
Programs with infinite loops:

from primitive recursive predicates

to the arithmetic hierarchy

((quite) preliminary)

Armando B. Matos

September 11, 2014

Abstract

Infinite time Turing machines have been studied by Hamkins, Loöwe,

Welch and others. In this work we concentrate in a restricted form of

infinite programs (“iprogrs”). These programs read integers (the input

arguments) and output an integer. They always halt, when “halting” is

defined in terms of the “limit technique”. After the execution of an infi-

nite loop, the value of a programming variable x is defined to be limi→∞ xi

(if the limit exists), where x0, x1. . . is the sequence of values taken by x.

Most previous work on infinite time Turing machines uses instead lim supxi

(which is always defined).

The language of iprogrs is as an extension of the LOOP language, which

characterizes exactly the class of primitive recursive functions. The lan-

guage of iprogrs characterizes the arithmetic hierarchy. Simple syntactic

restrictions based on the maximum depth of infinite loop nesting corre-

spond exactly to the levels of the arithmetic hierarchy. Some considera-

tions on the analysis of the complexity of these infinite programs are also

included in this work.

1

1 Introduction

We introduce the concept of iprogrs, or “infinite programs”. Imagine that

each basic step of a program runs 10% faster than the previous one. Then,

infinite loops finish in finite time, that is, an infinite number of program steps

is executed in a finite time. In this note we study a sub-class of these infinite

programs, or iprogrs. This sub-class, which can be seen an extension of the

LOOP language1, is sufficient to solve (in infinite time) every problem in the

arithmetical hierarchy.

We show that all first order logical statements are “solved” by these infinite

programs, see an example in Figure 1, and that specific levels of the hierarchy

correspond exactly to syntactic restrictions of iprogrs.

As we are considering the execution of infinite loops, we will use sentences

with unorthodox and strange meaning, like: “when the (infinite) loop finishes”

“after the execution of the infinite loop”, the program (containing infinite loops)

“solves” the problem. . . In order to avoid confusion we will quote these unortho-

dox uses (see the Section “About infinite time programs” below) , writing for

instance, every iprogr “halts”.
1The LOOP language characterizes exactly the set of primitive recursive functions, see below.

Input: the index m of a TM and its input x
c← 0
Initialize the computation of φm(x);
for all x do

if c = 0 then run one step of the computation φm(x);
if the TM halted then c← 1

done
return c

Figure 1: An infinite program that solves the halting problem.

2

About infinite time programs

In order to represent infinite programs we use a computation model based on

a register programming language because (i) as said above, primitive recursive

functions are easily characterized by a very simple register programming lan-

guage LOOP [7, 8] (whose programs always halt) and (ii) due to the Kleene

normal form Theorem, the arithmetic hierarchy can be bootstrapped (the level 0

of the hierarchy) with the primitive recursive predicates. Our language for infi-

nite programs is obtained by adding to the instructions of LOOP a single form

of infinite loop.

Consider the sequence of values taken by the programming variable x, say x0,

x1. . . . If the limit x′ def= limi→∞ xi exists, and, after the loop, we only use the

values of variables whose sequence has a limit, then there is some time t0 after

which x has the constant value x′.

Consider an infinite loop and programming variable whose sequence of val-

ues (associated with that loop) has a definite limit. The infinite loop can be

“breaked” after a long enough time so as to guarantee that the sequence has

already reached the final (integer!) value.

It is illustrative to reach the same result – the possibility of breaking infinite

loops – using the concept of Kolmogorov complexity [5]. Consider the execution

of a program containing the infinite loop

c← 0; for all x{if f(x) = 0 then c← 1}

where f is primitive recursive and f(x) is computed by some LOOP program.

There is a (possibly very large) value x′ of x such that, if f(x) 6= 0 for all

0 ≤ x ≤ x′, then f(x) 6= 0 for all x (otherwise x′ could be described with less

than K(x′) bits); that is, infinite loops can in principle be transformed in finite

ones. However, the value of x′ is in general unknown and unknowable.

3

A slight modification of the arithmetic hierarchy

The ∆0
n class of the arithmetic hierarchy (AH) is defined in terms of the class of

total recursive functions. However, this class can not be characterized by a “in-

dexed” model of computation2, so that there is no class of programs (or of recur-

sive equation definition) that corresponds exactly to the class of total recursive

functions. Thus, it is convenient to use a variant of the arithmetic hierarchy in

which only the ∆0
n classes are different. We are essentially bootstrapping the

arithmetic hierarchy with the class or primitive recursive predicates, instead of

using, as usual, the class of total (computable) functions3. Define ∆PR
n as the

class of logical statements that can be decided with an oracle to problems in Σ0
n;

and ∆PR
0 as the class of primitive recursive predicates. The Kleene normal form

Theorem shows that the (standard) arithmetic hierarchy can be bootstrapped

with ∆PR
0 .

Related work

Our work differs from the important work of Hamkins and others on infinite

time Turing machines [4, 2, 1] in two main aspects:

– The infinite programs considered in this work always “halt”. LOOP pro-

grams always halt (without quotes). The language for infinite programs

used in this work has only one more instruction than the LOOP language.

– In an infinite computation or loop, let x1, x2. . . be the infinite sequence

of values taken by the cell (or programming variable) x, that is, xi is the

contents of x at time ti. In [4] when a loop finishes, the contents of the

cell x is defined to be lim supxi (which always exist), while in this work

the “final” value of the programming variable x is simply limxi, if the

2If φi indexes some class of recursive total functions, the function f(n)
def
= φm(m) + 1 is total

recursive but not in the class.
3Turing, for instance, notices this essential difference in [?] when he says: “The class of
primitive recursive functions is more restricted than the computable functions, but has the
advantage that there is a process whereby one can tell of a set of equations whether it defines
a primitive recursive function in the manner described above.”.

4

limit exists4. If the limit does not exist, we consider the variable x to be

undefined after the execution of the infinite loop; in this case, the value

of x can be no more used by the program. This semantics corresponds to

force a stop of every infinite loop “for all x. . . ” after x takes a sufficient

large value, that is, after all converging sequences have stabilized. There

is no difference in behaviour between this semantics and the execution

of the entire infinite loop. Of course, it may be impossible to know this

“sufficiently large value” of x.

2 Preliminaries

The LOOP language. There are various register languages that correspond

exactly to the class of primitive recursive functions. We use the LOOP lan-

guage [7, 8] whose registers (or “programming variables”) are x0, x1. . . . The n

arguments of an n-ary function are the initial values of the registers x1,. . . ,

xn and the output is the contents of register x0 when the program halts.

The set of instructions is (i) xi ← 0, (ii) xi ← xi + 1, (iii) xi ← xj , and

(iv) for xi{〈LOOP program P 〉}. In this last instruction the program P is

executed a number of times that is the initial contents of xi. When writing

programs we will not follow this rigid syntax, using for instance other names

for variables, functions known to be primitive recursive, etc.

Ordinal arithmetic.

Due to the syntactic form of iprogrs (a simple extension of LOOP programs []),

every ordinal that we will use is bounded by some term of the form aωn where a

and n are positive integers. We work with a simple form of “ordinal order of

magnitude” and only need a few simple facts about ordinal number theory.

For instance, for the kind of ordinals mentioned above the Cantor normal form

reduces to the term with the largest exponent. More specifically, the only rules

that we will use are:
4A similar definition was used in [?]

5

aωn + bωn = (a+ b)ωn.

For n > m, aωn + bωm = aωn

where a, b, m and n are integers with a ≥ 1, b ≥ 1.

The iprogr language

The term “iprogr” (“infinite program”) denotes both a programming language

and a program written in that language.

The iprogr syntax includes the instructions of the LOOP language [7, 8] char-

acterizing primitive recursive functions, as well as infinite loops of the form

for all x do

〈iprogr〉

done

It is important to note the difference between infinite loops (“for allx{. . .}”)

and finite, always terminating, loops (“forx{. . .}”). The later is an instruction

of the LOOP language, while the former is the (only) new instruction which

allows the implementation of infinite programs. Infinite and finite loops will

sometimes be abbreviated as “[. . .]” and “(. . .)” respectively.

For simplicity we do not include the “break” instruction which is used in many

programming languages for aborting infinite loops. The inclusion of the break

instruction would allow “faster” programs in certain circumstances. That hap-

pens namely in Σ0
1 problems with positive answers, and in Π0

1 problems with

negative answers.

6

2.1 The semantics of the language

Essentially we have to define the contents of a programming variable when

the execution of an infinite loop “finishes”. For that purpose we will use the

mathematical limit, when it exists, of the sequence associated with the variable.

In iprogrs a programming variable either contains an integer or is undefined.

In an infinite loop the successive values of a programming variable define a

mathematical (infinite) sequence.

Definition 1 (Undefined values) Let Nν = N∪{ν} where ν means an unde-

fined value. Consider a sequence xn defined in Nν . We say that limn→∞ xn = a

with a ∈ N, if ∃m∀n ≥ m : an = a.

Definition 2 (Sequence associated with a variable) For every infinite loop,

every programming variable x defines a sequence xn as follows: x0 is the value

of x when the loop begins; for n ≥ 1, the value of xn is the contents of the

programming variable x after n execution steps. The execution of each internal

infinite loop only counts as one execution step.

Definition 3 (Well defined programming variable) Consider an infinite

loop and let xn be the sequence associated with the programming variable x. We

say that x is well defined and has value a when limn→∞ xn = a ∈ N. Otherwise

(that is, if the sequence xn has infinitely many ν’s or is not ultimately constant),

we say that, after the execution of the infinite loop, the value of x is undefined

and write x = ν.

Thus, a programming variable is well defined if the value that it contains is an

integer.

As an example, if x is not modified inside an infinite loop, the corresponding

sequence is constant.

Definition 4 (Well defined iprogr) An iprogr is well defined if for every

infinite loop and every programming variable x with an integer initial value

7

(that is, well defined at the beginning of the loop), the value of x is well defined

after the execution of the loop.

Note that if the value of x is well defined at the beginning of the infinite loop,

x can be undefined at the end of the loop only if x is modified (some value is

assigned to x) inside the loop.

As an example, the iprogr

x← 0; for all y {x← 1− x}

(where “1− x” would be implemented with the LOOP instructions) is not well

defined.

Definition 5 (Well defined iprogr – a relaxation of definition 4) An iprogr

is well defined if, after the execution of any infinite loop, the values of the vari-

ables that are undefined are not used5. With this definition, in any iprogr, if

the input variables are well defined, the “output variable” is also well defined.

This relaxed definition will be used in the sequel.

2.2 Restricted infinite programs

We now define a restricted form of infinite programs which is enough to “solve”

all the problems of the arithmetic hierarchy.

Definition 6 (restricted iprogrs) A restricted iprogrs is either a primitive

recursive program (i.e. a LOOP program) or an infinite program in which every

infinite loop has the form

c← 0

for all x do
5New values can of course be assigned to these undefined variables. Also note that, like LOOP
programs, iprogrs always proceed forward, that is, there are no backward jumps (except of
course, those implicit in the semantics of “for” and “for all” instructions.

8

〈restricted iprogr〉

if y = 1 then c← 1

done

return c

where “y = 1” means: x is defined and has value 1.

The following result is easily proved.

Theorem 1 Every restricted iprogr is well defined (Definition 4, page 7).

In the proof of Theorem 1, page 11, the reader can see an example of a restricted

iprogr that decides the statement ∀x∃y : f(x, y) = 0, where f is a primitive

recursive function.

Infinite programs and the arithmetic hierarchy

In general it may be difficult or impossible to determine if a limit limn→∞ xn

exists. However, if we only use restricted iprogrs, the existence of those limits

is guaranteed. Moreover, this class of iprogrs “solves” all the logical state-

ments (Theorem 2, page 10) and some syntactic sub-classes of restricted ipro-

grs correspond exactly to the levels of the Arithmetic Hierarchy in the sense of

Theorem 1, page 11.

The following example is an illustration of such form of infinite loops, where

S(f, x) is a (recursive) statement about the value of a primitive recursive func-

tion f for the argument x, such as “f(x) = 0”:

c← 0

for all x do

if S(f, x) then c← 1

done

return c

9

Comments The the sequence associated with c has a limit. For the case

S(f, x) ≡ [f(x) = 0],

– the limit is 1 when ∃x : f(x) = 0.

– the limit is 0 when ∀x : f(x) 6= 0.

In the following we use the Tarski-Kuratowski Theorem ([9]) to arithmetical

hierarchy.

An well defined iprogr may of course “solve” undecidable problems. In fact,

Theorem 2 Every statement in the Arithmetic Hierarchy, or equivalently, ev-

ery first order arithmetic statement is “solved” by a restricted infinite program.

Proof. By induction. We illustrate with an iprogr that “solves” the Π2 state-

ment ∀x∃y : f(x, y) = 0.

c← 1

for all x do

c′ ← 0

for all y do

if f(x, y) = 0 then c′ ← 1

done

if c′ = 0 then c← 0

done

return c

(1)

�

Based on the maximum nesting of infinite loops, we classify iprogrs in syntactic

classes. This is similar to what is done for instance in [7, 8].

Definition 7 (Synctatic classification of iprogrs) An infinite program be-

longs to the class Ln if the infinite loops are nested to a depth of at most n.

10

Definition 8 Consider an infinite loop of an iprogr and let tn be the successive

execution times of the inner part (body) of an infinite loop, not including the

inner infinite loops; that is, of the inner section of LOOP code. If for every n

large enough we have t ≥ a, we say that a is an ultimate time lower bound

(“ulb”) of the (infinite loop). It is assumed that all the ulb’s are positive.

Conjecture 1 (Loop nesting, arithmetic hierarchy degree, and efficiency)

For n ≥ 1, the function can be implemented by a well defined Ln programs if

and only if it is in the class ∆PR
n . Programs in the class Ln have a lower bound

execution time ωn. More precisely, t ≥ (Σ1≤i≤k ai)ωn, where the ai are ulb’s of

the infinite loops with level n.

Note. This result is similar to Theorem 5 of [7]. Given the the execution times

are infinite, it would be interesting to find a correspondence between the ordinal

upper bound execution time and the class Ln. �

Proof. Apparently not difficult. Use the arithmetic hierarchy having as degree 0

the primitive recursive predicates.

The following example will clarify the efficiency issue. Denote an infinite loop

“for all x . . .” by “[. . .]” and the ulb’s by a, b. . . The execution time t of the

program

[a [b] [c [d]] e] f [[[g]]]

satisfies

t ≥ (a+ e)ω + (b+ c)ω2 + dω3 + f + gω3

= (a+ e)ω + (b+ c)ω2 + (d+ g)ω3 + f

= (d+ g)ω3

= Ω(ω3)

�

11

3 Conclusions and future work

We mention two possible are as for further research.

3.0.1 Execution time: upper bounds

The establishment of upper (similar to the O order) or exact (similar to the Ω

order) orders of magnitude for the execution if infinite programs seems more

difficult.

For instance, what is the upper bound of the following infinite loop?

for all x { for x { for x { P}}}

If a is a time lower bound for P , and assuming that a is constant, one would

have the overall execution time

a+ 22a+ 32a+ . . . = a(1 + 22 + 32 + . . .)

How do we represent this sum as an ordinal?

3.1 On program transformations

Many techniques for program transformation and optimization are known [?,

?, ?] and widely used, for instance, in compiler design [?, ?, ?]. Corresponding

techniques for infinite programs have, as far as we know, not been developed.

For instance, any “classical” program with any number of (arbitrarily imbri-

cated) loops (say “for” and “while” instructions) can be transformed in a

program with a single loop, as illustrated in Figure 2, page 13.

For infinite programs such transformation is not valid. Consider iprogr (1),

page 10. Here, the inner infinite loop “for all y” must “finish” before the

next value of x is considered, and it does not seem easy (to me) to find an

12

for i← 1 to m do
〈P1〉
for j ← 1 to n do

〈P2〉
done
〈P3〉

done

i← 1
j ← 0
while i ≤ m do

if j = 0
〈P1〉
j ← 1

else if 1 ≤ j ≤ m then
〈P2〉
j ← j + 1

else //comment: here j = m+ 1
〈P3〉
i← i+ 1
j ← 0

endif
done

Figure 2: The program at right has a single loop and is equivalent to the
program at left. For iprogrs this kind of transformation is not possible.

equivalent single (infinite) loop.

This difficulty seem consistent with the fact that we cannot express with a single

infinite loop (of a restricted iprogr) an arbitrary statement of the level 2 of the

arithmetic hierarchy.

References

[1] Samuel Coskey and Joel David Hamkins. Infinite time Turing machines

and an application to the hierarchy of equivalence relations on the reals.

url=arXiv:1101.1864v1, 2011.

[2] Joel Hamkins, Russell Miller, Daniel Seabold, and Steve Warner. Infinite

time computable model theory. url=arXiv:math/0602483, 2006.

[3] Joel David Hamkins. Supertask computation. In Classical and new

paradigms of computation and their complexity hierarchies, volume 23 of

Trends Log. Stud. Log. Libr., pages 141–158, Dordrecht, 2004. Kluwer Acad.

13

arXiv:1101.1864v1
arXiv:math/0602483

Publ. Papers of the conference “Foundations of the Formal Sciences III”

held in Vienna, September 21-24, 2001.

[4] Joel David Hamkins and Andy Lewis. Infinite time Turing machines.

url=arxiv.org/pdf/math/0212047, 2008.

[5] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and

Its Applications. Springer, third edition, 2008.

[6] Benedikt Löwe. Revision sequences and computers with an infinite amount

of time. J. Log. Comput., 11(1):25–40, 2001.

[7] A. R. Meyer and D. M. Ritchie. The complexity of loop programs. Proceed-

ings of 22nd National Conference of the ACM, pages 465–469, 1967.

[8] A. R. Meyer and D. M. Ritchie. Computational complexity and program

structure. IBM Research Report RC 1817, 1967.

[9] Hartley Rogers. Theory of Recursive Functions and Effective Computability.

MIT Press Cambridge, MA, 1987. Third printing (1992).

14

arxiv.org/pdf/math/0212047

	Introduction
	Preliminaries
	The semantics of the language
	Restricted infinite programs

	Conclusions and future work
	On program transformations

