
Research Note
Diagonalization techniques

applied to reversible programming languages

Armando B. Matos

December 2016

Abstract

It is shown that there exist recursive (total computable) functions that
are not PR (primitive recursive) and whose co-domain is {0, 1}. (How-
ever the computation time of recursive but not PR functions grows faster
that any PR function.)

For reversible Zn → Zn → transformations we show that,
– if L is a programming language whose programs are total and

implement (only) bijections, and
– if the identity transformation is implemented by an infinity

of programs of L, then
there are constructible computable bijections that is not implemented
by any program of L.

Notes.
– File: disgonaliz.tex
– Reference in bib.bib: matos-diag

1

Research Note
SRL /ESRLlanguages:

(i) are extra registers needed?
(ii) programs with registers initialized

Armando B. Matos

December 2016

Abstract

Programs written in the SRL language with some input values fixed
(that is, the initial values of some registers are constant) are considered.
Moreover assume that when the computation is finished, all registers
except one are discarded.

In this setting we try to answer the following questions: what class of
unary (all inputs except one are fixed) functions that can be implemented
using this method?

A complete answer to that question was not obtained. However, we
show how to implement polynomials, some exponential functions and
show that the following closure property holds: the sum and product of
“implementable” functions is also “implementable”.

Notes.
– File: topic-extra-regs/extra-registers.tex
– Reference in bib.bib: matos-extra

1

On SRL transformations: the maximum rate of growth
and LOOP representation.

Armando Matos, Luca Roversi and Luca Paolini

Abstract

The purpose of this note is to
– prove that the asymptotic upper bounds of primitive recursive (PR) func-
tions and of SRL transformations are essentially the same;
– represent the SRL constructs in the LOOP language;
– transcribe some related conversations with Luca Roversi and Luca Paolini.

The purpose of this note is to prove that the asymptotic upper bounds of
primitive recursive (PR) functions and of SRL transformations are
essentially the same.

Relatively to PR functions, we refer the reader to the LOOP programming
language, see~\cite{MR1,MR2}. To establish upper bounds on SRL
transformations, we adopt the following assumptions:

(a) Only non-negative values are considered, so that a direct
comparison with PR functions is possible.

(b) The largest of the inputs of a SRL transformation,
max(x1,...,xn) is used as a measure of the input size.
A similar assumption is used for PR functions.

(c) The value of a selected output is used as the output size.
(d) The number of input registers of the SRL transformation is chosen

conveniently.

Relatively to (b), and in order to simplify the proof, we "study" only the
case in which all the inputs except one are fixed. This allows a direct
comparison with PR unary functions.

Research Note
Can the “ if” instruction be implemented

in the SRL/ESRL programming languages?
Armando B. Matos

January 2017

Abstract

Let the instruction if n(P) be a possible extension of the SRL language.
Its meaning is “ if n ≥ 0 then P ”. Call it the “basic conditional instruc-
tions”.

1) Suppose that the basic conditional instruction is added to the
SRL language. Can we implement more elaborate conditional instruc-
tions, like “ if (n ≥ 2) ∨ (x < y) then P ”? Which “extended” conditional
instructions can be implemented with the aid of the basic conditional
instruction?

2) Can the basic conditional instruction be implemented in (pure)
SRL language?

Although we do not fully answer this questions, we consider the pos-
sibility of implementation (of the basic and extended conditional instruc-
tion) in very restricted SRL languages in which the number of registers
and the number of loops (for instructions) is very small.

Notes.
– File: if-instruction.tex
– Reference in bib.bib: matos-if-inst

Contents

1 Some definitions 3

2 Implementing more general if instructions 5

3 Can the if instruction be implemented in ?SRL? 8

3.1 The truth of a proposition: for how long? 8

3.2 Linear programs with two registers 9

3.3 A single ‘for’ instruction . 12

3.4 Two instructions “for a(. . .)” in a sequence 13

3.5 Three instructions “for a(. . .)” in a sequence 14

3.6 The Fibonacci program . 14

4 Linearity and ?SRL programs 15

5 A result on ?SRL languages 16

2

Preliminary Notes

SRL-like languages and Kolmogorov complexity

Armando B. Matos
May 2017

Abstract

Consider a configuration C(t) of a reversible computation, where t is
the time corresponding to the configuration. At first it may seem that
the Kolmogorov complexity of C(t) is constant, because C(t) may be
described by a minimum program for the tuple of input values x and
reciprocally, x can be described by a minimum program for C(t).

However, a more detailed analysis shows that this is not always the
case. Consider a SRL computation. An intermediate configuration C(t)
can be described by (i) a constant part (essentially the text of the pro-
gram), (ii) a minimum program describing the input values, and (iii) the
time t. If the part (iii) is negligible, we have the so called “input domi-
nated complexity”.
The Kolmogorov complexity of a configuration in this general case is
studied. In particular, we describe situations in which the term (iii) dom-
inates, “time dominated complexity”: we exhibit SRL programs whose
running time is so large that the terms (i) and (ii) are negligible. In
such cases, an intermediate configuration has almost always a complex-
ity log2 t ≈ K(t), where t is the configuration time. During the com-
putation, and also when it finishes, the value of K(t) may however be
much smaller.

Notes.
– File: kolgo.tex
– Reference in bib.bib: matos-kolgo
– In this note the word “reversibilization” denotes a reversible simulation of an irreversible
computation.

1

Contents

1 Configurations: input dominated complexity 5

2 The general case for reversible computations 6

3 Configurations: time dominated complexity 7

3.1 Fibonacci SRL program . 7

3.2 Doubly exponential . 8

3.3 An arbitrarily high exponential tower 10

4 Some generalisations. Some notes. . . 11

2

Preliminary Notes
Comparison of several variants

of the SRL language
Armando B. Matos

January 2017

Abstract

Consider the SRL language with auxiliary registers. We classify the use
of these registers: they may be initialized or not and may have or not
the same final value. For instance, a 0-reg has the initial value 0 and a
00-reg has also the final value 0.

We describe functions that can only be implemented in SRL with the
aid of (possibly initialised) auxiliary registers.

We also study the possibility of implement primitive recursive func-
tions in SRL (with auxiliary registers). The work of Luca Roversi, Luca
Paolini, and Mauro Piccolo is mentioned.

Notes.
– File: topic-languages/languages.tex
– Reference in bib.bib: matos-languages

Contents

1 Classification of auxiliary registers 3

2 Example: two xx-regs 3

3 Example: one 00-reg 4

4 Example: one 0-reg in the SRL-IF language 5

5 Compilations of primitive recursive functions to to SRL-like lan-
guages: some questions 5

5.1 Trying to implement LOOP in a SRL-like language 6

5.2 An implementation of LOOP with a SRL-like language 7

5.3 LOOP in a SRL-like language, according to [PPR16a] 8

5.4 Topics to develop . 9

6 Use of stacks in reversibilisations 9

7 A pairing function in SRL? 11

2

Preliminary Notes

On the additional memory used to
“reversibilize” computations

Armando B. Matos
January 2017

Abstract

First, we review several models of computation that either are reversible
or can be “made reversible”, namely logic gates, Prolog programs, re-
versible communicating systems (processes), Turing machines and SRL-
like languages.

A non-reversible computation can be made reversible with the aid of
additional memory, often organised as a stack. In the case of the Turing
machine, an initially blank tape is used to implement the stack. In the
case of a register machine a zero-initialised register can be used to code
a stack.

We argue that, both under the mathematical and the physical points
of view, this initialised memory “destroys” the reversible character of the
whole computation: “how can we recover the contents of a tape before
it is erased?”, or “what was the contents of a zero-initialised register
(before the computation)?”. Initialisations correspond to the destruction
of information / decrease of entropy.

Notes.
– File: memory.tex
– Reference in bib.bib: matos-memory
– In this note the word “reversibilization” denotes a reversible simulation of an irreversible
computation.

1

Contents

1 Input/output systems and concurrent communicating systems 3

2 Notes on reversibilization, backtracking and “additional mem-
ory” 4

2.1 Logical gates . 4

2.2 The execution stack . 4

2.3 Prolog . 4

2.4 A note on reversible communicating systems (processes) 5

2.5 Turing machine computations . 6

2.6 SRL-like languages . 6

3 A brief note on entropy and Kolmogorov complexity 6

4 The cost of initially blank memory (TM tape, register. . .) 7

4.1 “Blank” registers . 8

5 Additional memory: classification and examples 9

5.1 Fredkin/Toffoli reversible digital circuits 11

5.2 Reversible digital gates represented in SRL 14

5.3 Non-uniform interpretation . 16

5.4 Questions . 19

5.5 Restarting the computation . 21

5.6 Simulating the “ if(a ≤ 0)(. . .)” instruction 22

5.7 Reversible Turing machines . 24

“Reversibilizations” often look like this:

Every partial recursive function can be computed by a reversible
Turing machine [. . .] Take the standard irreversible Turing

machine computing that function. We modify it by adding an
auxiliary storage tape [. . .] (from [BTV01])

2

Research Note

ForSwap and SRL-like languages
with 0-initialized registers:

can the “ if” instruction be implemented?

Armando B. Matos
September 2017

Abstract

A set S ⊆ Z is periodic if for some positive integer p and for every n ∈ Z
we have n ∈ S iff n + p ∈ S. In this report we describe the implementation
in the SRL language of the instruction “ if a ∈ S(then P)” where (i) a is a
SRL register, (ii) S is a periodic set, and (iii) P is a SRL program.
Keywords: SRL language, ForSwap language, periodic set, if instruction.

Notes.

– File: observations.tex

– Reference in bib.bib: matos-if-obs, [Mat].

Contents

1 Some definitions 3

2 All but one registers are 0-initialized 3

2.1 A note on Enigma machines . 5

3 Implementation conditional instructions
if (n ∈ S)(P) with S periodic 5

3.1 Introduction . 5

3.2 Periodic sets . 7

3.3 Properties of periodic sets . 10

3.4 Periodic sets: complement and intersection 12

4 ForSwap programs where all inputs except one are fixed 14

5 An open problem 17

2

Programs that can run backwards

Armando B. Matos

Departamento de Ciência de Computadores
Universidade do Porto

May 2017

1 / 61

Research Note

On some decision problems related to
a simple reversible language

Armando B. Matos, Luca Roversi, Luca Paolini
Latest version, October 12, 2017

Abstract

There are several interesting decision problems related with the “Simple
Reversible Language” (SRL) and its variants. In this note the following
results are proved.

1. The following decision problems are equivalent: (i) “are two given
SRL programs equivalent?”, (ii) “is a given SRL program equivalent
to the identity (null) program?”, (iii) “is the composition of two
SRL programs equivalent to the identity program?”. (The proof is
easy.)

2. The decision problem “does a given SRL program have a fixed
point?” is undecidable, and complete in the class Σ1

0.

3. Several other fixed point SRL decision problems are also undecid-
able.

4. “Half-zero” problems are SRL decision problems in which half of the
input registers have the initial value 0. Several natural “half-zero”
problems are undecidable.

A summary of the results (and some open problems) can be seen in
Figure 4, page 18.

1

Contents

1 Introduction 3

2 Some basic decision problems 5

3 Fixed point decision problems 5

4 Some “half-zero” decision problems 12

5 Some decidable decision problems 17

6 Conclusions and open questions 19

Notes.
– File: proofs.tex
– Reference in bib.bib: matos-proofs

2

Decision problems related with SRL-like languages
Current status of knowledge

Luca Roversi, Luca Paolini, Armando Matos
June 2017

1 / 31

Preliminary
My notes on “subatomic proof systems”

Armando B. Matos
Started: April 2017

Abstract

Personal notes on the serial/parallel reorganisation expressed as an in-
ference rule.

Notes.
– File: splittable.tex
– Reference in bib.bib: matos-split

Preliminary Notes
Groups and SRL -like languages

Armando B. Matos
June 2017

Abstract

In the context of the SRL language we have the language monoid and
the Zω group of transformations, each element of which is a function
t : Zω → Zω. To each program P corresponds a transformation τ(P),
such that τ(P ;Q) = τ(Q) ·τ(P). Among others, the following topics are
included in the discussion:

1. Rotation groups implemented with swap’s

2. SRL-like languages and the Post equivalence problem.

Notes.
– File: srl-groups.tex
– Reference in bib.bib: matos-srl-groups

1

Contents

1 Remembering some definitions 3

2 Groups associated with SRL-like languages 3

3 Some results on SRL-like languages 5

4 SRL-like languages and the Post equivalence problem 7

4.1 A SRL equivalence problem similar to Post equivalence problem . 8

4.2 Towards a proof of the undecidability of IDENT? 10

4.3 Further consequences . 11

5 Multiset-invariant ESRL programs 11

5.1 Enigma machines . 12

5.2 The ForSwap language . 15

5.3 ForSwap programs: P k(x) = x? 15

2

Preliminary Note

For each positive integer k there is a SRL program Pk(n, a, b)
such that, after in the computation Pk(n, 0, 0),

the final contents of a, of b and of n are asymptotically larger than

2 ↑ (2 ↑ . . . (2 ↑ n))︸ ︷︷ ︸
k 2’s

Armando B. Matosa

May 2017

a Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Abstract

It is proved that for every positive integer k there is a SRL program
with a register n and the other registers initialised with 0, such that the
final value of any register exceeds an exponential tower of k 2’s with the
initial value of n at the top. In symbols,

∀xi : final value of xi > 22...2
n

where the number of 2’s is k.

(In Knuth tower notation the exponential tower is denoted by 2
k
⇑n.)

For every k the corresponding program can be be easily exhibited and
uses only 3 registers (one of them is n and the other two are initialised
with 0.

Notes.
– File: tower.tex
– Reference in bib.bib: matos-tower

1

Contents

1 Introduction and result summary 3

1.1 Notation . 4

1.2 A glimpse of the results . 4

2 The basic “Fibonacci” SRL program 6

2.1 The Fibonacci sequence . 6

2.2 A “Fibonacci” SRL program . 6

3 A sequence of “Fibonacci” SRL programs 8

A Checking a few results of Sections 2 and 3 10

2

