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1 Introduction

We analyze a particular result of descriptive complexity, namely Fagin’s The-
orem – the work that started the field!. It relates a syntactic class of logic
sentences, the existential second order logic, with a complexity class, the class
NP.

This relation is surprising. How is it possible to represent, in terms of a class
of “pure” logic, concepts like machines, computational times and polynomials?

Without further assumptions, I think it isn’t possible. Yet, if reasonable as-
sumptions are used for encoding the logic relations, and given the robustness of
the “polynomially related” concept (definition in page 1), we can almost forget
about the computational questions.

Those “reasonable assumptions” are related to the size of the representation of
a logic relation r and to the access time to its properties. The representation
should neither be “too large” nor “too small” (when this is possible!), and the
access to its elements (does r(x, y) hold?) should be relatively efficient.

Being a personal working paper we felt free to include when appropriate parts
or adaptations of [3, 2, 5].

2 Basic concepts

Some basic concepts are assumed, namely first order logic (FOL), FOL with
equality, language (or signature) L, relation symbols, constants and function
symbols, arity, model, satisfiable sentence, valid sentence, Σ |= σ.

Definition 1 Two functions f(n) : N→ N and g(n) : N→ N are polynomially
related if there are positive polynomials p and p′ such that |f(n)| ≤ p(|g(n)|)
and |g(n)| ≤ p′(|f(n)|).
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3 Differences between the finite and infinite model
theories

3.1 Gödel’s completeness theorem

Theorem 1 (Gödel’s completeness theorem) For a particular proof sys-
tem of first order logic, we have Σ |= σ iff Σ ` σ.

This is remarkable: a universal search over all possible structures A (there
are uncountable many!), checking for each one whether every structure A that
satisfies Σ also satisfies σ, is equivalent to the existence of a finite object (a
proof of σ from Σ).

3.2 Recursiveness of sets of valid formulas

Corollary 1 The set of valid first-order sentences is r.e. but not recursive.

Theorem 2 (Church’s theorem) Assume that the language L contains some
relation symbol that is not unary. Then the set of valid first-order sentences
over L is not recursive.

Corollary 2 The set of valid first-order sentences is r.e. but not recursive.

Theorem 3 (Finite structures, Trakhtenbrot 1994) Assume that the lan-
guage L contains some relation symbol that is not unary. The set of valid
first-order sentences over L is co-r.e. but not r.e.

Note the difference between the general case (r.e. but not co-r.e.) and the finite
case (co-r.e. but not r.e.).

Definition 2 A sentence is finitely controllable if it is either unsatisfiable or
finitely satisfiable.

Theorem 4 Let L be a recursive, finitely controllable set of FOL sentences.
Then the decision problem “is σ ∈ L satisfiable?” is decidable.

Proof. Run in parallel: (i) a search for a finite structure that satisfies σ; (ii) a
search for a proof of unsatisfiability. One and only one of these processes fin-
ishes. �

3.3 Compactness theorem

Theorem 5 (Compactness theorem) Let Σ be a set of first-order sentences.
If every finite subset of Σ is satisfiable, then Σ is satisfiable.
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Proof. This proof uses twice Gödel’s completeness theorem. If Σ is not satis-
fiable, then Σ |= false, where false is some logically false sentence such as
p ∧ ¬p. By the completeness theorem, Σ ` false. Thus, there is a proof of
false from Σ in Gödel’s proof system. Since every proof has finite length in
Gödel’s proof system, only a finite subset Σ′ ⊆ Σ is used in the proof. So,
Σ′ ` false. By the completeness theorem again, Σ′ |= false. So, Σ′ is not
satisfiable. �

Definition 3 Two structures A and B over the same language are said to
be elementarily equivalent if, for every first-order sentence σ in this language,
A |= σ iff B |= σ.

The compactness theorem is not true for finite structures. An example: for
each positive integer k, define σk to be a first-order sentence that says “there
are at least k points”. For example, we can express σ3 as

∃x1 ∃x2 ∃x3 : (x1 6= x2) ∧ (x2 6= x3) ∧ (x3 6= x1)

Let Σ = {σ1, σ2, . . .}. It is easy to see that Σ is not finitely satisfiable, although
every finite subset of Σ is finitely satisfiable.

Theorem 6 For every finite L-structure A, there is a first-order sentence σA

such that an arbitrary L-structure B isomorphic to A iff B |= σA.

Comment. Thus, each finite structure is characterized up to isomorphism by
a first-order sentence. Of course, no such theorem is true, in general, about
infinite structures; consider, for example, non-standard models of arithmetic.

4 Spectra and generalized spectra (structures)

Definition 4 The spectrum of a first order sentence is the set of cardinalities
of the universes of its finite models.

Example 1 Consider the FO sentence ∀x : (f(x) 6= x) ∧ (∀x∀y : (f(x) = y ⇔
f(y) = x)). The spectrum is the set of even positive integers.

Example 2 Consider a FO sentence that is the conjunction of the field axioms
plus conditions to establish that the ternary relations “+” and “×” are functions
N2 → N. Example of one element of the conjunction: ∀x ∀y ∀x : (x · (y · z)) =
((x · y) · z). The spectrum is the set of powers of primes.

Open problem 1 (Asser problem) Is the class of spectra closed under com-
plement?
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Notation. The expression σ(P, Q, . . . , R) denotes a first-order sentence over
the language {P, Q, . . . , R}. The arity of each relation is usually clear from the
context. If not, we write for instance R(a) if R has arity a.
An example of a sentence of the form σ(P, Q, R): ∀x∃y : (P (x) ∧ Q(y)) ⇒
R(x, y). �

Definition 5 A generalized spectra or Σ1
1 is a class over finite structures,

where some, but not necessarily all, of the relation symbols in the language
are existentially quantified. Thus, a Σ1

1 sentence has the form ∃Q1 . . . Qk :
σ(P1, . . . , Ps, Q1, . . . Qk), where σ(P1, . . . , Ps, Q1, . . . Qk) is a first-order sen-
tence and where the Qi’s are relation symbols (these are referred to as the extra
relation symbols).

Comment. FOL sentences are not very expressive.

Comment. Σ1
1 sentences are more expressive than FOL. They can, for instance,

describe 3COL: there is a FOL sentence σ of the form

∃Q1Q2Q3 : σ(P,Q1, Q2, Q3)

that states “the graph represented by the binary relation P (edges) is 3-colorable.
A possible FOL sentence is

σ(P,Q1, Q2, Q3) =
[∀x : Q1(x) ∨Q2(x) ∨Q3(x)]∧ (1)
[∀x : ¬(Q1(x) ∧Q2(x)) ∧ ¬(Q2(x) ∧Q3(x)) ∧ ¬(Q3(x) ∧Q1(x))]∧ (2)
[∀x, y : P (x, y)⇒
¬(Q1(x) ∧Q1(y)) ∧ ¬(Q2(x) ∧Q2(y)) ∧ ¬(Q3(x) ∧Q3(y))] (3)

(Term (2) is not needed.)

Theorem 7 (Decidability of spectra) Given a FOL expression σ(Q1, . . . , Qk)
with k ≥ 1, the value of n, and the relations Q1,. . . , Qk, it is decidable in poly-
nomial time if σ(Q1, . . . , Qk) is satisfied.

Proof. Use the given relations to evaluate σ. This can be done very efficiently.
�

Definition 6 (SPECTRA class of decision problem) For each problem in
the class there is a fixed FOL expression σ(Q1, . . . , Qk)

Instance: A positive integer n.
Question: Is n in the spectra of σ?

Comment. The language associated with a SPECTRA problem is a set of inte-
gers
Comment. One way to view the spectrum of σ(Q1, . . . , Qk) is as the set of fi-
nite models of ∃Q1, . . . , Qk : σ(Q1, . . . , Qk). Since all of the relation symbols
in the language are quantified, and a model is simply a structure with universe
of size n over the empty language, we can identify such a structure with the
natural number n.
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Proof. The number of tuples 〈Q1,. . . , Qk〉 in a universe of cardinality n is finite;
for all those tuples evaluate σ and return true iff for some tuple the value of σ
is true. �

Important comment. This algorithm is in NE (non-deterministic exponential)
only because the representation of the instance has very small length, |n| ≈
log n.

5 Encoding and decision problems

In complexity, the efficiency of an algorithm is measured relatively to the length
of the input. This implies that different input encodings usually correspond to
different efficiencies. As an example, suppose that for some algorithm the input
is n is represented in unary (1n) and that the execution time is t = n2. The
algorithm is clearly polynomial. However, if the input is written in binary, its
length is about m = |n| ≈ log n, and the same execution time t, expressed in
terms of the input length (as it should be!), is exponential, namely t = n2 ≈
(2|n|)2 = (22|n|) = 22m.

Consider now the following example related to the output length. The input is n
and the output is 2(2n). Although the computation is simple, the output, written
in binary, has length 1 + 2n, which is exponential in terms of n, and super-
exponential in terms of |n| (about 22|n|

bits). In this example the execution
time of any algorithm is at least exponential, because the time needed to write
the result is at least exponential, no matter what input encoding is used.

5.1 Encoding: very small inputs

When possible, that is, for specific forms of input, a logarithmically short cod-
ing can transform a polynomial algorithm in an exponential algorithm. The
execution time is the same, but the measuring units are not.

Quoting [3]:

. . . generalized spectra are exponentially simpler (in terms of com-
plexity) than spectra. Intuitively, it corresponds to the fact that the
size of the input is exponentially bigger for generalized spectra than
for spectra. For example, it takes around n2 bits to encode a graph
on n points, whereas it takes only around log n bits to encode the
number n.

To avoid logarithmically (in terms of the universe) short encodings of structures,
the following convention (or “trick”) is used in [5]:

In the special case where τ includes no input relation symbols, we
pretend there is a unary relation symbol that is always false. For
example, if τ = ∅, then bin(A) = 0||A|| [bin(A) is the representation
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of the structure by a string of 0’s and 1’s, and n = ||A|| is the size
of the universe]. We do this to ensure that the size of bin(A) is at
least as large as ||A||.

5.2 Encoding: very large inputs

Very large inputs could also cause “complexity problems”. For instance, if the
input size is exponential in |n|, any algorithm would take an exponentially large
time only to read the input. But this situation (exponentially large inputs) does
not seem to occur “naturally”. We would have for instance, to repeat 2n times
each “0” or “1”. . . .

5.3 The G-SPECTRA (or FO∃) decision problem

Definition 7 (G-SPECTRA or FO∃ decision problem) For each problem there
is a fixed FOL expression1 σ(P1, . . . , Ps, Q1, . . . Qk).

Instance: A positive integer n, the cardinality of the universe and rela-
tions P1, P2,. . . , Ps.

Question: For the given n, are there relations Q1,. . . , Qk such that σ(P1, . . . , Ps, Q1, . . . Qk)
is true?

Comment. The language associated with a SPECTRA problem is the set of
tuples of structures 〈P1, . . . , Ps〉 (for all integers n ∈ N) for which the answer
is yes.
As an example, the language associated with the problem 3COL (see page 4)
is the set of graphs that are 3-colorable.

6 Finite Σ1
1 equals NP

We now look specifically to Theorem 8 of [3] (page 6) that essentially states
that the class of Σ1

1 languages (generalized spectra) and NP are identical. In
order to represent logic in Turing machines we need to encode relations as
strings. Conversely, to represent configurations and computation histories of
Turing machines we need to represent them as logic relations.

Theorem 8 Let L be a nonempty language, and let C be a set of finite L-
structures that is closed under isomorphism. Then C is a generalized spectrum
iff enc(C) is in NP.

The proof of Theorem 8 involves two directions. First consider a G-SPECTRA
question,

∃Q1, . . . , Qk : σ(P1, . . . , Ps, Q1, . . . Qk)?
1Recall the notation in page 4.
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Denote by n the size of the universe. Assuming a “reasonable” encoding, re-
lation with arity a can be represented by na bits, so that: (i) the tuple of
relations P1,. . . , Ps (instance of the problem) is represented by a string with
length polynomially related to n (assuming k ≥ 1!), (ii) similarly, the length
of tape where the NDTM writes a possible representation of the tuple of re-
lations Q1,. . . , Qk can always have length polynomially related to n. The
non-deterministic computation is now clear. First (non-deterministic phase),
write a string z with the appropriate length. Then (deterministic phase), verify
that z represents, according to the pre-established encoding schema, the rela-
tions Q1,. . . , Qk; then compute σ (represented by a string) in polynomial time
Thus, G-SPECTRA is in NP.

Conversely, consider any non-deterministic, polynomial time, computation by
a Turing machine M. Without entering in details, note that we have to define
appropriate logical relations, and a logical statement that specifies things like

– The initial contents of the tape is, say, x.

– M in the non-deterministic polynomial time phase writes a string y.

– The transitions in the deterministic phase correspond to the description
of M.

– By time nm, M has halted and accepted w.

There are detailed proofs of Theorem 8 for instance in [2] (Theorem 6, pages 53–
58) and [5] (Chapter 7). These proofs are not unlike those of Cook’s Theorem
([4], pages 39–44), or of the theorem 11.2 in [1] (Chapter 4, pages 126–132).

6.1 Encoding structures by strings

A relation with arity a can be represented by na bits, and, to represent a tuple
of relations 〈R1, . . . , Rk〉, we can use an additional symbol # and obtain

w = enc(R1)#enc(R2)# . . .#enc(Rk)

where |w| = 2a1 + 2a2 + . . .+ 2ak + (k − 1) bits.

Any other polynomially related representation (in terms of length) is equally
satisfying. In Sections 5.2 and 5.1 (pages 6 and 5 respectively) we discussed
codifications that are not polynomially related – but also not reasonable.

As an example of other representation, suppose that each entry in a relation is
represented by its coordinates (row and column, written in binary). We get a
larger number of bits than |w|, but a representation that is polynomially related
with |w|. Even if the coordinates are written in unary, we get a polynomially
related representation, because the total length is bounded by 2n× na.
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Example of a problematic representation

Consider the following problem.
Instance: A graph with n nodes and no more than 10 edges.
Question: Does the graph have a path with length 5?

Suppose that the graph is represented by n and a list of no more then 10 edges,
each one represented by a pair 〈row, column〉:

g = n#i1#j1#i2#j2 . . . ik#jk

where k ≤ 10 and all integers are represented in binary. The length of the
representation is

|g| = 2k + (2k + 1) log n ≤ (2k + 2) log n ≤ 22 log n

for n sufficiently large. It follows that if an algorithm is polynomial time in
terms of n, it is exponential in terms of the input length |g|.

6.2 Representing strings by structures

For simplicity assume a string s of 0’s and 1’s. We can encode s using a
language L = {U,<} where U and < are a unary and a binary relation symbols,
respectively. If the length of s is n, the universe is {0, 1, . . . , n − 1} and each
integer of the universe represents a position in the string.

U(i) =
{

true if b[i] = 1
false if b[i] = 0

For instance, the relation U that corresponds to the string 011 is

U = {false,true,true}

The relation “<” corresponds to the usual integer comparison.

7 How can logic represent the execution time?

The concepts of generalized spectrum or of FO∃ sentence seem completely un-
related to computing machines or execution time. Yet, Theorem 8 (page 6)
describes the class of languages that can be executed by non-deterministic Tur-
ing machines (NDTM) in polynomial time in terms of a syntactic logic language
(generalized spectra). How can a logic concept, the generalized spectrum (or
FO∃), be related with machines, execution times, or polynomials? It isn’t. The
relationship mentioned in Theorem 8 holds only with some reasonable (but
sometimes hidden) assumptions:

– [Non-deterministic computation.] Consider the quantified relationsQ1,. . . ,
Qk. For almost every reasonable method of representing these relations as
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a string in a NDTM (the non-deterministic part of the computation), the
length of the string (and the non-deterministic computation time) is poly-
nomially related with n. This non-deterministic computation can precede
all the deterministic computation. See however the sections 5.1 and 5.2
(pages 5 and 6 respectively), particularly the quotation of [3] in 5.1.

– [Representing quantified relations.] Similarly, the non-quantified rela-
tions P1,. . . , Pk, that are part of the NDTM input, should be represented
by a string with a length polynomially related with n.

– [Efficient TM access to relations.] The computational access to the (rep-
resentation of the) logic relations Q1,. . . , Qk, P1,. . . , Ps must be efficient
(polynomial time in terms of the input length); this excludes for instance
a situation where, perhaps with the goal of compressing the representa-
tion, the encoding schema is such that the information is very difficult
(exponential time) to extract from the representation. This item is in-
dependent of the previous one, which is related with the length of the
representation.

– [Deterministic computation.] The computation of a FO logic expression
σ(P1, . . . , Ps, Q1, . . . Qk), where the relations Qi and Pi are represented
by a string with length polynomially related with n, can be done in poly-
nomial time.

Relatively to the encoded length, we quote [4]:

Since any two reasonable encoding encoding schemes for a prob-
lem Π will yield polynomially related input lengths, all our results
will carry through for any such function [“length functions”] that
meets the above conditions [polynomially related].
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