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Abstract

Although every primitive recursive (PR) function is total, many prob-
lems related to PR functions are undecidable. In this work we study
several questions associated with PR functions and characterize their de-
gree of undecidability. For instance, we show that the injectivity problem
belongs to the class Π0

1 \∆0
0 of the arithmetic hierarchy, while the surjec-

tivity and the bijectivity problems belong to Π0
2 \(Σ0

1∪Π0
1). It follows that

these subclasses of PR functions can not be enumerated – and thus can-
not be characterized by an effective property. Several other PR decision
problems are studied like, for instance, problems related to the existence
and number of zeros and to the size of the codomain.

We consider a specific but important decision problem, “does a given
PR function has at least one zero?”, and establish the necessary and suf-
ficient input and output restrictions for decidability – the “frontiers of
decidability” of this problem. We also study undecidability results for a
more general class of problems, namely existential first order logic with
equality and composition of PR functions. A PR function as a part of an
“acyclic PR function graph” is also studied. This setting may be useful
to evaluate the relevance of a given PR function as a part of a larger PR
structure.
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Figure 1: A PR function f is considered to be an important part of a complex
structure S if the following problem is undecidable: instance: f , question: “∃x :
S(x) = 0?”. We will show that an arbitrary acyclic system S containing one
occurrence of f can always be reduced to the normal form illustrated in Figure 9
(page 43).

Part I, specific problems

In Section 3 (page 13) several decision problems associated with PR functions
are studied. These problems include the existence of zeros, the equivalence
of functions, “domain problems”, and problems related with the injectivity,
surjectivity, and bijectivity of PR functions. For each of these problems the
degree of undecidability is established in terms of their exact location in the in
the arithmetic hierarchy; see Figures 2 (page 23) and 3 (page 23).

Part II, classes of problems

Suppose that the PR function f , the instance of a decision problem, is “placed”
somewhere inside a larger PR system S, see Figure 1. In algebraic terms this
means that S is obtained by composing fixed PR functions with the instance f .
A more general form of composition, based on acyclic graphs is also studied,
see Figure 8 (page 40).

Then we ask an important question about y = S(x), namely, “∃x : S(x) = 0”?
This is in fact a fundamental question:

– In terms of the Kleene normal form, the existence of a zero is the basic
undecidable question, and it is intimately related – in fact, equivalent –
to the halting problem.

– Many other decision problems can be reduced to this problem.

The class of problems, parametrized by S, is:
Question: A PR function f .
Instance: Is there some x such that S(x) = 0?

In some sense we can say that f can be considered an important component of S
if (and only if) this problem is undecidable.
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Num PR problem Class Proof

1 HAS-ZEROS Σ0
1 \∆ page 15

2 EXACTLY-ONE-ZERO Σ0
2 \ (Σ0

1 ∪Π0
1) page 15

3 AT-LEAST-k-ZEROS Σ0
1 \∆ page 16

4 EXACTLY-k-ZEROS Σ0
2 \ (Σ0

1 ∪Π0
1) page 16

5 ZERO-FUNCTION Π0
1 \∆ page 16

6 ∞-ZEROS Π0
2 \ (Σ0

1 ∪Π0
1) page 16

7 CODOMAIN-k, k = 1 Π0
1 \∆ page 18

8 CODOMAIN-k, k ≥ 2 Σ0
2 \ (Σ0

1 ∪Π0
1) page 18

9 FINITE-CODOMAIN Σ0
2 \ (Σ0

1 ∪Π0
1) page 19

10 INJECTIVE Π0
1 \∆ page 20

11 ONTO Π0
2 \ (Σ0

1 ∪Π0
1) Section 3.3.2

12 BIJECTIVE Π0
2 \ (Σ0

1 ∪Π0
1) Section 3.3.2

Figure 2: Some decision problems studied in this paper. In every problem
the instance is a PR function. Among these problems, only HAS-ZEROS
and AT-LEAST-k-ZEROS correspond to effectively “enumerable” languages or,
equivalently, can be characterized by a “model of computation”. The problems
are numbered (first column, in this color) for reference in Figure 3, page 23.

Σ0
2Π0

2

Σ0
1Π0

1

∆0
0

(decidable problems)

1, 35, 7, 10

2, 4, 8, 96, 11,12

Figure 3: Location in the arithmetic hierarchy of the problems mentioned in
Figure 2, page 23. The problem numbers (1 to 12 in this color) refer to the
numbers in the first column of Figure 2.
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Σ0
2Π0

2

Σ0
1Π0

1

∆0
0

TOTAL f(0) = 0

f(x) ≡ 0

CODOMAIN=1

CODOMAIN≥ 2

Figure 6: The classes of five particular problems when the instance is a primitive
recursive function (origin of the arrow) and when it is a partial recursive function
(tip of the arrow). CODOMAIN=1 denotes the problem CODOMAIN-k with
k = 1, CODOMAIN≥ 2 denotes the problem CODOMAIN-k for some fixed
k ≥ 2, and f(x) ≡ 0 denotes the ZERO-FUNCTION problem. See also Figure 5,
page 25.
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Figure 9: An arbitrary composition of one occurrence of f with PR functions
can be reduced to this “normal form”. The corresponding expression has the
form y = h(x, f(g(x))) where g has multiple outputs.
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Figure 10: Relationship between the values in Figure 9, page 43. The global
system S, y = S(x), has a zero iff, for some (x, y′) ∈ h−1(0), we have f(g(x)) =
y′. For the particular case S(x) ≡ h(f(g(x))), that is, when there is no green
arrow in the diagram, there is an explicit (“acyclic”) condition for the existence
of a zero of S, see Theorem 22 (page 34). But no such condition is known for
the general case.

It is interesting in particular to study systems in which the compositions of f
with itself are allowed. Recall the proof of Theorem 20 (page 33), where u takes
the role of f . Part of the proof of this result involves the statement that, for
any fixed function g with an infinite domain (see Equation (6)), we have

µy(f(x, y))) = µy(f(x, g(y))) (10)

If we consider an expression like f(x, f(y)) (instead of f(x, g(y))), the equal-
ity (10) may not hold. If this case, that is, when g = f , the statement of
Theorem 20 (page 33) is not useful. For instance, that criterion applied to the
problem

“Given f , does the function f(f(x)) have a zero?” (11)

says that this problem is undecidable iff the codomain of f is infinite. But
we can not characterize the decidability of a problem with instance f by an
undecidable constraint on f itself, namely “the domain of f is infinite”.
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