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Deterministic communication complexity - protocol

Goal: A and B want to compute f (x , y)

t : sequence of bits exchanged “so far”
I A knows x , B knows y , both know t .

Protocol P:
I A sends bit g(x , t) to B
I B sends bit h(y , t) to A
I . . .
I . . .

I . . . until A (or B) knows f (x , y);
she (he) sends that value to B (A)
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Some remarks. . .

I A and B have unlimited computational power
I x ∈ X , y ∈ Y , f : X × Y → Z

usually: f : {0, 1}n × {0, 1}n → {0, 1}
I Mf is the matrix corresponding to f :

Mf has |X | lines, |Y | columns and entries in Z .
usually: 2n × 2n, each entry is 0 or 1

I Every (deterministic) protocol for f induces
a partition of Mf in monochromatic rectangles

I The converse is not true
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CCP(f ), CC(f ). . .

I CCP(f ) is the communication complexity of the protocol P:

CCP(f ) = maximum number of exchanged bits that
guarantee that both A and B know f (x , y)

= height of the tree

communication complexity of f

CC(f ) = min
P
{CCP(f )}



CCP(f ), CC(f ). . .

I CCP(f ) is the communication complexity of the protocol P:

CCP(f ) = maximum number of exchanged bits that
guarantee that both A and B know f (x , y)

= height of the tree

communication complexity of f

CC(f ) = min
P
{CCP(f )}



CCP(f ), CC(f ). . .

I CCP(f ) is the communication complexity of the protocol P:

CCP(f ) = maximum number of exchanged bits that
guarantee that both A and B know f (x , y)

= height of the tree

communication complexity of f

CC(f ) = min
P
{CCP(f )}



CCP(f ), CC(f ). . .

I CCP(f ) is the communication complexity of the protocol P:

CCP(f ) = maximum number of exchanged bits that
guarantee that both A and B know f (x , y)

= height of the tree

communication complexity of f

CC(f ) = min
P
{CCP(f )}



Outline

Basics

Two lower bound techniques

How good is the log-rank lower bound? History. . .

How do “fooling sets” and “log-rank” compare?

Further study. . .



Fooling set method

I The height of a binary tree is ≥ log Nl where Nl is the
number of leaves.

I The “leaves of a protocol” correspond to a partition of Mf
into monochromatic rectangles.

I A monochromatic set S ⊂ Mf is a fooling set if

(x , y) ∈ S ∧ (x ′, y ′) ∈ S
=⇒

(S[x , y ′] 6= m) ∨ (S[x ′, y ] 6= m)

(thus two distinct elements of a fooling must disagree on
lines and on columns)
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Fooling set method (cont.)

The fooling set is blue, {(x , y), (x ′, y ′), . . .}

y y ′

x

x ′


. . . . . . . . . . . . . . .
. . . 1 . . . 1 . . .
. . . . . . . . . . . . . . .
. . . 0 . . . 1 . . .
. . . . . . . . . . . . . . .





Fooling set method (cont.)

I No 2 elements of a fooling set S can belong to the same
monochromatic rectangle.

I . . . every partition must contain at least |S| rectangles. . .
I . . . the tree of every protocol must have at least |S|

leaves. . .
I . . . the tree of every protocol must have height ≥ log |S|

leaves. . .
I . . . CC(f ) ≥ log |S|
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Fooling set method (cont.)

A slightly better lower bound: for Z = {0, 1}, a partition must
have at least one 0-rectangle; thus

Fooling set lowerbound

CC(f ) ≥ log(d|S|+ 1e)
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The rank method

Consider any monochromatic partition of Mf . Let the
1-rectangles be R1,. . . , Rm.

Let R′
i be the matrix with the dimensions of Mf and containing

the rectangle Ri (1’s):

Mi [k , l] =

{
1 if (k , l) is in Ri
0 otherwise



0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0
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Mf =
∑m

i=1 R′
i

rank(Mf ) ≤
∑m

i=1 rank(R′
i ) = m

log(rank(Mf )) ≤ log m ≤ CC(f )
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The rank method (cont.)

Counting also the 0-rectangles (using ¬f ), we get a slightly
better lower bound

Log-rank lowerbound

CC(f ) ≥ dlog(2× rank(Mf )− 1)e
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Notation. . .

(simplifications. . . )

I A function f denotes a family f2n, n = 1, 2 . . . of functions
with 2n variables.

I log rank(f ) (instead of log rank(Mf ))
I fs(s) = log |S|, the fooling set lower bound
I r(s) = log rank(f ), the rank lower bound

Notes:
• S above is the largest fooling set
• To compute the rank, matrix Mf in considered over the

field Q (or R)
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The log-rank conjecture

The log-rank conjecture says that the log-rank lower bound is
not “very bad”,
CONJ1:

∀f ∃k ∈ N+: CC(f ) has order O(r(f ))k

(remember: r(f ) = log(rank(f )))
or: the gap between r and CC(f ) can not be hyper-polinomial

A stronger form (CONJ2) of the conjecture is: CC(f ) has order
O(r(f )) . . . this form is false – no more a conjecture.
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I For some problems FSM is very weak:
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I LRM can be (slightly) worse than FSM:
There is a function f such that fs(f ) = n and
r(f ) = (log 3)/2n ≈ 0.79n
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Kolmogorov complexity methods (see “Individual
communication complexity” by Buhrman, Klauck,
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I Statements like “almost all functions have property P” are
not relevant for “real world” functions like gt(x , y ) or
median(x , y ) because “real world” functions are not
random, K (f |n) = c << 22n.
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