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Abstract

We compare three forms of representing primitive recursive (PR) functions: the
“standard” definition, essentially based on primitive recursion, a definition based
on a specific register language (whose programs always halt) called LOOP, and
the “denotational” definition which uses the methods of denotational semantics
applied to the characterization of PR functions.

If a language is total we do not need all the machinery developed by Scott,
Stratchey, and others in order to characterize its denotational semantics. For
the case of the LOOP language the situation is even easier, because the composi-
tion of first order functions and one second order function is sufficient to write a
“closed mathematical expression” of an arbitrary primitive recursive definition.
The translation of the mathematical expression into a single-line functional lan-
guage computation CR is straightforward. In the expression CR, C denotes a
combinator expression (that represents a PR function) and R the tuple of vari-
ables. The set of PR functions correspond exactly to the well formed expressions
of combinators allowed in C, namely inc, dec, zero, and iter.

Although not obvious from the standard definition of primitive recursive func-
tions (involving in general several layers of primitive recursive definitions), the
possibility of representing the function as a single mathematical expression is
not surprising; it follows easily from the LOOP program representation.
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1 Introduction

If the functions mapping tuples of integers into tuples of integers (of the same
arity) are used as the mathematical objects, and the composition of those func-
tions as the mathematical operation, then every primitive recursive function
has a closed mathematical form. Only a few such functions are needed, but one
of them is a second order function.

The class of primitive recursive functions can be characterized by the LOOP
register language [7, 8], (or its equivalent variants). We use the denotational
semantics of LOOP to obtain a closed form mathematical expression1 of any PR
function. The LOOP program 2 (page 9) and the mathematical expression of
the function it defines 3 (page 9) look similar – once the notation is understood.
They are however entities from different conceptual worlds – programming and
mathematics.

From the closed form expression of a PR function f and its arguments x we
can also easily define a functional expression from which we can, in a functional
language like Haskell [10, 4], evaluate f(x), without using any program defining
the function; that is, the function is completely described by the (user) input
term. This contrasts with the use of the standard definition of primitive recur-
sive functions which can be directly translated into a Haskell program. Figure 1
(page 4) illustrates this somewhat simplistic view.

2 The standard definition of primitive recursive func-

tions

A primitive recursive function (PR) is either basic [11, 5, 9] or defined recursively
in terms of other primitive functions; thus, the complete definition involves in
general several levels of recursion.
1If we accept as a mathematical expression the composition of a function with itself x times,
where x is a (mathematical) variable, that is, something like λx1 . . . xn ·(iter f xk)(x1, . . . xn),
where “iter” is defined by “iter f 0 = identity” and “iter f(n+1) = f · (iter f n)”.
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Figure 1: Left: two definitions of primitive recursive functions: (i) [top center
and right] a Haskell program is defined from the standard definition of a PR
function and runs with the given arguments (“args”); (ii) [bottom center and
right] the mathematical expression that represents the PR function, denoted
by CME for “Closed Mathematical Expression”. It is an abstract representa-
tion which is obtained from the semantics of the “LOOP prog.”. The “term”
node is a Haskell term (including the definition and the values of the argu-
ments) obtained from the CME. It is given by the user as input to the Haskell
interpreter.

Definition 1 The class of primitive recursive (PR) functions is the
smallest class satisfying

1. [Zero and successor] 0(x) = 0 and S(x) (successor function) are
PR.

2. [Projection] For every n ≥ 1 and every 0 ≤ i ≤ n the function
πn

i (x1, . . . , xn) = xi is PR.

3. [Composition] For every k, m ≥ 1, given the k-ary PR function f
and the k PR m-ary functions gi (1 ≤ i ≤ m), the function

h(x1, . . . , xm) = f(g1(x1, . . . , xm), . . . , gk(x1, . . . , xm)

is PR.

4. [Primitive recursion] Given the k-ary PR function f and the k+2-
ary PR function g, the function{

h(0, x1, . . . , xk) = f(x1, . . . , xk)
h(S(y), x1, . . . , xk) = g(y, h(y, x1, . . . , xk), x1, . . . , xk)

is PR.
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3 Register languages

3.1 Instruction for and controlled composition

We use a variant of the LOOP language of [7] – a simple, imperative register
language. The functions that can be written in this language are exactly the
primitive recursive functions [7, 8].

Definition 2 LOOP language
A program is a sequence of zero or more instructions. The possible in-
structions are as follows, where x and x′ denote the contents of register x
respectively before and after the execution of the instruction.

– inc x: increment a register by 1, x′ = x+ 1.

– dec x: decrement a register by 1, x′ = x ·− 1.

– x←0: set to zero, x′ = 0.

– for x(P ): loop instruction, the LOOP program P is executed a
number of times which is the initial value of x. The program P

can modify the variable x.

Initially the arguments of an n-ary function are the contents of the
registers x1,. . . , xn. The output value is the final value of the register x0.

To distinguish programming variables (“registers”) from mathematical ones we
denote the former like this x and the later like this x.

We give particular attention to the semantics of the instruction for.

In order to compose a function with itself, we assume that both the inputs and
the outputs (note the plural) of a function (we could call it a “multifunction”)
are the same, say x def= (x1, . . . , xn).

We denote a function f composed with itself x times by

f (x)(z) def=

x f ’s︷ ︸︸ ︷
f(f(. . . f(z) . . .))

In particular f (0)(z) = z and f (1)(z) = f(z).

A register program P that uses registers x implements a function TP : Nn → Nn.
Let the operational semantics of for x(P ) be: execute x times the program P ,
where x is the input value corresponding to the register x (there is some am-
biguity here). Thus, we can characterize the denotational semantics of the for
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instruction as
P =⇒ TP

for x(P ) =⇒ TP
(x)

The LOOP language can be characterized by a denotational semantics based
in “transformations” or “multifunctions” (or simply “functions” of tuples into
tuples), like TP above or T in Figure 2 (page 7). This semantics includes projec-
tion, composition of functions (corresponding to the sequence of two programs),
and controlled composition of a program, see again Figure 2. It differs from the
standard denotational semantics in two aspects: (i) the semantic objects are ex-
clusively functions and (ii) there are no questions about program (or definition)
convergence, because all LOOP programs are total.

3.2 Instruction for: semantic analysis of an example

The for instruction is an iterative instruction of the LOOP language. Imper-
ative languages usually have iterative instructions. We have an iteration when
the same sequence of instructions (or program) are repeated a certain number
of times. Here we assume that number is known before the instruction starts.
If follows that, if the inner program never loops indefinitely, that the execution
of the for instruction also finishes.

Assume that we want to compute the product

F
def= E(1)× E(2)× . . .× E(n)

For 1 ≤ i ≤ n it is also assumed that the arithmetical value E(i) can be
computed by a LOOP program, say PE . A program in a LOOP-like language
that computes F is then

t← 0; inc t;
i← 0; inc i;
for n (

e← value of E(i);
t← t× e;
inc i;
)

return t;

The variable assignment (“←”) and multiplication are easily shown to be im-
plementable in LOOP. By assumption E(i) can be computed by a LOOP pro-
gram PE .

Figure 2 (page 7) is a diagram of the previous computation expressed in terms
of a composition of equal functions.
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T T T

i = 0 1 n n+ 1

1 E(1) Π1≤i<nE(i) Π1≤i≤nE(i)

Figure 2: Semantics of a LOOP program equivalent to “t←1; i←1; for n(e←
value of E(i); t ← t × e; inc i); return t”. The transformation T given
in (1) (page 7) is composed n times with itself, where n is the input value of
the register n; we have T (n)(0, 1) = (n, Π0≤i<nE(i)).

We now look ahead to the semantics of this LOOP program. The transforma-
tion T : N× N→ N× N is

T :

{
i′ = i+ 1
t′ = t× E(i)

(1)

As instruction sequencing corresponds semantically to composition, we get

Computation of F ⇔ T (n)|2 = Π0≤i<nE(i)

where “|2” means “take the projection along the second argument”.

4 Denotational semantics of the LOOP language

In the previous section we described the denotational semantics of one instruc-
tion of the LOOP language, namely the for instruction.

In Figure 3 (page 8) the complete semantics of the LOOP language is described.

This semantics is much simpler than the denotational semantics of languages
that may contain constants and variables of several types and of non total
languages (whose programs may not halt) because:

– The codomain of the semantics function is a set of functions Nn → Nn.
We dont’t have to deal with integers, the “store”, integer expressions. . .

– A program and its parts is always interpreted as a function of a tuple of n
integers into a tuple of n integers.
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LOOP program Transformation Nn → Nn

inc xi → n[λxi.xi + 1]
dec xi → n[λxi.xi ·− 1]
xi←0 → n[λxi.0]

for xi(P ) → n[TP
(xi)]

P ; Q → n[TQ] · n[TP ]

Figure 3: Semantics of the LOOP language. By n[T ] we mean that the transfor-
mation T , which only mentions some of the variables x1,. . . , xn, is extended to
all those variables; for transformation associated with every variable not men-
tioned by T is the identity. The transformation associated with the programs P
and Q are denoted by TP and TQ respectively. In the last line the symbol “·”
denotes the composition of transformations.

– As all the programs are total, we do not need a part of the Stratchey and
Scott semantics theory [13, 12, 14]. In particular we do not need concepts
like lattices, continuity, least upper bounds. . .

However we use the mathematical concept of “compose n times a function
T : Nn → Nn with itself”, denoted by T (n).

Notice that the rules described in Figure 3 allows us to describe the syntax of
any LOOP program as a single mathematical expression.

In order to simplify the notation we adopt the following conventions

– (Syntax and semantics) the registers x1, x2, . . . , xn may be denoted by
letters like a, b, n, x, y. . . , and similarly for mathematical variables.

– (Semantics) the extension to the n variables2 (x1, . . . , xn) is implicit. Thus
we write T instead of n[T ].

– (Semantics) λxi.xi+1, λxi.xi ·−1, and λxi.0 will be abbreviated by λxi [+1],
λxi [ ·−1], and λxi [0] respectively.

5 An example: various forms of expressing a prim-

itive recursive function related to the Fibonacci

sequence

We express the same PR function in several forms:

– a LOOP program, Section 5.1 (page 9); program 2, page 9;
2Or (x0, . . . , xn−1), when more convenient.

8



– a mathematical expression, Section 5.2 (page 9); expression (3), page 9;

– a Haskell term, Section 5.3 (page 9); expression (4), page 10;

– using the “standard definition”, see Section 5.4 (page 12).

We follow the above order: from the LOOP program, to the closed mathematical
expression, the Haskell computation and finally to the standard definition (this
last part is not completed).

5.1 LOOP program

The example is the following LOOP program over the registers (a, b, n) with
output3 b

P = for n(for b(inc a); for a(inc b)) (2)

The transformed values of a and b, as a function of n are explained in Section 4.2
of4 www.dcc.fc.up.pt/∼acm/questionsv.pdf.

5.2 Closed mathematical expression

The semantics of the program above is5

TP = (λb[+1](a) · λa[+1](b))
(n)

(3)

It is interesting how the denotational semantics of a LOOP program is always a
single mathematical expression from which we can compute directly particular
transformed tuples such as TP (1, 2, 10).

Theorem 1 Any primitive recursive function has a closed mathematical ex-
pression involving the composition and the controlled composition of the “incre-
ment”, “decrement”, and “set-to-zero” tuple transformations.

Note. The “set-to-zero” transformation is redundant, for it can be obtained wth
the other transformations. �

5.3 Haskell term

From a closed mathematical expression E of the n-ary primitive recursive func-
tion it is easy to define a “prompt command” E′(x1, . . . xn) for the computation
3Formally, one should use x1 ⇔ a, x2 ⇔ b, x3 ⇔ n, and make at the end an assignment
x0 ← b.

4This work deals however with the “reversible LOOP language”.
5Note that the conventional orders used for sequencing and for composition are opposite.
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of E(x1, . . . , xn) applied to n arguments.

First we use an algorithm that, given n, generates a set of fixed definitions, as
illustrated in Figure 4 for the case n = 3 (page 11). We emphasize that this
algorithm is fixed; it is the same for every n-ary primitive recursive function.

Then, from the closed mathematical expression corresponding to the primitive
recursive function, we write a Haskell term to obtain the desired computation.

In our example, we rewrite 3 (page 9) as a Haskell term.

(λb[+1](a) · λa[+1](b))
(n)

⇓

iter3 ((iter1 inc2).(iter2 inc1))

For reference we rewrite the Haskell term

? iter3 ((iter1 inc2).(iter2 inc1)) (4)

Using the Haskell interpreter we get for instance

? iter3 ((iter1 inc2).(iter2 inc1)) (1,0,10)

> (4181,6765,10)

What is this particular primitive recursive transformation? That should be
clear from the analysis of the answers to the following prompts; note that the
values of the function are 0, 1, 3, 8. . . (second from the right column)

Prompt Answer
iter3 ((iter1 inc2).(iter2 inc1)) (1,0, 0) ( 1, 0, 0)

iter3 ((iter1 inc2).(iter2 inc1)) (1,0, 1) ( 1, 1, 1)

iter3 ((iter1 inc2).(iter2 inc1)) (1,0, 2) ( 2, 3, 2)

iter3 ((iter1 inc2).(iter2 inc1)) (1,0, 3) ( 5, 8, 3)

iter3 ((iter1 inc2).(iter2 inc1)) (1,0, 4) ( 13, 21, 4)

iter3 ((iter1 inc2).(iter2 inc1)) (1,0, 5) ( 34, 55, 5)

iter3 ((iter1 inc2).(iter2 inc1)) (1,0, 6) ( 89, 144, 6)

iter3 ((iter1 inc2).(iter2 inc1)) (1,0, 7) ( 233, 377, 7)

iter3 ((iter1 inc2).(iter2 inc1)) (1,0, 8) ( 610, 987, 8)

iter3 ((iter1 inc2).(iter2 inc1)) (1,0, 9) (1597,2584, 9)

iter3 ((iter1 inc2).(iter2 inc1)) (1,0,10) (4181,6765,10)
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Fixed part:

comp 0 _ = id
iter (n+1) tr = tr.(iter n tr)
inc x = x+1
dec 0 = 0
dec (n+1) = n
zero _ = 0

This part depends only on the arity of the functions. In this case n = 3.

inc1 (x,y,z) = (inc x,y,z)
inc2 (x,y,z) = (x,inc y,z)
inc3 (x,y,z) = (x,y,inc z)

dec1 (x,y,z) = (dec x,y,z)
dec2 (x,y,z) = (x,dec y,z)
dec3 (x,y,z) = (x,y,dec z)

zero1 (x,y,z) = (zero x,y,z)
zero2 (x,y,z) = (x,zero y,z)
zero3 (x,y,z) = (x,y,zero z)

iter1 tr (x,y,z) = iter x tr (x,y,z)
iter2 tr (x,y,z) = iter y tr (x,y,z)
iter3 tr (x,y,z) = iter z tr (x,y,z)

Evaluating a primitive recursive function with given arguments. The func-
tion is completely described in the command line.

> iter3 ((iter1 inc2).(iter2 inc1)) (1,0,10) -- function args
(4181,6765,10) -- answer

Figure 4: The fixed set of Haskell definitions is illustrated for the case n =
3. With this fixed algorithm we can (bottom rectangle), evaluate any n-ary
primitive recursive function.
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5.4 Standard definition

The standard definition of primitive recursive function is Definition 1, page 4.
From [7, 8] it follows that the program 2, page 9 (or the mathematical expres-
sion 3, page 9) define a primitive recursive function. Direct proofs of this fact,
that is, proofs using Definition 1, seem to be somewhat more involved, see for
instance [3]; when written in detail, they involve a relatively large primitive
recursive definitions.

6 Another example: the maximum of two integers

As another example of a PR function written as a closed mathematical formula,
we consider the maximum of two integers, r def= max(x, y).

A LOOP program that computes the maximum is

Instruction Comment
(1) a← 0; for x(inc a); copy of x → a

(2) for y(dec a); if x > y: a > 0
(3) r← 0; for y(inc r); r = y by default. . .
(4) for a(r← 0; for x(inc r)); if y > y: result is r = x

Using the notation previously described, we get the following mathematical
expression6:

TP =

(4)︷ ︸︸ ︷
(λr[+1](x) · λr[0])

(a)
·

(3)︷ ︸︸ ︷
λr[+1](y) · λr[0] ·

(2)︷ ︸︸ ︷
λa[ ·−1](y) ·

(1)︷ ︸︸ ︷
λa[+1](x) · λa[0]

The sub-terms corresponding to the lines (1)–(4) of the LOOP program above
are indicated.

In order to write the Haskell term we make the following correspondence of
variables: r→ x0, x→ x1, y→ x2, a→ x3.

iter3(iter1 inc0.setZ0)

.iter2 inc0.setZ0

.iter2 dec3

.iter1 inc3.setZ3

or, with shorter mnemonics, c3(c1 i0.z0).c2 i0.z0.c2 d3.c1.i3.z3

6Recall that, by convention, opposite orders are used to write the composition of two functions
and the sequencing of two programs.
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Experimenting in the Haskell interpreter:

r x y a

> (c3(c1 i0.z0).c2 i0.z0.c2 d3.c1 i3.z3) (0,20,30,0)

(30,20,30,0)

The first integer of the result, 30, is the maximum.

It is not difficult to write the standard definition of max(x, y): it involves several
primitive recursions.

7 Comment

The program part of the Haskell computation, such as

c3(c1 i0 z0) c2 i0 z0 c2 d3 c1 i3 z3

in the last example (page 13) can be seen as a “combinator expression”. It can
corresponds to the tree

·

lllllllllllllllll

�������

7777777

KKKKKKKKKKK

RRRRRRRRRRRRRRRRR

UUUUUUUUUUUUUUUUUUUUUUU

c3

�������

::::::: c2 z0 c2 c1 z3

c1 z0 i0 d3 i3

i0

The set of combinators {S,K} is Turing-complete [1, 2], so that any partial
recursive function can be implemented with them. Is there some set of com-
binators that corresponds exactly to the set of PR functions? Section 6 shows
that the answer is yes, if an infinite set of combinators is used, namely inci,
deci, setZi, and iteri, for every i ∈ N.

Also, from [6], it seems to follow that a finite set of typed combinators is enough
to represent all PR functions, but a deeper understanding of those references
is needed. In particular we may ask: how can n-ary PR (for every n ∈ N)
functions be represented?
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