
On the Kleene normal form
Armando B. Matos
armandobcm@yahoo.com

January 16, 2014

Abstract

[to do]

Contents

1 Introduction 2

2 The Kleene’s normal form in the literature 2

3 Kleene’s T predicate From Wikipedia, the free encyclopedia 4

3.1 Definition . 4

3.2 Normal form theorem . 5

3.3 Formalization . 6

3.4 Arithmetical hierarchy . 6

1

1 Introduction

In this note we transcribe and comment parts of some papers dealing with
Kleene normal form. It was written mainly for personal purposes but may be
of interest for other researchers. Please note that the notation is not always
consistent.

It helps to have a good feeling for what can be done with primitive recursive
(pr) functions. For instance, suppose that we know that the function step(e, x),
having as arguments the index e of a Turing machine and an integer x encoding
its configuration, and returning the configuration that results from one compu-
tation step, is pr. Then, it should be clear that the function run(e, x, n) that
returns the configuration after n computation steps is also pr.

For the readers accustomed to computer programming, the characterization of
pr functions by the LOOP language [7] programs may be useful.

2 The Kleene’s normal form in the literature

The main burden in proving Kleene’s normal form Theorem is to show that there
are certain functions (related with “universal” or “general purpose” models of
computation) that are primitive recursive. These proofs are neither difficult nor
deep, but are often rather laborious. For instance, there is a primitive recursive
function that accepts an integer y and checks things like

1. y represents a computation history of a certain Turing machine T – es-
sentially a succession of machine configurations.

2. The state in the first configuration is the initial state.

3. The application of transtion rules of T to each configuration produces
the next configuration, except the first, is obtained from the previous one
with the application

Let us state the Kleene’s normal form Theorem from [8], page 90.

Theorem 1 (KNF Theorem, Odifreddi) There is a PR function U and
(for each n ≥ 1) PR predicates Tn, such that for every recursive (total) func-
tion f of n variables there is a number e (called the index of f) for which the
following hold:

1. ∀x1 . . . xn∃y : T (e, x1, . . . , xn, y)

2

2. U(µyTn(e, x1, . . . , xn, y)).

Theorem 1 is in fact a special case for it deals only with total functions. Also
note that criterium 1. above, which characterizes the total character of the
function, is not effective.

Most formulations of the Theorem are “general” in the sense that they give a
representation or computation for any partial recursive function. A part of the
statement which is often emphasised is that, to represent any partial recursive
function, the operator µ needs to be used at most once. For instance, the
theorem is stated in [1], page 94, is

Theorem 2 (KNF Theorem, Boolos, Burgess and Jeffrey) Every recur-
sive total or partial function can be obtained from the basic functions (zero, suc-
cessor, identity) by composition, primitive recursion, and minimization, using
this last process no more than once.

Sometimes, a register language, such as WHILE, is used as the general purpose
computation model. In this case, Kleene’s normal form Theorem can be stated
as follows. For any partial recursive function f(x) there is a program of the
following form (which can be slightly simplified) that computes it.

% Input in registers x1,. . . xn, e
% Output in register x0
PR function (no WHILE’s)
WHILE y 6= 0

PR function (no WHILE’s)
ENDWHILE
PR function (no WHILE’s)

A more detailed information about a “normal form” WHILE program can be
seen for instance in [2].

It is also interesting to mention Kleene’s original version of the normal form
Theorem, as stated in [5], page 288. The notation was slightly adapted.

Theorem 3 (KNF Theorem, Kleene) For each n ≥ 0: given any general
recursive function φ(x1, . . . , xn), a number e can be found such that

∀x1 . . . xn∃y : Tn(e, x1, . . . , xn, y), (1)
φ(x1, . . . , xn) = U(µyTn(e, x1, . . . , xn, y)), (2)

∀x1 . . . xny : Tn(e, x1, . . . , xn, y) ⇒ U(y) = φ(x1, . . . , xn) (3)

where Tn(e, x1, . . . , xn, y) and U(y) are the particular primitive recursive predi-
cate and function defined above.

3

Again, this result mentions only total (recursive) functions. Condition 1 says
that the function represented by the index e is total. Condition 2 says that
U(µyTn(. . .)) is in fact the function φ. Finally, condition 3 says that, for any
halting computational history y, the value U(y) is correct, that is, equal to
φ(x1, . . . , xn).

Regarding condition 3, we recall that the computational models or definitional
systems may be non-deterministic, so that this is a kind of “normal form”
theorem. Particular computations or definition sequences may of course diverge,
even for total functions.

It seems that the equality of two partial recursive functions is not expressed by
this result. Write as usual f(x) ≡ g(x) if, for any input x the following holds

Either f(x) and f(x) are both undefined
. . . or both are defined and have the same value

and, of course, µy(P (x, y)), where P is a total predicate, is undefined if there
is no y such that P (x, y) holds. Then (part of) Theorem 3 could be rephrased
as the following function equality

φ(x) ≡ U(µyTn(e, x, y))

3 Kleene’s T predicate From Wikipedia, the free en-
cyclopedia

In computability theory, the T predicate, first studied by mathematician Stephen
Cole Kleene, is a particular set of triples of natural numbers that is used to rep-
resent computable functions within formal theories of arithmetic. Informally,
the T predicate tells whether a particular computer program will halt when run
with a particular input, and the corresponding U function is used to obtain the
results of the computation if the program does halt. As with the smn theorem,
the original notation used by Kleene has become standard terminology for the
concept1

3.1 Definition

The definition depends on a suitable Gödel numbering that assigns natural
numbers to computable functions. This numbering must be sufficiently effective
that, given an index of a computable function and an input to the function, it is
1The predicate described here was presented in [6, 4], and this is what is usually called
”Kleene’s T predicate”. [5] uses the letter T to describe a different predicate related to
computable functions, but which cannot be used to obtain Kleene’s normal form theorem.

4

possible to effectively simulate the computation of the function on that input.
The T predicate is obtained by formalizing this simulation.

The ternary relation T1(e, i, x) takes three natural numbers as arguments. The
triples of numbers (e, i, x) that belong to the relation (the ones for which
T1(e,i,x) is true) are defined to be exactly

the triples in which x encodes a computation history of the com-
putable function with index e when run with input i, and the pro-
gram halts as the last step of this computation history.

That is, T1:

– Asks whether x is the Gödel number of a finite sequence 〈xj〉 of complete
configurations of the Turing machine with index e, running a computation
on input i.

– If so, T1 then asks if this sequence begins with the starting state of the
computation and each successive element of the sequence corresponds to
a single step of the Turing machine.

– If it does, T1 finally asks whether the sequence 〈xj〉 ends with the machine
in a halting state.

If all three of these questions have a positive answer, then T1(e, i, x) holds (is
true). Otherwise, T1(e, i, x) does not hold (is false).

There is a corresponding function U such that if T (e, i, x) holds then U(x)
returns the output of the function with index e on input i.

Because Kleene’s formalism attaches a number of inputs to each function, the
predicate T1 can only be used for functions that take one input. There are
additional predicates for functions with multiple inputs; the relation

Tk(e, i1, . . . , ik, x)

holds if x encodes a halting computation of the function with index e on the
inputs i1,. . . , ik.

3.2 Normal form theorem

The T predicate can be used to obtain Kleene’s normal form theorem for com-
putable functions (see [9], page 15). This states there exists a primitive recursive
function U such that a function f of one integer argument is computable if and
only if there is a number e such that for all n one has

f(n) ' U(µxT (e, n, x)),

5

where

1. µ is the µ operator, namely µxφ(x) is the smallest natural number x′ such
that φ(x′) holds and, for every 0 ≤ x < x′, φ(x) is defined but does not
hold (is false). Note that the operator µ can be effectively implemented
by, say, a Turing machine.

2. ' holds if both sides are undefined or if both are defined and they are
equal.

Here U is a universal operation (it is independent of the computable function f)
whose purpose is to extract, from the number x (encoding a complete compu-
tation history) returned by the operator µ, just the value f(n) that was found
at the end of the computation.

3.3 Formalization

The T predicate is primitive recursive in the sense that there is a primitive
recursive function that, given inputs for the predicate, correctly determine the
truth value of the predicate on those inputs. Similarly, the U function is prim-
itive recursive.

Because of this, any theory of arithmetic that is able to represent every primitive
recursive function is able to represent T and U . Examples of such arithmeti-
cal theories include Robinson arithmetic and stronger theories such as Peano
arithmetic.

3.4 Arithmetical hierarchy

In addition to encoding computability, the T predicate can be used to generate
complete sets in the arithmetical hierarchy. In particular, the set

K = {e | ∃x : T (e, 0, x)}

which is of the same Turing degree as the halting problem, is a Σ0
1 complete

unary relation (see [9], pages 28, 41). More generally, the set

Kn+1 = {〈e, a1, . . . , an〉 | ∃x : T (e, a1, . . . , an, x)}

is a Σ0
1 complete (n + 1)-ary predicate. Thus, once a representation of the T

predicate is obtained in a theory of arithmetic, a representation of a Σ0
1-complete

predicate can be obtained from it.

This construction can be extended higher in the arithmetical hierarchy, as in
Post’s theorem (compare with [3], page 397). For example, if a set A ⊆ Nk+1

6

is Σ0
n complete then the set

{〈a1, . . . , ak〉 | ∀x(〈a1, . . . , ak, x) ∈ A)}

is Π0
n+1 complete.

References

[1] George S. Boolos, John P. Burgess, and Richard C. Jeffrey. Computability
and Logic. Cambridge University Press, 2007. Fifth Edition.

[2] Computer Science Courses. Course CS 20a, Solution for homework #6, 2002.
http://courses.cms.caltech.edu/cs20/a/hw/hw6/solution/sol6.pdf.

[3] Peter G. Hinman. Recursion-theoretic Hierarchies. Perspectives in mathe-
matical logic. Springer-Verlag, 1978.

[4] Stephan Cole Kleene. Introduction to Metamathematics. North-Holland,
1952. Reprinted by Ishi press, 2009.

[5] Stephan Cole Kleene. Mathematical Logic. John Wiley, 1967. Reprinted by
Dover, 2001.

[6] Stephen Cole Kleene. Recursive predicates and quantifiers. Transactions of
the American Mathematical Society, 53(1):41–73, 1965.

[7] A. R. Meyer and D. M. Ritchie. The complexity of loop programs. Proceed-
ings of 22nd National Conference of the ACM, pages 465–469, 1967.

[8] Piergiorgio Odifreddi. Classical Recursion Theory – The Theory of Func-
tions and Sets of Natural Numbers. Studies in Logic and the Foundations
of Mathematics. Elsevier North Holland, first edition, 1989. Second impres-
sion.

[9] Robert I. Soare. Recursively Enumerable Sets and Degrees: A Study of Com-
putable Functions and Computably Generated Sets. Perspectives in Mathe-
matical Logic. Springer, 1987.

7

