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Abstract

The MIU formal system, introduced by Hofstadter in [Hof79], is a relatively simple example
of a formal axiomatic system where the length of proofs can be studied in some detail. Denote
by l(t) and L(t) respectively the largest and smallest number of lines of a minimum proof of a
theorem with t symbols. We show that l(t) is Ω(log t) and that L(t) is Ω(t/ log t) and O(t).

1 The MIU formal system

Even for propositional calculus not much is known about the relationship between the length of a
theorem and the length of a corresponding shortest proof. Most studies (see for instance [Tse68, SR77,
PBI93, Ajt94, Bus87, Urq92, Urq87]) have considered only a particular family of theorems (such as
the pigeonhole family of tautologies) and a particular set of inference rules (such as resolution or
Frege systems), establishing lower or upper bounds on the length of the shortest proofs. The length
of a proof can be defined as either the number of lines it has or its total number of symbols.

The MIU formal system, introduced by Hofstadter ([Hof79]), is still simpler than the propositional
calculus so that the relationship between the length of a theorem and of its shortest proof can be
studied in more detail.

The MIU system system is defined as follows.

1. Alphabet: Σ = {m, i, u}

2. Axiom: mi

3. Inference rules

(a) xi→ xiu

(b) mx→ mxx

(c) xiiiy → xuy

(d) xuuy → xy

Notation. “` x” means that x is a theorem1 of MIU. “y ` x” means that x can be derived from y
in 0 or more steps.

Definition 1 The MIU graph GMIU = (V, E) is a directed graph characterized by the following
rules.

1We use “theorem” in lower case for MIU theorems and “Theorem” for the results of this paper.
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Let nu be the number of u’s in x
Let ni be the number of i’s in x
c← 3× nu + ni
if c ≡ 2 mod 3 then

let n be the minimum odd integer such that 2n ≥ c
if c ≡ 1 mod 3 then

let n be the minimum even integer such that 2n ≥ c
else print("mx is not a theorem"); return

Comment: w will contain successive proof lines
(1) w← mi

(2) Use n times rule 3b to set w = mi2n

(3) Use rule 3c to replace left to right, groups iii by u as necessary
(4) Use rules 3a, 3c and 3d to eliminate the excess of i’s

at the right (whose number is a multiple of 3)
Comment: The last line is the theorem to prove, w = mx

Figure 1: Algorithm which generates the proof in MIU of mx

– mi ∈ V .

– If t1 ∈ V and t2 results from t1 by the application of an inference rule, then t2 ∈ V and (t1, t2) ∈
E.

Clearly V is the set of theorems of MIU. In Figure 7 we can see a little bit of the MIU graph.

Notice that the MIU graph contains cycles, for instance

mi, mii, miiii, miiiiu, miuu, mi

A simple proof of x is a simple path from mi to x.

In this paper we always assume the following

– The size of a theorem is the number of symbols it contains,

– The size of a proof is the number of lines it contains.

2 Standard proofs

2.1 Definition

In [Mat97] it is proved that y is a theorem of MIU iff

y = mx, x ∈ {i, u}? and |x|i is not a multiple of 3

where |x|i denotes the number of i’s in x. A standard proof of every such mx is also given. For
convenience Figure 2.1 is taken from [Mat97].

2.2 Standard proofs are not shortest

We give an example of a theorem whose shortest proof is not standard. The theorem is muuui and
both proofs are shown in Figure 2.2. The standard proof has 14 lines while the shortest proof has 9.
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Standard proof A shortest proof
mi mi

mii mii

miiii miiii

miiiiiiii miiiiiiii

miiiiiiiiiiiiiiii muiiiii

muiiiiiiiiiiiii muuii

muuiiiiiiiiii muuiiuuii

muuuiiiiiii muuiiii

muuuiiiiiiiu muuui

muuuiiiiuu

muuuiiii

muuuiiiiu

muuuiuu

muuui

Figure 2: The standard proof of theorem muuui has 14 lines but the shortest proof (in lines) has 9.

2.3 Bounds of standard proofs

In this section we establish upper and lower bounds for the number of lines of standard proofs.

Theorem 1 (Upper bound of standard proofs) The number of lines l of a standard proof of a
theorem with t symbols satisfies l < 13t.

Proof. We follow the description of standard proofs given in Figure 2.1. Consider the proof of mx
and let t′ = t − 1 be the number of symbols in x. We have t′ = ni + nu where ni and nu denote
respectively the number of i’s and u’s in x.

Let c = 3nu+ni. We have t′ ≤ c < 3t′. The number of steps needed to produce c i’s does not exceed2

n = dlog ce+ 1 The “+1” takes in account the fact that the parity of n is given by the algorithm (it
depends on c). The number of lines satisfies

l ≤ 1 Line “(1)” in Figure 2.1
+n Line “(2)” in Figure 2.1
+nu Line “(3)” in Figure 2.1
+3((2n − nu)/3) Line “(4)” in Figure 2.1

where “/” in the last term represents integer division. From c < 3t′ we get n < dlog(3t′)e+ 1 so that

2n < 2× 2dlog(3t
′)e ≤ 4× 3t′ = 12t′

Thus the number of lines satisfies

l ≤ n + 1 + 2n < n + 1 + 12t′ < 12t′ + dlog(3t′)e+ 2

Let us now express this result in terms of t = t′ + 1.

l < 12(t− 12) + dlog(3t)e = 12t + dlog(3t)e − 10

But it is easy to see that, for all t ≥ 1, we have t > dlog(3t)e − 10 so that we finally get l < 13t �

Note. It is possible to get a factor less than 13 by using a different definition of standard proof where
the excess of i’s is reduced by groups of 6 (using twice rule 3c and then rule 3d) instead of 3.

2In this paper the basis of logarithms is assumed to be 2.
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Theorem 2 (Exact lower bound of standard proofs) The number of lines l of a standard proof
of a theorem with t symbols satisfies l ≥ 1 + dlog(t − 1)e. This value is reached by every theorem in
the infinite family mi2n

(with n ≥ 0)

Proof. Notice that no other rule can increase the number of symbols of a line more than rule 3b
does. (the application of another rule can result in an equal increase in only a very particular inference
mi ` miu). So, the last line of a proof with l lines can not have more than 1+2n symbols. If we start
with the axiom and apply n times rule 3b we get theorem mi2n

. �

3 Bounds for general proofs

We will now study the size of shortest proofs. Notice that there are in general several theorems with
the same length t. So, we will consider both smallest and longest shortest proofs.
Notation. Let t ∈ N. Denote respectively by l(t) (L(t)) the smallest (respectively largest) size of
a shortest proof of a theorem having t symbols.

Example 1 Consider the theorems with 3 symbols. They are mii, miu and mui, with shortest proofs
respectively (the rules applied are indicated as subscripts)

mi `3b mii

mi `3a miu

mi `3b mii `3b miiii `3b mui

Then l(3) = 2 and L(3) = 4. Notice that in general there are proofs (even simple proofs) with an
arbitrarily large number of lines.

As a consequence of the results of the previous section we have.

Theorem 3 (Some general bounds) For every t ≥ 2

1 + log(t− 1) ≤ l(t) ≤ L(t) < 13t

3.1 A lower bound for general proofs

We will now see that, for every t, there is some theorem with size t having a shortest proof with at
least k(t/ log t) lines where k is some positive fixed constant. In other words, L(t) is Ω(t/ log t). This
result (Theorem 4) is based on two observations: (i) there are in general many (about 2t/3) theorems
with t symbols and (ii) at each step, the number of possible applications of an inference rule is finite
and can be appropriately bounded. So, to prove all those theorems, some of the proofs must have a
relatively large number of lines. We begin with two lemmas.

Lemma 1 Consider the proof of a theorem having t symbols. If the size of the longest line has T
symbols, the proof must have at least d(T − t)/2e+ 1 lines.

Proof. Rules 3c and 3d decrease the number of symbols by 2 while rules 3a and 3b increase that
number. Then, starting with the T symbol line, we need at least (T − t)/2 proof steps to get the
theorem; the corresponding number of lines is the number of steps plus 1. �

Lemma 2 The number of symbols T of the longest line of a minimum proof of a theorem with t
symbols satisfies T ≤ 27t.
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Proof. Combining the previous Lemma with Theorem 1 we have

(T − t)/2 + 1 ≤ l ≤ 13t

Then T ≤ 27t− 2 < 27t. �
Notice that, as mentioned before, a factor less than 27 can be obtained if an alternative definition of
“standard proof” is used.

Theorem 4 Consider the proofs of all theorems with size t ≥ 3. At least one of them has a number
of lines L satisfying

L ≥ 1 +

⌈
t− log 3

1 + log(27t)

⌉

Proof. The number of theorems with size t is at least 2b2t−1/3c. This can be shown by noticing two
things. First, every such theorem has the form mx where |x| = t− 1. And, second, for r = 0, 1 or 2,
the number of sequences with length t− 1 such that each symbol has 2 possibilities, i and u, and the
number of i’s is congruent with r (mod 3), is either b2t−1/3c or d2t−1/3e (see for instance [GKP94],
exercise 5.75).

Consider now all proofs of theorems with t symbols such that the longest line has no more than T
symbols. At each step, we can apply rules 3a (1 possibility), 3b (1 possibility), 3c (at most T − 3
possibilities; notice that T ≥ t ≥ 3) and 3d (at most T − 2 possibilities). It follows that, at each step,
there at no more than 2T − 3 applications of an inference rule. The largest number L of lines in such
a proof (recall that the first line is always, mi) must then satisfy (if T ≥ 3)

(2T − 3)L−1 ≥ 2b2t−1/3c

It follows that, as T ≥ 3 and L ≥ 2, we have (2T )L−1 ≥ 2t/3. Taking the logarithm of both members
and using the previous Lemma we get

L ≥ 1 +
t− log 3

1 + log T
≥ 1 +

t− log 3

1 + log(27t)

�
Theorem 4 shows that

L(t) is Ω(t/ log(t))

This means that, no matter what proofs we consider, there are always proofs requiring a number of
lines which is “almost linear” in the length of the theorem.

4 Smallest theorems and proofs

The following results were obtained with the help of a Prolog program that builds a database of
theorems and corresponding shortest proofs up to a certain number l of lines; we have used l = 9
which corresponds to a database containing 15 885 theorems. Then, given a theorem candidate, the
program may be instructed to search for the corresponding shortest proofs whose “path” (if the
shortest proof has more than l lines) consists of two parts: a sequence of steps up to a theorem x in
the database (with a l line shortest proof) and an already computed proof of x.

1. In Figure 4 we can see what theorems can be proved with no more than 3 lines.

2. Figure 3 shows the number of theorems with shortest proofs not exceeding l lines, for l = 1,
2,. . . , 9. Some of these theorems are small while others are very large; for instance, the shortest
proof of the following theorem has only 9 lines.

m

256 i’s
︷ ︸︸ ︷

i i · · · i
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Number of lines up to Number of theorems
1 1
2 3
3 6
4 11
5 25
6 69
7 282
8 1730
9 15885

Figure 3: Number of theorems with shortest proofs not exceeding 9 lines

Theorem Proof Number of lines
mi mi 1
mii mi, mii 2
miu mi, miu 2
miiii mi, mii, miiii 3
miiu mi, mii, miiu 3
miuiu mi, miu, miuiu 3

Figure 4: Theorems with proofs not exceeding 3 lines

3. Figure 5 shows bounds (see Theorems 1 and 2) and exact values of l(t) and L(t) for small values
of t (see the definitions at the beginning of Section 3).

4. Finally in Figure 6 we compare the lower and upper bounds of L(t) for a few values of t.

5 Conclusions

We have establish that a shortest proof of a theorem having t symbols has at least O(log(t)) and at
most O(t) lines and that the lower bound is exact for a family of theorems. In [Ant97] a different
class of proofs is considered from which a bound of O(max{nu, log(t)}) results. We have also shown
that the largest number of lines of a shortest proof of such a theorem is Ω(t/ log t). The proof is based
on an counting argument (Information theory) and it is not constructive. It would be interesting to
exhibit an explicit family of theorems requiring proofs with this number of lines. It is not even known
if this bound is exact; could it be Ω(t)?

It would be also interesting to study shortest proofs if the size of a proof is measured in terms of the

t Lower bound l(t) Standard L(t) Standard Upper bound
2 1 1 1 1 1 26
3 2 2 2 4 4 39
4 3 3 8 11 16 52
5 3 3 3 9 14 65
6 4 4 7 ? 30 78
7 4 4 5 ? 28 91
8 4 6 11 ? 58 104
9 4 5 4 ? 56 117
10 5 4 10 ? 57 130

Figure 5: Bounds and exact values of sizes of shortest proofs for theorems with up to t = 8 symbols
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t Lower bound L(t) Upper bound
3 2 4 39
5 2 9 65
10 2 ? 130
100 9 ? 1300
1000 65 ? 13000

Figure 6: Bounds on the number L(t) of lines that the proof of a theorem with t symbols must have.
The lower bound is from Theorem 4 and the upper bound is 13t.

number of symbols it contains.
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Figure 7: A small part of the MIU graph

10


