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Abstract

Consider the representation of integers by arithmetic expressions in-
volving only the right associative exponentiation symbol, without using
parenthesis. The existence of a unique exponential normal form, a result
somewhat analogous to the unique factorization of a positive integer, is
proved. Prime numbers of multiplicative arithmetic (N+,×) correspond
to the so called base numbers of exponential arithmetic (N+, ↑).

Some properties of the Kolmogorov complexity of integers represented
in the exponential arithmetic are studied.

Keywords. Exponential representation, exponential normal form, shortest
representations.

1 Introduction

Consider the representation of integers by expressions involving only exponenti-
ation; no parenthesis are allowed and “↑” associates to the right. The inclusion
of parenthesized expressions would correspond to a more complex arithmetic;
in particular arbitrary products of exponent would be possible, for instance
(a ↑ b) ↑ ((c ↑ d) ↑ e) = a ↑ (b(c ↑ (de))).

We write the exponential form of the integer n as n = a1 ↑ a2 ↑ · · · ↑ ak, where
the ai’s are “base numbers” (to be defined later). For convenience, the usual
notation, ab ≡ a ↑ b will be sometimes used. There is an equivalent to the
Unique Factorization Theorem, see Theorem 2.

Algebra: (N+,×) (N+, ↑)
Prime factorization (unique) Exponential form (unique)
Prime number Base number

However, the similitude between the prime factorization and the exponential
form is only partial. The main difference is that exponentiation is not commu-
tative, a fact that has important applications.
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We study the properties of this exponential representation, and the length of
the shortest representation of an integer. When the computation model is uni-
versal, the length of the shortest representation of an integer is the Kolmogorov
complexity of that integer, see [2].

It is interesting to study the properties of more restricted modes of representa-
tion like the arithmetic (N+, ↑); for a similar study using the arithmetic (N+,×)
with the unary integer representation see [3]. As every arithmetic expression
corresponds to a total function, the “arithmetic Kolmogorov complexity” is de-
cidable; some of its properties, like the incompressibility theorem, are similar to
those of the usual Kolmogorov complexity.

The notation used in this paper is fairly straightforward. In particular, N and N+

denote the set of integers and the set of positive integers, respectively. The
symbol “↔” means “corresponds to”. The ordered sequence of the integers a,
b,. . . is denoted by 〈a, b, . . .〉. The oprrator “·” will denote the concatenation of
two ordered sequences.

The contents and organization of this paper is as follows. In Section 2 we
give a necessary and sufficient condition for the equality ax = by and study
exponential normal forms. In particular, we prove that the exponential normal
form is unique and show a bijection between N+ and the set of finite sequences of
integers that are not perfect powers is described. Then, in Section 3, the shortest
exponential expressions denoting a given integer are considered and an efficient
algorithm for finding a shortest exponential expression is described. In Section 4
we study the different exponential forms of a given integer. First, we present
a few simple rules that generate all the exponential forms of a given number.
Then, the density of perfect powers is studied. Finally, we study the number of
exponential expressions denoting a given integer and prove that for n ≥ 2 the
number of exponential expressions with value n does not exceed (log n)2.

2 Exponential normal form

We start with a simple result that characterizes the possibility of writing an
integer as two or more exponentials. We have for instance 43 = 82. The following
theorem characterizes the integers a and b for which there exist x and y such
that ax = by.

Theorem 1 Let a and b be positive integers. There exist positive integers x
and y such that ax = by if and only if the primes occurring in the prime factor-
izations of a and b are the same and all the corresponding exponents are in the
same proportion.

Proof. Suppose that ax = by and let pe be any factor in the prime factorization
of a. The same prime p must be a divisor of b, let pe′

be the corresponding factor
in the prime factorization of b. Clearly we must have ex = e′y or e/e′ = y/x.
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Conversely suppose that

a = pe1
1 pe2

2 · · · p
ek

k , b = p
e′
1

1 p
e′
2

2 · · · p
e′

k

k

where, for 1 ≤ i ≤ k, ei/e′i is the same rational number, say p/q. It can be
easily seen that aq = bp. As an example let

a = 23 × 76, b = 25 × 710

Here p = 3, q = 5 so that a5 = b3 = 738569102645403913023102943232. �

We say that an integer n is a perfect power is there exist a ≥ 2 and b ≥ 2 such
that n = ab. When n ≥ 2 is not a perfect power we say that n is a base1.

Theorem 2 Any positive integer n can be written in an unique form

n = a1 ↑ a2 ↑ · · · ↑ ak

where every ai is a base; this form is called the exponential normal form of n
and is denoted by E(n).

Instead of a formal proof we give a simple recursive algorithm to compute E(n).

Input: Integer n ≥ 2
Output: E(n), the exponential normal form of n
expression enf(n):

let pe1
1 pe2

2 · · · p
ek

k be the prime factorization of n
let a = gcd{e1, · · · , ek}.
if a = 1 return n (n is not decomposable)
otherwise

return the expression m ↑ E(a)
where m = p

e1/a
1 p

e2/a
2 · · · pek/a

k .

One obtains for instance, the following normal form of 512

512 = 2 ↑ 3 ↑ 2

In fact we do not need to decompose n in prime factors and E(n) can be com-
puted in polynomial time.

The set of base numbers 2, 3, 5, 6, 7, 10. . . will be denoted by B.

2.1 Correspondence between N+ and B

There is a bijective correspondence between integers n ≥ 2 and nonempty se-
quence of base numbers 〈a1, · · · , ak〉:

n = a1 ↑ a2 ↑ · · · ↑ ak

1This simple terminology is not standard but is adequate for the purposes of this paper.
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The correspondence is obviously a bijection: to every integer corresponds an
unique nonempty sequence of base numbers (Theorem 2) and reciprocally, to
every nonempty sequence of base 〈a1, · · · , ak〉 corresponds the integer a1 ↑ a2 ↑
· · · ↑ ak.

The correspondence can be extended to a correspondence between N+ and B
by associating 1 to the empty sequence 〈〉. Denote by s(n) the sequence corre-
sponding to n.

As an example, n = 512 corresponds to the sequence 〈2, 3, 2〉.

2.1.1 Sequence corresponding to the product

It is interesting to notice how two sequences can be “multiplied”. Let s(m) = x
and s(n) = y. First write x = uz and y = vz where z is the longest suffix
common to x and y. We have

s(mn) = s(s−1(u)× s−1(v)) · z

Notice that this rule works even if the longest common suffix equals x or y (or
both).

The justification for this rule is simple. Just notice that, if we denote by c the
integer represented by the sequence z and write m = ac, n = bc, we get mn =
(a× b)c whose representation is s(a× b) · z.

Example 3 To multiply 16↔ 〈2, 2, 2〉 by 81↔ 〈3, 2, 2〉 we get: s(16× 256) =
s(s−1(2)× s−1(3)) · 〈2, 2〉 = 〈6〉 · 〈2, 2〉 = 〈6, 2, 2〉 ↔ 64 = 1296 = 16× 256.

3 On the shortest representations of an integer

In the arithmetic (N+, ↑) what is the shortest representation of an integer? As
we said above, no parenthesis are allowed and the operator “↑” associates to the
right. We assume that the integers are represented in some basis.

In general expressing a number as a power results in a shorter expression; for
instance, 2 ↑ 64 is shorter than 18446744073709551616. If the rule “if possible
represent an integer by a power” is applied recursively, the sorter expression
representing an integer is its exponential normal form. However for small in-
tegers, and depending on the number basis used and on the symbol lengths,
representing an integer n as ab may result in a longer expression; for instance,
if we use 10 as the basis of numeration and measure the length of an expres-
sion by the number of symbols it contains, |8| = 1 but |2 ↑ 3| = 3. Also,
3 = |256| < 5 = |2 ↑ 2 ↑ 3|. This, as we said above can only happen with small
integers.
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Which integers are most compressible? Again, if the rule “shorter expressions
are the powers” is applied, the most compressible integers2 are of the form

2 ↑ 2 ↑ · · · ↑ 2

which takes us to Knuth’s tower notation [1]. Due to the reasons mentioned
above, this result may be not exactly true. . .

3.1 Efficient algorithm for finding a shortest exponential
expression

We now describe an algorithm which finds the set of all exponential expressions
having a given value n. This set has cardinality polynomial in |n| and the algo-
rithm runs in polynomial (also in |n|) time. It follows that a shortest expression
representing a given integer can also be found in polynomial time.

function reps(n):
(1) Input: n
(2) Output: set of exponential expressions of n
(3) S = {n}
(3) for b = 2, 3, · · · , blog nc
(4) if ∃a such that ab = n then
(5) Sb = reps(b)
(6) S = S ∪ {a ↑ b : b ∈ Sb}
(7) return S

Example 4 In this example the length of an expression by the number of sym-
bols it contains. Let n = 256. The test in line (4) succeeds for the following
values of b

– From line (1): S = {256}.

– b = 2, a = 16. From the (recursive) call in line (5) we get the set of
representations of 2: Sb = {2}; S becomes {256, 16 ↑ 2}.

– b = 4, a = 4. From the call in line (5) we get the set of representations
of 4: Sb = {4, 2 ↑ 2}; S becomes {256, 16 ↑ 2, 4 ↑ 4, 4 ↑ 2 ↑ 2}.

– b = 8, a = 2. From the call in line (5) we get the set of representations
of 8: Sb = {8, 2 ↑ 3}; S becomes {256, 16 ↑ 2, 4 ↑ 4, 4 ↑ 2 ↑ 2, 2 ↑ 8, 2 ↑
2 ↑ 3}. This set is returned by the function reps.

Comment on the correctness. The algorithm above never generates re-
peated expressions; this is easily seen by induction on |n|; it is enough to notice
that the values of a obtained in line (4) are all different.

2That is, integers n such that the ratio (length of a shortest expression with value n)/|n|
is as small as possible.
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Comment on the efficiency. From the following facts it can easily be shown
that the algorithm runs in polynomial time (in terms of |n|)

– Each call to reps generates at least a new element of S.

– The test in line in line (4) can be implemented in polynomial time.

– The number of exponential representations of an integer n is polynomial
in |n| (notice that |n| is O(log n)).

4 Exponential forms of an integer

4.1 Rules

In this Section we describe a few simple rules that generate all the exponential
forms of a given number.

In the following rules the transformed sub-expressions are on the rightmost part
of the global expression; this is what we mean by writing “[· · ·X]” where X is
some expression. The symbol n denotes an integer. The symbol a also denotes
an integer (having some exponent in the global expression). By an we mean the
corresponding integer, not the expression.

(1) [· · · a ↑ n] −→ [· · · an]
(2) [· · ·n] −→ [· · · a ↑ m] (n = am, m ≥ 2 not a perfect power)
(3) [· · · a ↑ n] −→ [· · · ak ↑ (n/k)] (k|n, 2 ≤ k < n)

Rules (1) and (2) are the inverse of each other. Rule (2) only applies iff n is a
perfect power.

We can generate all exponential expressions by starting with the integer n as
root and

1. Apply rule (2), obtaining a ↑ m.

2. For each divisor d of m with 2 ≤ d ≤ m apply rule (3).

Then reapply the process to each rightmost exponent not yet considered.

As an example, the diagram below contains all exponential expressions with
value 256. Notice that rule (1) is never used because it would result in the
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immediate ancestor (“mother”or “father”) of the node in consideration.

256

(2)

2 ↑ 8

(3)

uuuuuuuuu
(3)

(2)

IIIIIIIII

4 ↑ 4

(2)

16 ↑ 2 2 ↑ 2 ↑ 3

4 ↑ 2 ↑ 2

4.2 On the density of perfect powers

The number of perfect powers not exceeding n is approximately
√

n. To see
this, notice that the number of perfect powers of exponent e not exceeding n
is bn1/ec. Furthermore3 we only have to consider prime exponents for, if e
is not prime, perfect powers with exponent e are also perfect powers with a
smaller (and prime) exponent. Thus, the number P (n) of perfect powers not
exceeding n satisfies

P (n) ≤ Σp bn1/pc ≤ Σp n1/p

where in the summations over p it is assumed that p is prime. We get

P (n)−
√

n√
n

≤ Σp≥3 n1/p−1/2 ≤ Σp≥3 n−1/6

In fact this sum is finite; the greater possible exponent p satisfies 3p ≤ n or p ≤
log3 n. Thus

P (n)−
√

n√
n

≤ log3 n

n1/6
<

ln n

n1/6

so that

lim
n→∞

P (n)−
√

n√
n

= 0 (1)

In conclusion, the number of perfect powers less than or equal to n is approxi-
mately

√
n, the relative error4 converging to 0 as n→∞.

3This remark is not essential for establishing (1).
4Usage of the Prime Number Theorem and a more careful analysis would result in a smaller

error term; however, our main goal is to prove (1).
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4.3 Number of exponential expressions

We study the number of exponential expressions with value n; for instance there
are 6 exponential forms with value 256:

2 ↑ 2 ↑ 3, 2 ↑ 8, 4 ↑ 2 ↑ 2, 4 ↑ 4, 16 ↑ 2, 256

We conjecture that c(n) ≤ log n holds for every integer n. This has been verified
for every perfect power n not exceeding 1100 and for some other larger integers.

The following result shows that the number of exponential expressions with
value n is O((log n)2). This is an important result because it has as a conse-
quence that various algorithms that consider every exponential expression with
a given value n are polynomial.

Theorem 5 For every integer n ≥ 2 the number of exponential expressions
with value n does not exceed (log n)2.

Proof. Considering the case where n has more than one exponential form,
write n as n = be where b is not a perfect power. We have e ≤ log n and for
each divisor d of e we can write the expression n = (bd) ↑ (e/d), the case d = e
corresponding to n itself. Each of these expressions may through its expo-
nent e/d generate other expressions with value n. For every5 n ≥ 8 the number
of divisors of n including n does not exceed n/2. Moreover it can easily be
checked that for every n ∈ [8, 28) the number of exponential expressions with
value n does not exceed (log n)2. Thus the following recurrence defines a upper
bound f(n) ∈ R for the number of exponential expressions with value n ≥ 8.{

f(n) = (log n)2 for 8 ≤ n < 28

f(n) = log n
2 f(log n) for n ≥ 28

Notice that the recurrence defines the value of f(n) for every n ≥ 8; the number
of inductive steps needed to define f(n) is k, the index of the interval contain-
ing n:

I0 = [8, 28), I1 = [28, 228
), · · ·

Notice also that f(n) is a non-decreasing function of n, a fact easily proved by
induction on the index of the interval containing n.

The proof of this Theorem is also by induction on the index k of the interval
containing n. The values n = 2, · · · , 7 are easily verified separately.

For k = 0 we have n ∈ [8, 28) and the statement of the theorem is easy to check.

For the inductive step we use the inductive assumption

f(n) =
log n

2
f(log n) ≤ log n

2
(log log n)2

5This also holds for every n ≥ 4; the number of divisors equals n/2 for n/12. We use here
the lower bound 8 just for convenience.
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We have to prove that f(n) ≤ (log n)2. But this is true if

log n
2 (log log n)2 ≤ (log n)2

true if (log log n)2 ≤ 2 log n (for n ≥ 4)
true if (log log n)2 ≤ (log n)2

true if log log n ≤ log n

But log log n ≤ log n for every n ≥ 2. This completes the proof. �
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