
Lower bounds for
deterministic communication complexity

Armando Matos

Departamento de Ciência de Computadores
Universidade de Porto

November 2006

Goals. . .

? Briefly review the concept of deterministic communication
complexity (DCC)

? Explain two methods for obtaining DCC lower bounds:
“fooling sets” and “log-rank”

? Compare those lower bounds

Goals. . .

? Briefly review the concept of deterministic communication
complexity (DCC)

? Explain two methods for obtaining DCC lower bounds:
“fooling sets” and “log-rank”

? Compare those lower bounds

Goals. . .

? Briefly review the concept of deterministic communication
complexity (DCC)

? Explain two methods for obtaining DCC lower bounds:
“fooling sets” and “log-rank”

? Compare those lower bounds

Goals. . .

? Briefly review the concept of deterministic communication
complexity (DCC)

? Explain two methods for obtaining DCC lower bounds:
“fooling sets” and “log-rank”

? Compare those lower bounds

Outline

Basics

Two lower bound techniques

How good is the log-rank lower bound? History. . .

How do “fooling sets” and “log-rank” compare?

Further study. . .

Deterministic communication complexity - protocol

Goal: A and B want to compute f (x , y)

t : sequence of bits exchanged “so far”
I A knows x , B knows y , both know t .

Protocol P:
I A sends bit g(x , t) to B
I B sends bit h(y , t) to A
I . . .
I . . .

I . . . until A (or B) knows f (x , y);
she (he) sends that value to B (A)

Deterministic communication complexity - protocol

Goal: A and B want to compute f (x , y)

t : sequence of bits exchanged “so far”

I A knows x , B knows y , both know t .
Protocol P:

I A sends bit g(x , t) to B
I B sends bit h(y , t) to A
I . . .
I . . .

I . . . until A (or B) knows f (x , y);
she (he) sends that value to B (A)

Deterministic communication complexity - protocol

Goal: A and B want to compute f (x , y)

t : sequence of bits exchanged “so far”
I A knows x , B knows y , both know t .

Protocol P:
I A sends bit g(x , t) to B
I B sends bit h(y , t) to A
I . . .
I . . .

I . . . until A (or B) knows f (x , y);
she (he) sends that value to B (A)

Deterministic communication complexity - protocol

Goal: A and B want to compute f (x , y)

t : sequence of bits exchanged “so far”
I A knows x , B knows y , both know t .

Protocol P:

I A sends bit g(x , t) to B
I B sends bit h(y , t) to A
I . . .
I . . .

I . . . until A (or B) knows f (x , y);
she (he) sends that value to B (A)

Deterministic communication complexity - protocol

Goal: A and B want to compute f (x , y)

t : sequence of bits exchanged “so far”
I A knows x , B knows y , both know t .

Protocol P:
I A sends bit g(x , t) to B

I B sends bit h(y , t) to A
I . . .
I . . .

I . . . until A (or B) knows f (x , y);
she (he) sends that value to B (A)

Deterministic communication complexity - protocol

Goal: A and B want to compute f (x , y)

t : sequence of bits exchanged “so far”
I A knows x , B knows y , both know t .

Protocol P:
I A sends bit g(x , t) to B
I B sends bit h(y , t) to A

I . . .
I . . .

I . . . until A (or B) knows f (x , y);
she (he) sends that value to B (A)

Deterministic communication complexity - protocol

Goal: A and B want to compute f (x , y)

t : sequence of bits exchanged “so far”
I A knows x , B knows y , both know t .

Protocol P:
I A sends bit g(x , t) to B
I B sends bit h(y , t) to A
I . . .

I . . .
I . . . until A (or B) knows f (x , y);

she (he) sends that value to B (A)

Deterministic communication complexity - protocol

Goal: A and B want to compute f (x , y)

t : sequence of bits exchanged “so far”
I A knows x , B knows y , both know t .

Protocol P:
I A sends bit g(x , t) to B
I B sends bit h(y , t) to A
I . . .
I . . .

I . . . until A (or B) knows f (x , y);
she (he) sends that value to B (A)

Deterministic communication complexity - protocol

Goal: A and B want to compute f (x , y)

t : sequence of bits exchanged “so far”
I A knows x , B knows y , both know t .

Protocol P:
I A sends bit g(x , t) to B
I B sends bit h(y , t) to A
I . . .
I . . .

I . . . until A (or B) knows f (x , y);
she (he) sends that value to B (A)

Some remarks. . .

I A and B have unlimited computational power
I x ∈ X , y ∈ Y , f : X × Y → Z

usually: f : {0, 1}n × {0, 1}n → {0, 1}
I Mf is the matrix corresponding to f :

Mf has |X | lines, |Y | columns and entries in Z .
usually: 2n × 2n, each entry is 0 or 1

I Every (deterministic) protocol for f induces
a partition of Mf in monochromatic rectangles

I The converse is not true

Some remarks. . .

I A and B have unlimited computational power

I x ∈ X , y ∈ Y , f : X × Y → Z
usually: f : {0, 1}n × {0, 1}n → {0, 1}

I Mf is the matrix corresponding to f :
Mf has |X | lines, |Y | columns and entries in Z .
usually: 2n × 2n, each entry is 0 or 1

I Every (deterministic) protocol for f induces
a partition of Mf in monochromatic rectangles

I The converse is not true

Some remarks. . .

I A and B have unlimited computational power
I x ∈ X , y ∈ Y , f : X × Y → Z

usually: f : {0, 1}n × {0, 1}n → {0, 1}
I Mf is the matrix corresponding to f :

Mf has |X | lines, |Y | columns and entries in Z .
usually: 2n × 2n, each entry is 0 or 1

I Every (deterministic) protocol for f induces
a partition of Mf in monochromatic rectangles

I The converse is not true

Some remarks. . .

I A and B have unlimited computational power
I x ∈ X , y ∈ Y , f : X × Y → Z

usually: f : {0, 1}n × {0, 1}n → {0, 1}

I Mf is the matrix corresponding to f :
Mf has |X | lines, |Y | columns and entries in Z .
usually: 2n × 2n, each entry is 0 or 1

I Every (deterministic) protocol for f induces
a partition of Mf in monochromatic rectangles

I The converse is not true

Some remarks. . .

I A and B have unlimited computational power
I x ∈ X , y ∈ Y , f : X × Y → Z

usually: f : {0, 1}n × {0, 1}n → {0, 1}
I Mf is the matrix corresponding to f :

Mf has |X | lines, |Y | columns and entries in Z .

usually: 2n × 2n, each entry is 0 or 1
I Every (deterministic) protocol for f induces

a partition of Mf in monochromatic rectangles
I The converse is not true

Some remarks. . .

I A and B have unlimited computational power
I x ∈ X , y ∈ Y , f : X × Y → Z

usually: f : {0, 1}n × {0, 1}n → {0, 1}
I Mf is the matrix corresponding to f :

Mf has |X | lines, |Y | columns and entries in Z .
usually: 2n × 2n, each entry is 0 or 1

I Every (deterministic) protocol for f induces
a partition of Mf in monochromatic rectangles

I The converse is not true

Some remarks. . .

I A and B have unlimited computational power
I x ∈ X , y ∈ Y , f : X × Y → Z

usually: f : {0, 1}n × {0, 1}n → {0, 1}
I Mf is the matrix corresponding to f :

Mf has |X | lines, |Y | columns and entries in Z .
usually: 2n × 2n, each entry is 0 or 1

I Every (deterministic) protocol for f induces
a partition of Mf in monochromatic rectangles

I The converse is not true

Some remarks. . .

I A and B have unlimited computational power
I x ∈ X , y ∈ Y , f : X × Y → Z

usually: f : {0, 1}n × {0, 1}n → {0, 1}
I Mf is the matrix corresponding to f :

Mf has |X | lines, |Y | columns and entries in Z .
usually: 2n × 2n, each entry is 0 or 1

I Every (deterministic) protocol for f induces
a partition of Mf in monochromatic rectangles

I The converse is not true

CCP(f), CC(f). . .

I CCP(f) is the communication complexity of the protocol P:

CCP(f) = maximum number of exchanged bits that
guarantee that both A and B know f (x , y)

= height of the tree

communication complexity of f

CC(f) = min
P
{CCP(f)}

CCP(f), CC(f). . .

I CCP(f) is the communication complexity of the protocol P:

CCP(f) = maximum number of exchanged bits that
guarantee that both A and B know f (x , y)

= height of the tree

communication complexity of f

CC(f) = min
P
{CCP(f)}

CCP(f), CC(f). . .

I CCP(f) is the communication complexity of the protocol P:

CCP(f) = maximum number of exchanged bits that
guarantee that both A and B know f (x , y)

= height of the tree

communication complexity of f

CC(f) = min
P
{CCP(f)}

CCP(f), CC(f). . .

I CCP(f) is the communication complexity of the protocol P:

CCP(f) = maximum number of exchanged bits that
guarantee that both A and B know f (x , y)

= height of the tree

communication complexity of f

CC(f) = min
P
{CCP(f)}

Outline

Basics

Two lower bound techniques

How good is the log-rank lower bound? History. . .

How do “fooling sets” and “log-rank” compare?

Further study. . .

Fooling set method

I The height of a binary tree is ≥ log Nl where Nl is the
number of leaves.

I The “leaves of a protocol” correspond to a partition of Mf
into monochromatic rectangles.

I A monochromatic set S ⊂ Mf is a fooling set if

(x , y) ∈ S ∧ (x ′, y ′) ∈ S
=⇒

(S[x , y ′] 6= m) ∨ (S[x ′, y] 6= m)

(thus two distinct elements of a fooling must disagree on
lines and on columns)

Fooling set method

I The height of a binary tree is ≥ log Nl where Nl is the
number of leaves.

I The “leaves of a protocol” correspond to a partition of Mf
into monochromatic rectangles.

I A monochromatic set S ⊂ Mf is a fooling set if

(x , y) ∈ S ∧ (x ′, y ′) ∈ S
=⇒

(S[x , y ′] 6= m) ∨ (S[x ′, y] 6= m)

(thus two distinct elements of a fooling must disagree on
lines and on columns)

Fooling set method

I The height of a binary tree is ≥ log Nl where Nl is the
number of leaves.

I The “leaves of a protocol” correspond to a partition of Mf
into monochromatic rectangles.

I A monochromatic set S ⊂ Mf is a fooling set if

(x , y) ∈ S ∧ (x ′, y ′) ∈ S
=⇒

(S[x , y ′] 6= m) ∨ (S[x ′, y] 6= m)

(thus two distinct elements of a fooling must disagree on
lines and on columns)

Fooling set method

I The height of a binary tree is ≥ log Nl where Nl is the
number of leaves.

I The “leaves of a protocol” correspond to a partition of Mf
into monochromatic rectangles.

I A monochromatic set S ⊂ Mf is a fooling set if

(x , y) ∈ S ∧ (x ′, y ′) ∈ S
=⇒

(S[x , y ′] 6= m) ∨ (S[x ′, y] 6= m)

(thus two distinct elements of a fooling must disagree on
lines and on columns)

Fooling set method (cont.)

The fooling set is blue, {(x , y), (x ′, y ′), . . .}

y y ′

x

x ′


.
. . . 1 . . . 1 . . .
.
. . . 0 . . . 1 . . .
.



Fooling set method (cont.)

I No 2 elements of a fooling set S can belong to the same
monochromatic rectangle.

I . . . every partition must contain at least |S| rectangles. . .
I . . . the tree of every protocol must have at least |S|

leaves. . .
I . . . the tree of every protocol must have height ≥ log |S|

leaves. . .
I . . . CC(f) ≥ log |S|

Fooling set method (cont.)

I No 2 elements of a fooling set S can belong to the same
monochromatic rectangle.

I . . . every partition must contain at least |S| rectangles. . .
I . . . the tree of every protocol must have at least |S|

leaves. . .
I . . . the tree of every protocol must have height ≥ log |S|

leaves. . .
I . . . CC(f) ≥ log |S|

Fooling set method (cont.)

I No 2 elements of a fooling set S can belong to the same
monochromatic rectangle.

I . . . every partition must contain at least |S| rectangles. . .

I . . . the tree of every protocol must have at least |S|
leaves. . .

I . . . the tree of every protocol must have height ≥ log |S|
leaves. . .

I . . . CC(f) ≥ log |S|

Fooling set method (cont.)

I No 2 elements of a fooling set S can belong to the same
monochromatic rectangle.

I . . . every partition must contain at least |S| rectangles. . .
I . . . the tree of every protocol must have at least |S|

leaves. . .

I . . . the tree of every protocol must have height ≥ log |S|
leaves. . .

I . . . CC(f) ≥ log |S|

Fooling set method (cont.)

I No 2 elements of a fooling set S can belong to the same
monochromatic rectangle.

I . . . every partition must contain at least |S| rectangles. . .
I . . . the tree of every protocol must have at least |S|

leaves. . .
I . . . the tree of every protocol must have height ≥ log |S|

leaves. . .

I . . . CC(f) ≥ log |S|

Fooling set method (cont.)

I No 2 elements of a fooling set S can belong to the same
monochromatic rectangle.

I . . . every partition must contain at least |S| rectangles. . .
I . . . the tree of every protocol must have at least |S|

leaves. . .
I . . . the tree of every protocol must have height ≥ log |S|

leaves. . .
I . . . CC(f) ≥ log |S|

Fooling set method (cont.)

A slightly better lower bound: for Z = {0, 1}, a partition must
have at least one 0-rectangle; thus

Fooling set lowerbound

CC(f) ≥ log(d|S|+ 1e)

Fooling set method (cont.)

A slightly better lower bound: for Z = {0, 1}, a partition must
have at least one 0-rectangle; thus

Fooling set lowerbound

CC(f) ≥ log(d|S|+ 1e)

Fooling set method (cont.)

A slightly better lower bound: for Z = {0, 1}, a partition must
have at least one 0-rectangle; thus

Fooling set lowerbound

CC(f) ≥ log(d|S|+ 1e)

The rank method

Consider any monochromatic partition of Mf . Let the
1-rectangles be R1,. . . , Rm.

Let R′
i be the matrix with the dimensions of Mf and containing

the rectangle Ri (1’s):

Mi [k , l] =

{
1 if (k , l) is in Ri
0 otherwise



0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0



The rank method

Consider any monochromatic partition of Mf . Let the
1-rectangles be R1,. . . , Rm.

Let R′
i be the matrix with the dimensions of Mf and containing

the rectangle Ri (1’s):

Mi [k , l] =

{
1 if (k , l) is in Ri
0 otherwise



0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0



The rank method

Consider any monochromatic partition of Mf . Let the
1-rectangles be R1,. . . , Rm.

Let R′
i be the matrix with the dimensions of Mf and containing

the rectangle Ri (1’s):

Mi [k , l] =

{
1 if (k , l) is in Ri
0 otherwise



0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0



The rank method (cont)



0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0



+



0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



+

+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0



=



0 0 0 0 0 1
0 0 0 0 0 1
0 1 1 1 1 1
0 1 1 1 1 0
1 1 1 0 0 0
1 1 1 0 0 0



The rank method (cont)



0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0

 +



0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



+

+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0



=



0 0 0 0 0 1
0 0 0 0 0 1
0 1 1 1 1 1
0 1 1 1 1 0
1 1 1 0 0 0
1 1 1 0 0 0



The rank method (cont)



0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0

 +



0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+

+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0



=



0 0 0 0 0 1
0 0 0 0 0 1
0 1 1 1 1 1
0 1 1 1 1 0
1 1 1 0 0 0
1 1 1 0 0 0



The rank method (cont)



0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0

 +



0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+

+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

 =



0 0 0 0 0 1
0 0 0 0 0 1
0 1 1 1 1 1
0 1 1 1 1 0
1 1 1 0 0 0
1 1 1 0 0 0



The rank method (cont.)

Mf =
∑m

i=1 R′
i

rank(Mf) ≤
∑m

i=1 rank(R′
i) = m

log(rank(Mf)) ≤ log m ≤ CC(f)

The rank method (cont.)

Mf =
∑m

i=1 R′
i

rank(Mf) ≤
∑m

i=1 rank(R′
i) = m

log(rank(Mf)) ≤ log m ≤ CC(f)

The rank method (cont.)

Mf =
∑m

i=1 R′
i

rank(Mf) ≤
∑m

i=1 rank(R′
i) = m

log(rank(Mf)) ≤ log m ≤ CC(f)

The rank method (cont.)

Mf =
∑m

i=1 R′
i

rank(Mf) ≤
∑m

i=1 rank(R′
i) = m

log(rank(Mf)) ≤ log m ≤ CC(f)

The rank method (cont.)

Counting also the 0-rectangles (using ¬f), we get a slightly
better lower bound

Log-rank lowerbound

CC(f) ≥ dlog(2× rank(Mf)− 1)e

The rank method (cont.)

Counting also the 0-rectangles (using ¬f), we get a slightly
better lower bound

Log-rank lowerbound

CC(f) ≥ dlog(2× rank(Mf)− 1)e

The rank method (cont.)

Counting also the 0-rectangles (using ¬f), we get a slightly
better lower bound

Log-rank lowerbound

CC(f) ≥ dlog(2× rank(Mf)− 1)e

Notation. . .

(simplifications. . .)

I A function f denotes a family f2n, n = 1, 2 . . . of functions
with 2n variables.

I log rank(f) (instead of log rank(Mf))
I fs(s) = log |S|, the fooling set lower bound
I r(s) = log rank(f), the rank lower bound

Notes:
• S above is the largest fooling set
• To compute the rank, matrix Mf in considered over the

field Q (or R)

Notation. . .

(simplifications. . .)

I A function f denotes a family f2n, n = 1, 2 . . . of functions
with 2n variables.

I log rank(f) (instead of log rank(Mf))
I fs(s) = log |S|, the fooling set lower bound
I r(s) = log rank(f), the rank lower bound

Notes:
• S above is the largest fooling set
• To compute the rank, matrix Mf in considered over the

field Q (or R)

Notation. . .

(simplifications. . .)

I A function f denotes a family f2n, n = 1, 2 . . . of functions
with 2n variables.

I log rank(f) (instead of log rank(Mf))
I fs(s) = log |S|, the fooling set lower bound
I r(s) = log rank(f), the rank lower bound

Notes:
• S above is the largest fooling set
• To compute the rank, matrix Mf in considered over the

field Q (or R)

Notation. . .

(simplifications. . .)

I A function f denotes a family f2n, n = 1, 2 . . . of functions
with 2n variables.

I log rank(f) (instead of log rank(Mf))

I fs(s) = log |S|, the fooling set lower bound
I r(s) = log rank(f), the rank lower bound

Notes:
• S above is the largest fooling set
• To compute the rank, matrix Mf in considered over the

field Q (or R)

Notation. . .

(simplifications. . .)

I A function f denotes a family f2n, n = 1, 2 . . . of functions
with 2n variables.

I log rank(f) (instead of log rank(Mf))
I fs(s) = log |S|, the fooling set lower bound

I r(s) = log rank(f), the rank lower bound

Notes:
• S above is the largest fooling set
• To compute the rank, matrix Mf in considered over the

field Q (or R)

Notation. . .

(simplifications. . .)

I A function f denotes a family f2n, n = 1, 2 . . . of functions
with 2n variables.

I log rank(f) (instead of log rank(Mf))
I fs(s) = log |S|, the fooling set lower bound
I r(s) = log rank(f), the rank lower bound

Notes:
• S above is the largest fooling set
• To compute the rank, matrix Mf in considered over the

field Q (or R)

Notation. . .

(simplifications. . .)

I A function f denotes a family f2n, n = 1, 2 . . . of functions
with 2n variables.

I log rank(f) (instead of log rank(Mf))
I fs(s) = log |S|, the fooling set lower bound
I r(s) = log rank(f), the rank lower bound

Notes:
• S above is the largest fooling set

• To compute the rank, matrix Mf in considered over the
field Q (or R)

Notation. . .

(simplifications. . .)

I A function f denotes a family f2n, n = 1, 2 . . . of functions
with 2n variables.

I log rank(f) (instead of log rank(Mf))
I fs(s) = log |S|, the fooling set lower bound
I r(s) = log rank(f), the rank lower bound

Notes:
• S above is the largest fooling set
• To compute the rank, matrix Mf in considered over the

field Q (or R)

The log-rank conjecture

The log-rank conjecture says that the log-rank lower bound is
not “very bad”,
CONJ1:

∀f ∃k ∈ N+: CC(f) has order O(r(f))k

(remember: r(f) = log(rank(f)))
or: the gap between r and CC(f) can not be hyper-polinomial

A stronger form (CONJ2) of the conjecture is: CC(f) has order
O(r(f)) . . . this form is false – no more a conjecture.

The log-rank conjecture

The log-rank conjecture says that the log-rank lower bound is
not “very bad”,

CONJ1:
∀f ∃k ∈ N+: CC(f) has order O(r(f))k

(remember: r(f) = log(rank(f)))
or: the gap between r and CC(f) can not be hyper-polinomial

A stronger form (CONJ2) of the conjecture is: CC(f) has order
O(r(f)) . . . this form is false – no more a conjecture.

The log-rank conjecture

The log-rank conjecture says that the log-rank lower bound is
not “very bad”,
CONJ1:

∀f ∃k ∈ N+: CC(f) has order O(r(f))k

(remember: r(f) = log(rank(f)))

or: the gap between r and CC(f) can not be hyper-polinomial

A stronger form (CONJ2) of the conjecture is: CC(f) has order
O(r(f)) . . . this form is false – no more a conjecture.

The log-rank conjecture

The log-rank conjecture says that the log-rank lower bound is
not “very bad”,
CONJ1:

∀f ∃k ∈ N+: CC(f) has order O(r(f))k

(remember: r(f) = log(rank(f)))
or: the gap between r and CC(f) can not be hyper-polinomial

A stronger form (CONJ2) of the conjecture is: CC(f) has order
O(r(f)) . . . this form is false – no more a conjecture.

The log-rank conjecture

The log-rank conjecture says that the log-rank lower bound is
not “very bad”,
CONJ1:

∀f ∃k ∈ N+: CC(f) has order O(r(f))k

(remember: r(f) = log(rank(f)))
or: the gap between r and CC(f) can not be hyper-polinomial

A stronger form (CONJ2) of the conjecture is: CC(f) has order
O(r(f))

. . . this form is false – no more a conjecture.

The log-rank conjecture

The log-rank conjecture says that the log-rank lower bound is
not “very bad”,
CONJ1:

∀f ∃k ∈ N+: CC(f) has order O(r(f))k

(remember: r(f) = log(rank(f)))
or: the gap between r and CC(f) can not be hyper-polinomial

A stronger form (CONJ2) of the conjecture is: CC(f) has order
O(r(f)) . . . this form is false – no more a conjecture.

The log-rank conjecture
brief notes

Notes:

I Why is the log-rank lower bound important?
Because linear algebra is a very well developed branch of
mathematics

I The log-rank conjecture is related to another conjecture:
relation between the chromatic number of a graph and the
rank of its adjacency matrix (Lovász, Saks).

The log-rank conjecture
brief notes

Notes:
I Why is the log-rank lower bound important?

Because linear algebra is a very well developed branch of
mathematics

I The log-rank conjecture is related to another conjecture:
relation between the chromatic number of a graph and the
rank of its adjacency matrix (Lovász, Saks).

The log-rank conjecture
brief notes

Notes:
I Why is the log-rank lower bound important?

Because linear algebra is a very well developed branch of
mathematics

I The log-rank conjecture is related to another conjecture:
relation between the chromatic number of a graph and the
rank of its adjacency matrix (Lovász, Saks).

The log-rank conjecture
brief notes

Notes:
I Why is the log-rank lower bound important?

Because linear algebra is a very well developed branch of
mathematics

I The log-rank conjecture is related to another conjecture:
relation between the chromatic number of a graph and the
rank of its adjacency matrix (Lovász, Saks).

Outline

Basics

Two lower bound techniques

How good is the log-rank lower bound? History. . .

How do “fooling sets” and “log-rank” compare?

Further study. . .

log-rank lower bound (1989)

1989, N. Alon and P. D. Seymour
A counter-example to the rank-coloring conjecture
J. Graph Theory 13

The conjecture (as we stated it) may still be true!

log-rank lower bound (1989)

1989, N. Alon and P. D. Seymour
A counter-example to the rank-coloring conjecture
J. Graph Theory 13

The conjecture (as we stated it) may still be true!

log-rank lower bound (1989)

1989, N. Alon and P. D. Seymour
A counter-example to the rank-coloring conjecture
J. Graph Theory 13

The conjecture (as we stated it) may still be true!

log-rank lower bound (1992)

1992, A. A. Razborov
The gap between the chromatic number of a graph and the
rank of its adjacency matrix is super linear
Discrete Mathematics Vol 108.

Presents a function f such that:
I CC(f) ≤ k r(f) is false for every k ∈ R+.

The gap is not constant.
The conjecture (CONJ1) may still be true! (but CONJ2 is false)

log-rank lower bound (1992)

1992, A. A. Razborov
The gap between the chromatic number of a graph and the
rank of its adjacency matrix is super linear
Discrete Mathematics Vol 108.

Presents a function f such that:
I CC(f) ≤ k r(f) is false for every k ∈ R+.

The gap is not constant.
The conjecture (CONJ1) may still be true! (but CONJ2 is false)

log-rank lower bound (1992)

1992, A. A. Razborov
The gap between the chromatic number of a graph and the
rank of its adjacency matrix is super linear
Discrete Mathematics Vol 108.

Presents a function f such that:
I CC(f) ≤ k r(f) is false for every k ∈ R+.

The gap is not constant.
The conjecture (CONJ1) may still be true! (but CONJ2 is false)

log-rank lower bound (1992)

1992, A. A. Razborov
The gap between the chromatic number of a graph and the
rank of its adjacency matrix is super linear
Discrete Mathematics Vol 108.

Presents a function f such that:
I CC(f) ≤ k r(f) is false for every k ∈ R+.

The gap is not constant.

The conjecture (CONJ1) may still be true! (but CONJ2 is false)

log-rank lower bound (1992)

1992, A. A. Razborov
The gap between the chromatic number of a graph and the
rank of its adjacency matrix is super linear
Discrete Mathematics Vol 108.

Presents a function f such that:
I CC(f) ≤ k r(f) is false for every k ∈ R+.

The gap is not constant.
The conjecture (CONJ1) may still be true! (but CONJ2 is false)

log-rank lower bound (1995)

1995, R. Raz and B.Spieker
(with the help of John H. Conway and Laci Lovász!)
On the log-rank conjecture in communication complexity
Combinatorica 15(4).

Presents a f such that
I NCC is Ω(n log log n) (non-deterministic communication

complexity); the same is of course true for deterministic
communication complexity!

I r(f) is O(n)

gap: ≤ kn −→ ≥ k ′n log log n

The conjecture may still be true!

log-rank lower bound (1995)

1995, R. Raz and B.Spieker
(with the help of John H. Conway and Laci Lovász!)
On the log-rank conjecture in communication complexity
Combinatorica 15(4).

Presents a f such that
I NCC is Ω(n log log n) (non-deterministic communication

complexity); the same is of course true for deterministic
communication complexity!

I r(f) is O(n)

gap: ≤ kn −→ ≥ k ′n log log n

The conjecture may still be true!

log-rank lower bound (1995)

1995, R. Raz and B.Spieker
(with the help of John H. Conway and Laci Lovász!)
On the log-rank conjecture in communication complexity
Combinatorica 15(4).

Presents a f such that
I NCC is Ω(n log log n) (non-deterministic communication

complexity); the same is of course true for deterministic
communication complexity!

I r(f) is O(n)

gap: ≤ kn −→ ≥ k ′n log log n

The conjecture may still be true!

log-rank lower bound (1995)

1995, R. Raz and B.Spieker
(with the help of John H. Conway and Laci Lovász!)
On the log-rank conjecture in communication complexity
Combinatorica 15(4).

Presents a f such that
I NCC is Ω(n log log n) (non-deterministic communication

complexity); the same is of course true for deterministic
communication complexity!

I r(f) is O(n)

gap: ≤ kn −→ ≥ k ′n log log n

The conjecture may still be true!

log-rank lower bound (1995)

1995, R. Raz and B.Spieker
(with the help of John H. Conway and Laci Lovász!)
On the log-rank conjecture in communication complexity
Combinatorica 15(4).

Presents a f such that
I NCC is Ω(n log log n) (non-deterministic communication

complexity); the same is of course true for deterministic
communication complexity!

I r(f) is O(n)

gap: ≤ kn −→ ≥ k ′n log log n

The conjecture may still be true!

log-rank lower bound (1995)

1995, R. Raz and B.Spieker
(with the help of John H. Conway and Laci Lovász!)
On the log-rank conjecture in communication complexity
Combinatorica 15(4).

Presents a f such that
I NCC is Ω(n log log n) (non-deterministic communication

complexity); the same is of course true for deterministic
communication complexity!

I r(f) is O(n)

gap: ≤ kn −→ ≥ k ′n log log n

The conjecture may still be true!

log-rank lower bound (1994)

1994, Noam Nisan, Avi Widgerson
On rank vs. communication complexity

Presents an f such that
I CC(f) is Ω(n)

I r(f) is O(n0.631)

The conjecture may still be true

log-rank lower bound (1994)

1994, Noam Nisan, Avi Widgerson
On rank vs. communication complexity

Presents an f such that
I CC(f) is Ω(n)

I r(f) is O(n0.631)

The conjecture may still be true

log-rank lower bound (1994)

1994, Noam Nisan, Avi Widgerson
On rank vs. communication complexity

Presents an f such that

I CC(f) is Ω(n)

I r(f) is O(n0.631)

The conjecture may still be true

log-rank lower bound (1994)

1994, Noam Nisan, Avi Widgerson
On rank vs. communication complexity

Presents an f such that
I CC(f) is Ω(n)

I r(f) is O(n0.631)

The conjecture may still be true

log-rank lower bound (1994)

1994, Noam Nisan, Avi Widgerson
On rank vs. communication complexity

Presents an f such that
I CC(f) is Ω(n)

I r(f) is O(n0.631)

The conjecture may still be true

log-rank lower bound (1994)

1994, Noam Nisan, Avi Widgerson
On rank vs. communication complexity

Presents an f such that
I CC(f) is Ω(n)

I r(f) is O(n0.631)

The conjecture may still be true

Outline

Basics

Two lower bound techniques

How good is the log-rank lower bound? History. . .

How do “fooling sets” and “log-rank” compare?

Further study. . .

Comparing “fooling set” with “log-rank”. . .

A summary of the results in

1996, M. Dietzfelbinger, J. HromkoviImage, G, Schnitger
A comparison of two lower-bound methods for
communication complexity, TCS 168 (1)

FSM - “fooling set” method
LRM - “log-rank” method

Comparing “fooling set” with “log-rank”. . .

A summary of the results in

1996, M. Dietzfelbinger, J. HromkoviImage, G, Schnitger
A comparison of two lower-bound methods for
communication complexity, TCS 168 (1)

FSM - “fooling set” method
LRM - “log-rank” method

Comparing “fooling set” with “log-rank”. . .

A summary of the results in

1996, M. Dietzfelbinger, J. HromkoviImage, G, Schnitger
A comparison of two lower-bound methods for
communication complexity, TCS 168 (1)

FSM - “fooling set” method
LRM - “log-rank” method

Comparisons (cont.)

I For some problems FSM is very weak:
There is a function f such that for n large enough we have
CC(f) = n and fs(f) = O(log n).

I LRM is almost always much better than FSM:
for almost all functions f : r(f) ≈ n and fs(f) ≤ log n + log 10

I LRM cannot be much worse than the FSM:
∀f : fs(f) ≤ 2r(f)

I LRM can be (slightly) worse than FSM:
There is a function f such that fs(f) = n and
r(f) = (log 3)/2n ≈ 0.79n

Comparisons (cont.)

I For some problems FSM is very weak:
There is a function f such that for n large enough we have
CC(f) = n and fs(f) = O(log n).

I LRM is almost always much better than FSM:
for almost all functions f : r(f) ≈ n and fs(f) ≤ log n + log 10

I LRM cannot be much worse than the FSM:
∀f : fs(f) ≤ 2r(f)

I LRM can be (slightly) worse than FSM:
There is a function f such that fs(f) = n and
r(f) = (log 3)/2n ≈ 0.79n

Comparisons (cont.)

I For some problems FSM is very weak:
There is a function f such that for n large enough we have
CC(f) = n and fs(f) = O(log n).

I LRM is almost always much better than FSM:
for almost all functions f : r(f) ≈ n and fs(f) ≤ log n + log 10

I LRM cannot be much worse than the FSM:
∀f : fs(f) ≤ 2r(f)

I LRM can be (slightly) worse than FSM:
There is a function f such that fs(f) = n and
r(f) = (log 3)/2n ≈ 0.79n

Comparisons (cont.)

I For some problems FSM is very weak:
There is a function f such that for n large enough we have
CC(f) = n and fs(f) = O(log n).

I LRM is almost always much better than FSM:
for almost all functions f : r(f) ≈ n and fs(f) ≤ log n + log 10

I LRM cannot be much worse than the FSM:
∀f : fs(f) ≤ 2r(f)

I LRM can be (slightly) worse than FSM:
There is a function f such that fs(f) = n and
r(f) = (log 3)/2n ≈ 0.79n

Comparisons (cont.)

I For some problems FSM is very weak:
There is a function f such that for n large enough we have
CC(f) = n and fs(f) = O(log n).

I LRM is almost always much better than FSM:
for almost all functions f : r(f) ≈ n and fs(f) ≤ log n + log 10

I LRM cannot be much worse than the FSM:
∀f : fs(f) ≤ 2r(f)

I LRM can be (slightly) worse than FSM:
There is a function f such that fs(f) = n and
r(f) = (log 3)/2n ≈ 0.79n

Comparisons (cont.)

About these results see also

1992, M. Karchmer, E. Kushilevitz, N. Nisan
Fractional covers and communication complexity
Structure in Complexity Theory Conference

also in
SIAM J. Discrete Mathematics, 1995

Comparisons (cont.)

About these results see also

1992, M. Karchmer, E. Kushilevitz, N. Nisan
Fractional covers and communication complexity
Structure in Complexity Theory Conference

also in
SIAM J. Discrete Mathematics, 1995

Comparisons (cont.)

About these results see also

1992, M. Karchmer, E. Kushilevitz, N. Nisan
Fractional covers and communication complexity
Structure in Complexity Theory Conference

also in
SIAM J. Discrete Mathematics, 1995

Comparisons (cont.)

I For some problems FSM is very weak
I LRM is almost always much better than FSM
I LRM cannot be much worse than the FSM
I LRM can be (slightly) worse than FSM
I LRM can be (slightly) worse than FSM
I LRM can be relatively week
∃ f with CC(f) ∈ Ω(n) and r(f) ∈ O(n0.631)

Comparisons (cont.)

I For some problems FSM is very weak
I LRM is almost always much better than FSM
I LRM cannot be much worse than the FSM
I LRM can be (slightly) worse than FSM
I LRM can be (slightly) worse than FSM

I LRM can be relatively week
∃ f with CC(f) ∈ Ω(n) and r(f) ∈ O(n0.631)

Comparisons (cont.)

I For some problems FSM is very weak
I LRM is almost always much better than FSM
I LRM cannot be much worse than the FSM
I LRM can be (slightly) worse than FSM
I LRM can be (slightly) worse than FSM
I LRM can be relatively week
∃ f with CC(f) ∈ Ω(n) and r(f) ∈ O(n0.631)

Summary. . .

Outline

Basics

Two lower bound techniques

How good is the log-rank lower bound? History. . .

How do “fooling sets” and “log-rank” compare?

Further study. . .

Comments and further study. . .

I Is there any recent (after 1996) important work?
I Study lower bound information obtained by using

Kolmogorov complexity methods (see “Individual
communication complexity” by Buhrman, Klauck,
Vereshchagin and Vitanyi, 2004).

I Statements like “almost all functions have property P” are
not relevant for “real world” functions like gt(x , y) or
median(x , y) because “real world” functions are not
random, K (f |n) = c << 22n.

I Study lower bounds for uniform communication complexity.

Comments and further study. . .

I Is there any recent (after 1996) important work?

I Study lower bound information obtained by using
Kolmogorov complexity methods (see “Individual
communication complexity” by Buhrman, Klauck,
Vereshchagin and Vitanyi, 2004).

I Statements like “almost all functions have property P” are
not relevant for “real world” functions like gt(x , y) or
median(x , y) because “real world” functions are not
random, K (f |n) = c << 22n.

I Study lower bounds for uniform communication complexity.

Comments and further study. . .

I Is there any recent (after 1996) important work?
I Study lower bound information obtained by using

Kolmogorov complexity methods (see “Individual
communication complexity” by Buhrman, Klauck,
Vereshchagin and Vitanyi, 2004).

I Statements like “almost all functions have property P” are
not relevant for “real world” functions like gt(x , y) or
median(x , y) because “real world” functions are not
random, K (f |n) = c << 22n.

I Study lower bounds for uniform communication complexity.

Comments and further study. . .

I Is there any recent (after 1996) important work?
I Study lower bound information obtained by using

Kolmogorov complexity methods (see “Individual
communication complexity” by Buhrman, Klauck,
Vereshchagin and Vitanyi, 2004).

I Statements like “almost all functions have property P” are
not relevant for “real world” functions like gt(x , y) or
median(x , y) because “real world” functions are not
random, K (f |n) = c << 22n.

I Study lower bounds for uniform communication complexity.

Comments and further study. . .

I Is there any recent (after 1996) important work?
I Study lower bound information obtained by using

Kolmogorov complexity methods (see “Individual
communication complexity” by Buhrman, Klauck,
Vereshchagin and Vitanyi, 2004).

I Statements like “almost all functions have property P” are
not relevant for “real world” functions like gt(x , y) or
median(x , y) because “real world” functions are not
random, K (f |n) = c << 22n.

I Study lower bounds for uniform communication complexity.

the end

	Basics
	Two lower bound techniques
	How good is the log-rank lower bound? History…
	How do ``fooling sets'' and ``log-rank'' compare?
	Further study…

