is a particularly simple formula which can be checked for β = 0 (sym-
bol independence) where each bit contains one bit of “information” and
for β = 1 (each symbol equals the previous one) where each bit contains no
“information” at all; both of these extreme values were of course expected.

In fact, the minimum entropy for any 0 < β ≤ 1 can be directly com-
puted as follows. Consider, for instance the +β generator (for the −β the
computations are similar). Assuming β > 0, the most probable symbols
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are 1n and 0n, both with assimptotic probabilities ((1 + β)/2)n. The loga-
rithm of the inverse of this probability divided by n is the minimum entropy
per bit and it equals the formula given above, 1 − log(1 + β).

The Shannon non-independent entropy (1) can be also computed by the
limit

lim
α→1

hα
+(β)

Finally, consider the entropy corresponding to the value α = 0:

lim
α→0

hα
+(β) = 1

This is an interesting result: the Rényi entropy with α = 0 seems to com-
pletely ignore the symbol dependences! This case suggests that there may be
a close relationship between the parameter α of the Rényi entropy and the
loss of information per bit that results from the influence of neighbor bits.
In Figure 2 we can see, for some fixed values of the dependence parameter β,
the value h+ as a function of α.

0.2

0.4

0.6

0.8
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β = 0.9

h+

β = 0.7

β = 0.5

β = 0.3

β = 0.1

α

Figure 2: The value h+ as a function of α, for some values of β

Figure 3 represents in a 3-dimensional graph the functions h+(α, β)
and h−(α, β).

‘],tickmarks=[default,2,default])
In Appendix A we give some simulation results and comparisons with

Formula 3.
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Figure 3: The relationship between symbol dependence and the parameter α
of Rényi entropy.

7 Rényi entropy for any generator

We started this work considering only two simple bit generators in order
to avoid obscuring the general ideas behind our definitions and unnecessary
complications in the formulas. However, at this point we are able to use some
well know results from Stochastic Processes so as to capture more complex
forms of dependency between sets of random variables; in particular Markov
Chains will be used to develop a more general formula for Rényi entropy.
Like Shannon, we consider that ergodic Markov chains are an appropriate
characterization of the usual stationary statistical sources:

Among the possible discrete Markoff processes there is a group with special
properties of significance in communication theory. This special class con-
sists of the “ergodic” processes and we shall call the corresponding sources
ergodic sources [5]

7.1 Markov processes

For the reader convenience we include here a few well known concepts and
results about Markov chains; for more information, consult for instance [3].

Definition 9 (Stochastic Process) A stochastic process {X(t) : t ∈ T }
is a collection of random variables defined on a common sample space and
using the same probability measure P defined for all events.
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Usually t represents time, T a set of points in time and X(t) as the value
or state of the stochastic process at time t.

Definition 10 (Markov Process) A Markov process is a Stochastic pro-
cess, {X(t) : t ∈ T }, where the probability distribution for Xt+1 depends only
of Xt, and not additionally on what occurred before time t (doesn’t depend
of Xs, where s < t).

We will think of T in terms of time, and the values that X(t) can assume
are called states which are elements of a state space S. Markov processes are
classified by whether sets T and S are discrete (Markov chain) or continuous
(Markov process).

Definition 11 (Transition probability) The transition probability of state
i to state j at time n − 1 is given by

P [Xn = j|Xn−1 = i].

Definition 12 (Time homogeneous) A Markov chain is time homoge-
neous if

P [Xn = j|Xn−1 = i] = P [Xn+m = j|Xn+m−1 = i],m ≥ 0, i, j ∈ S.

So if the chain is time homogeneous we can write

pi,j = P [Xn = j|Xn−1 = i]

i.e., if Xn−1 takes the value i, then Xn has the distribution given by the i-th
row of P . We can define the matrix of transition probability by

P =

















p0,0 p0,1 · · · p0,j · · ·
p1,0 p1,1 · · · p1,j · · ·
...

...
. . .

...
pi,0 pi,1 · · · pi,j · · ·
...

...
...

















If S is finite then P has finite dimension. We write i 7−→ j if pij > 0,
which means that the chain can jump directly from i to j. A Markov chain
is completely defined by its one-step transition probability matrix and a
specification of a probability distribution on the state of the process at time
0.
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Suppose we are given an initial probability distribution π0, where we
denote P [X0 = i] by π0

i , and a matrix of transition probability P . Then,

π
(1)
j = P [X1 = j]

=
∑

i

P [X1 = j|X0 = i] · P [X0 = i]

=
n
∑

i=1
pij · π

0
i

i.e.
π(1) = π(0) · P.

So, as the process is Markovian, we can consider π1 to be the initial proba-
bilities for the next step of a one-step Markov chain and thus can write

π(2) = π(1) · P.

More generally we have

π(n) = π(n−1) · P, n = 1, 2, 3, ....

Repeating this argument, we obtain

π(n) = π(0) · P n, n = 1, 2, 3, ....

Here, π(n) represents the distribution after n steps. Therefore, the matrix
P n is the so called “n-step transition matrix”. Its entries are

pn
ij = P [Xt+n = j|Xt = i].

Definition 13 A Markov chain is said to be ergodic if lim
n→∞

pn
ij = πj > 0

for all j and is independent of i.

In this case,
P∞ = lim

n→∞
P n

=







π1 . . . πj . . . πn

...
...

...
π1 . . . πj . . . πn






.

Hence, π is independent of the starting distribution π(0):

π = π(0) · P∞.
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Any vector π which satisfies πP = π and
∑

i πi = 1 is called a stationary
distribution. We say P is irreducible if for all i, j ∈ S, pn

ij > 0 for some n,
i.e., the underlying graph is strongly connected. If P is irreducible, we say
P is aperiodic if for some i the set of n with pn

ii has greatest common divisor
1 all we need to keep in mind is that if pii > 0 for some i then P is aperiodic.

Theorem 14 If S is finite and P is irreducible, then:

1. There is a unique stationary distribution π for P.

2. With probability 1, |{r≤n:Xr=j}|
n

→ πj as n → ∞, regardless of X0, i.e.,
πj equals the fraction of time the Markov chain spends in state j for
almost all sample paths of the chain.

3. If P also is aperiodic then pn
ij → πj as n → ∞, for each i, j.

It often happens in practice that P is “known” but π is not and solving
πP = Π directly is computationally infeasible. Theorem 14 shows we can
simulate a variable with approximate distribution π by run a Markov chain
with transition matrix P for a “long” time. This is called Monte Carlo
Markov Chain.

Theorem 15 A Markov chain is ergodic if and only if both of the following
are true:

1. it is irreducible

2. the chain is aperiodic.

7.2 Rényi entropy associated with ergodic sources

As most of the sources in communication theory seem to have the ergodicity
properties, we will consider only ergodic sources. First let us check that ours
sources are indeed ergodic.
Consider the +β generator

bi =







bi−1 with probability β
0 with probability (1 − β)/2
1 with probability (1 − β)/2

This generator can be represented by the following Markov chain
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The corresponding transition probability matrix is

P =

[ 1+β
2

1−β
2

1−β
2

1+β
2

]

As we can see the underlying graph is strongly connected and

p00 > 0, p11 > 0

so the P is irreducible and aperiodic and by Theorem 15 the source is “er-
godic”. By Theorem 14 we know that pn

ij → πj as n → ∞, for each i, j.

So, the value of lim
n→∞

P n is the stationary distribution π = ( 1
2 , 1

2 ), i.e., for

almost all sample paths of the Markov chain, the fraction of time spent in
state 0 (1) equals 1

2 (1
2).

In section 6 we have already computed a closed formula (3) for the Rényi
entropy of this generator. We now propose a new definition for Rényi en-
tropy of any ergodic source. We will see that, at least for the generators +β

and −β, this definition is compatible with (4) although at first they seem
very different.

Definition 16 (Ergodic Rényi entropy) Let S be an ergodic source with
probability transition matrix P = [pij ], the Rényi entropy for this source is
given by

ERα(S) =
∑

i

πiH
i
α

where π is the stationary distribution for P and H i
α is the classical Rényi

entropy for each state of the Markov chain representing S.

This definition replaces the classical Rényi formula by the weighted average
of the entropies of the various states where the wheigh associated a each
state is simply its probability of ocurrence.

Consider again the +β generator, if we now evaluate the ergodic Rényi
entropy we get

1

1 − α
log

(1 + β)α + (1 − β)α

2α

which is equivalent to formula (3) we proposed in Section 6.

Theorem 17 Consider the ergodic Rényi entropy of an ergodic source then:

1. ER0 = log |X|.
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2. ER1 =
∑

i

πiH
i,where H i is the Shannon entropy associated with state

i.

3. ER∞ =
∑

i

πi(− log max pij).

Proof:
We prove the theorem using the following properties of Rényi entropy:

• lim
α→1

Hi
α = Hi

• lim
α→∞

Hi
α = − log max pij

1. ER0 =
∑

i

πiH
i
0 =

∑

i

πi log
∑

j

p0
ij =

∑

i

πi log
∑

j

1 =
∑

i

πi log |X| =

log |X|
∑

i

πi = log |X|.

2. ER1 = lim
α→1

∑

i

πiH
i
α =

∑

i

πi lim
α→1

Hi
α =

∑

i

πiH
i.

3. ER∞ = lim
α→∞

∑

i

πiH
i
α =

∑

i

πi lim
α→∞

Hi
α =

∑

i

πi(− log max pij).

2

As a consequence of Theorem 17 we get a formula for the min-entropy of an
ergodic source.

Corollary 18 (Ergodic min-entropy) Let S be an ergodic source with
probability transition matrix P = [pij ]. The ergodic min-entropy is

∑

i

πi(− log max pij)

8 Conclusions and future research

We gave (see Definition 3) a generalization of the concept of entropy which
is appropriate for sequences of symbols that may be not statistically inde-
pendent.

For simple probabilistic dependences, closed formulas (1), (2), (3), and (4)
(Theorems 7 and 8) were obtained. In particular, it is interesting to look
at the Rényi formulas (3) and (4) as a function of α; they seem to imply a
close relationship between the parameter α associated with the (generalized)
Rényi entropy and the loss of entropy due to the dependence on neighbor
symbols; in particular, for α = 0 there is no such loss, the Rényi entropy is
always 1 (in the general case, the logarithm of the alphabet size).
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For the general ergodic symbol generator, closed formulas were not ob-
tained; however we think that concepts like the minimum entropy for de-
pendent symbols (see Corollary 18) may have applications to the random
sources used in Cryptography.

To conclude, we list some problems for future work in the area of infor-
mation (or entropy) of sequences of non-independent symbols.

– Obtain simple closed formulas for the entropy associated with other,
more general, forms of symbol dependence (in this paper closed formu-
las were only obtained for the symbol generators +β and –β)

– Study of the interplay between conditional entropy and symbol depen-
dence.

– Identify practical applications where the concept of the entropy (or
information) associated with sequences of non-independent symbols is
meaningful and possibly useful. A possible candidate may correspond
to the repetitive use of an input random source (where each sample is
considered as a symbol and successive samples may be not independent)
in some cryptographic module such as an extractor([6]).
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A Shannon and Rényi: Simulation results com-

pared with the theoretical formulas

We compare the theoretical formulas 1, 2, 3 and 4 with approximations
for several block sizes of the single sequence (Shannon and Rényi) entropy
obtained by a simulation program.

For each dependence factor β and block size n, we generate 5 × 107

pseudo-random bits using the appropriate bit generator. The frequencies of
each of the 2n block symbols is computed. Then, an approximation to the
value of the Shannon non-independent entropy hα

+(β) is obtained by fixing
in Definition (4) large values of m and n, instead of taking the limits.

1

n

2n
∑

i=1

cpm,n
i log

1

cpm,n
i

where n and m are respectively the block size and the total number of bits
in the simulation (5 × 107).

For the Rényi entropy the corresponding approximation is

1

n

(

1

1 − α
log

(

2n
∑

i=1

(cpm,n
i )α

))

The approximations to the Rényi entropy for several block sizes n are
represented for the values of α = 0.5, 1 (Shannon entropy) and 2 in Figures
respectively 4, 5 and 6.

In Figure 3 we can observe a three-dimensional representation of the
Rényi entropy as a function of α and β; the generators −β and +β are
represented respectively on the negative and positive parts of the β axis.

In each case, it can be seen that as the dimension n of the blocks grows,
the computed approximation approaches the theoretical formulas (1), (2),
(3) and (4).
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Figure 4: Experimental approximations of the Rényi entropy with parame-
ter α = 0.5 and block sizes 1, 4, 8 and 16. If the block size n is equal to 1,
the entropy is constant and equal to 1; for larger block sizes, the entropy
approaches the theoretical value (bottom curve).
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Figure 5: Experimental approximations of the Rényi entropy with parame-
ter α = 1 (Shannon entropy) and block sizes 1, 4, 8 and 16.
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Figure 6: Experimental approximations of the Rényi entropy with parame-
ter α = 2 and block sizes 1, 4, 8 and 16.
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