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Abstract

SRL computations can grow as fast as any primitive recursive
function in the sense that

For any positive integer k there are positive SRL programs with

k
outputs larger than 27 n.

The proof is constructive: the corresponding SRL programs are described.

Note. See Knuth’s notation [Knu76].

m—2
Note. The Ackermann function a(m,n) =[2 1 (n+3) — 3], see
[MP80, MP95], is not primitive recursive and thus can not be the output of a
SRL computation.
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(Abstract: primitive recursive as large as SRL )

The “other direction” of the inequality,

Primitive recursive functions can grow as fast as any SRL trans-
formation

is simpler to prove and is not discussed here.

For that purpose a small overhead simulation technique, for instance
represent x € Z by a pair of non-negative integers can be used.
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> Goals and general observations

Goal. Prove that the outputs of SRL transformations may grow
as fast as any primitive recursive function. The converse also
holds.
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> Goals and general observations (index ]

The SRL language is a very simple, but non-trivial, reversible
total language, whose programs define bijections ZkK — Z for
some positive integer k.

See [Mat03, MRP18, PPR16, Peri4].
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> Comparing different things

SRL computation P : Z" — 7Z", bijection

PR computation Q : N7 — N, function
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“For any PR Q there is a SRL program P that grows as fast
as Q’ It is enough to consider a part of the SRL computations:

10/47



> Comparing different things

“For any PR Q there is a SRL program P that grows as fast
as Q’ It is enough to consider a part of the SRL computations:

SRL programs without the “dec” instruction.

10/47



> Comparing different things

“For any PR Q there is a SRL program P that grows as fast
as Q’ It is enough to consider a part of the SRL computations:

SRL programs without the “dec” instruction.
Non-negative SRL inputs.

10/47



> Comparing different things

“For any PR Q there is a SRL program P that grows as fast
as Q’ It is enough to consider a part of the SRL computations:

SRL programs without the “dec” instruction.
Non-negative SRL inputs.
A particular output of the SRL computation is selected.

10/47



> Comparing different things

“For any PR Q there is a SRL program P that grows as fast
as Q’ It is enough to consider a part of the SRL computations:

SRL programs without the “dec” instruction.
Non-negative SRL inputs.
A particular output of the SRL computation is selected.

Property. The contents of any SRL register never decreases —
and thus is never negative.
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> A notation used in this work Lingex )

k
“2 [] n” notation / Knuth’s hyperpower notation / Fibonacci sequences.

A notation used in this report:

k 2
20n = 22" where the number of 2’s is k.
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> A notation used in this work

Kk

“2 [] n” notation / Knuth’s hyperpower notation / Fibonacci sequences.

A notation used in this report:

k 2
20n = 22" where the number of 2’s is k.

’
For instance, 2 [ n = 2".

Right associativity of exponentiation is assumed.
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“Hyperpower” Knuth’s notation

Knuth “hyperpower” notation [Knu76]
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“Hyperpower” Knuth’s notation

Knuth “hyperpower” notation [Knu76]

atn = afn=a"

m m—-1  m-1 m—1

aln=ailalil - - 1 a form > 2.
nas

For instance,

2
2tn=2712---12 number of 2’s is n
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A simple property

Property. Fora, m>1,n> 2:

m—1

a1 (n—1)]

(Assuming right associativity of exponentiation, the square brackets may be
removed.)

T_

m
atln=a
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A simple property

Property. Fora, m>1,n> 2:

m—1

= m

T [aT(n—1)]

(Assuming right associativity of exponentiation, the square brackets may be
removed.)

m
atln=a

In the sequel: a = 2, and we rename m and n as k and m.

For instance

k k—1 k
2im=21 [2](m—1)]
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Ackermann function: recursive and closed-form
A recursive definition

a(m,n) =4 a(m-1,1) fm>1andn=0
a(m—1,a(m,n—1)) ifm>1andn>1
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Ackermann function: recursive and closed-form (index §

A recursive definition

n—+1 fm=20
a(m,n) =4 a(m-1,1) ifm>1andn=20
a(m—1,a(m,n—1)) ifm>1andn>1

A closed-form expression, see [MP95]

amn)=2"1 (n+3)-3
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Ackermann function: not primitive recursive

Theorem. The Ackermann function a(m, n) is not primitive
recursive. O
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Ackermann function: not primitive recursive

Theorem. The Ackermann function a(m, n) is not primitive
recursive. O

Theorem. The diagonal Ackermann function d(m) = a(m, m) is
not primitive recursive. O
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Fibonacci sequences

Fibonacci sequences

Definition.

|

FO(va)

Fi
Fn

(
(

X, Y)
X,Y)

X

y
Foo1(x,y) + Fo_a(x,y)
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Fibonacci sequences (index ]

Fibonacci sequences

Definition.
FO(Xay) = X
Fi(x,y) =y
Fa(x,y) = Fno1(X,y)+ Fo_a(X,Y)

Note that F,_2(x,y) = Fa(Xx,y¥) — Fn_1(x,y). Thus Fn(x,y) is
defined for every n € Z (given x and y).
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Fibonacci sequences (index ]

Fibonacci sequences

Definition.
FO(Xay) X
Fi(x,y) = vy

(
Fa(x,y) = Fpo1(x,y) + Fooa(x,y)

Note that F,_2(x,y) = Fa(Xx,y¥) — Fn_1(x,y). Thus Fn(x,y) is
defined for every n € Z (given x and y).
Forx=0,y=1:

n: ... -3 2 -1 1 0 1 2 3 4 5 6 7 8
Fn(0,1): ... 3 2 1 1 0 1 1 2 3 5 8 13 21
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Closed-form expression of F,(0, 1)

Fr(0,1) = %w”—q@”)

= round(¢"/(V5)) forn> 0
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Closed-form expression of F,(0,1)

1 R

Fa(0, 1) = 75(¢n —¢")
= round(¢"/(V5)) forn> 0
where
mo=(1+5)/2
m = (1-V5)/2,

m round(x) = |x + 0.5].
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> Programs that grow faster than 27n [ inde: )

1
SRL programs: lower bound 21n = 2"

A SRL program:

Q(n,a,b) : forn(for b(inc a); for a(inc b)).
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1
> Programs that grow faster than 27 n

1
SRL programs: lower bound 21n = 2"

A SRL program:

Q(n, a,b) : for n(for b(inc a); for a(inc b)).

Initial values a =0, b = 1. Some final values &, b’:
n a b
0O 0 1 0
1 1 2
2 3 5

18/47



Recall Fibonacci. ..

Fa(0,1): ... 3 2 -1 1 T 2 8 13 ...
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Recall Fibonacci. ..

Fa(0,1): ... 3 2 -1 1 T 2 8 13 ...

x
I

Fan1(0,1) (8)
n = n

{a’ = F2,(0,1)

(Proof ahead. . .)
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Recall Fibonacci. ..

m: ... 3 2 141 0 1 2 3 4 5 6 7
Fa(0,1): ... 3 2 -1 1 1 2 g8 13
a = Fp(0,1)
b" = Fzp41(0,1) (8)
n = n

(Proof ahead. . .)

Example n = 100.

ad = 280571172992510140037611932413038677189525
453973694165307953197296969697410619233826
n = 100

x
|
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A note on the proof of (§)

Proof of (§) may be based on the following observations
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A note on the proof of (§) (index ]

Proof of (§) may be based on the following observations
m Base case, a= 0, b= 1: trivial
m Step of the Fibonacci sequence:

a = b matrix o
b = a+b 11

m Loop body of program “for n(for b(inc a); for a(inc b))

g = a+b i |1 1120 1], [0
b = a+2b 1271 1] [1 1
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A lower bound (Cindex J

Theorem 1.
Let R(n, a, b) = inc b; for n(for b(inc a); for a(inc b)).
After the computation R(n, 0, 0) the final contents of a and b
satisfy
a(n)>2" forn > 4
b'(n) > 2" forn > 3.
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> The theorem. .. (Cindex J

The main result of this report: for every positive integer k there are SRL pro-

k
grams that grow faster than lower bound 21 n

Theorem 2.
For every k > 1 there is a SRL program using k + 2 registers such

that, if all the registers are initialized with n > 2, then all the registers
k
have a final contents of at least 2 Tn. O

(Thus the registers a and b are also initialized with n.)
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Proof: a note. ..

Note. A condition like “n > ...” — usually not mentioned — may
be a consequence of inequalities like
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Proof: a note. ..

Note. A condition like “n > ...” — usually not mentioned — may
be a consequence of inequalities like

k 2"

20n 22" #(2's)=
272...1271n #(2's)=
212...72712 forn > =
272...7212 forn > 2, #(2's)= k

2
21k,

VIV

where #(2's) denotes the number of 2’s.
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The proof is by induction on k
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Proof

The proof is by induction on k

Statement of the theorem

Vk € N*, 3(SRL program P : Zk+2 — 7k+2) .
K
YneNt,n>2: P(M)|a>27n

P(n)|an: the final contents of all the registers, when all the initial contents
aren.

k k
Recall the “hyperpower” symbols. . . [l T

25/ 47



Proof, case k = 1

Recall that
T(n,a,b) = inch;incn;incn; incn; incn; Q(n,a, b); Q(a, b, n)
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Proof, case k = 1 (index ]

Recall that
T(n,a, b) = incb; incn;incn; incn; incn; Q(n,a,b); Q(a, b, n)

Let n=n, a= 0, b= 0 be the initial values.
We have seen that

1 1
T(n,n,n) > T(n,0,0)>2"=20n>27n

for every output of T.
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Proof, case k = 1, continuation
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Proof, case k = 1, continuation

k=1

Summary of the proof
m Let Q(n, a, b)="for n(for b(inc a); for a(inc b))”
m Q(n,0,1): & = F2q(0,1), ' = Fon1(0,1), 0" =n.
B Q(n,0,1)[ap > Je(¢?" — 32") > 20
m T(n,a,b)="incb; incn; incn; incn; incn,
Q(n, a,b); Q(a, b, n)”,
T(n’ 07 O)|al| > 2"
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Proof, case k = 1, continuation

k=1

Summary of the proof
Let Q(n, a, b)="for n(for b(inc a); for a(inc b))”
Q(n,O, 1): a= an(O, 1), b = F2n+1(0, 1), n’ =n.
Q(n,0, 1)|ap > J(¢2 — ") > 2°
T(n, a, b)="inc b; inc n; inc n; inc n; incn,

Q(n, a,b); Q(a, b, n)”,
T(n’ 07 O)|al| > 2"

1
u T(n7n7n)|a|| > 2" = 2Tn
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Proof, case k = 1, continuation

k=1

Summary of the proof

m Let Q(n, a, b)="for n(for b(inc a); for a(inc b))”

B Q(n,0,1): & = Fon(0,1), b’ = Fpn41(0,1), 0" = n.

B Q(n,0,1)]ap > J5(¢”" — §*") > 2"

m T(n, a, b)="inc b; inc n; inc n; inc n; inc n;

Q(”’ a7 b)’ Q(a7 b7 n)”s
T(na 07 0)|a|| > 2"
;

u T(n7 n, n)|all > 2" = 2Tn

Thus the program P of the statement may be T(n,a,b).  QED
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Proof, induction step (index ]

Assume that all the k + 2 registers X have the initial contents n.
k
IH, induction hypothesis: P(X)|a > 27n.
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Proof, induction step (index ]

Assume that all the k + 2 registers X have the initial contents n.
k

IH, induction hypothesis: P(X)|q > 27n.

Consider the sequence U(m, x) =“for m(P(x))”, which, with the

initial contents of the new register m also equal to n is
(semantically)

Un,x) = P;... P, P(X). Compare with
1
nf
k+1 k k k
2 1 n=217127---272
—_— —————
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Usual convention:

U is executed from left to tight,
k+1
2 1T n isinterpreted from right to left.
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Proof, induction step, continuation (index ]

(Recall: the initial contents of every element of X is n.)

k
Leftmost P(x) is executed first and (by the IH): P(x) > 27n.
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k k
P(X)>21n>2712 (forn > 2) and

k k+1
“212” is also at the right of the expression2 1 n.

The leftmost sequence “(P; P)(X)” satisfies
k
(P; P)(X) = P(212) (IH)

k
(The second P receives all inputs > 212)
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Proof, induction step, continuation (index ]

(Recall: the initial contents of every element of X is n.)
k
Leftmost P(x) is executed first and (by the IH): P(x) > 27n.

k k
P(X)>21n>2712 (forn > 2) and

k k+1
“212” is also at the right of the expression2 1 n.

The leftmost sequence “(P; P)(X)” satisfies

k
(P; P)(X) > P(212) (IH)
(The second P receives all inputs > 2$2)
k kK
...Thus (P; P)(X) >271(212) (IH+monotonicity)

...and this is exactly the rightmost sequence with three 2’s of
(P; P)(X)=
——

k+1 k k k k
2 M=2120)-21272

n2's 30/47



Proof, induction step, continuation

...and soon...
More formally, use induction on k. We get

k+1
Umx)>2 1 n, (%)

assuming that the k + 3 parameters (m, X) are initialized with n
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Proof, induction step, continuation (index ]

...and soon...
More formally, use induction on k. We get

k+1
Umx)>2 1 n, (%)

assuming that the k + 3 parameters (m, X) are initialized with n

This inequality holds for all registers X. .. but the final contents
of mis still n. Solution: the program

U(m7 X150, Xk+2); U(X1 s M, Xqyen 7Xk+2)
satisfies (x) for the outputs of all the registers.

This finishes the proof by induction on k. O
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> Loop and SRL: the same lower bounds

In Loop and SRL programs, the (absolute value of the) maximum contents of
the registers is essentially the same.
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> Loop and SRL: the same lower bounds (inco

In Loop and SRL programs, the (absolute value of the) maximum contents of
the registers is essentially the same.

Given that
m in SRL and in Loop: for every k € N there are

k
functions/transformations with lower bound 21 n;

m—2
m the Ackermann function a(m,n)=[2 1 (n+3)— 3]
grows faster than any primitive recursive function (and thus
is not primitive recursive);

m SRL can be simulated in Loop without much difficulty

the lowest upper bounds of PR functions and of (the final
register contents of) SRL programs are essentially the same.
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Theorem 3.
Primitive recursive (PR) functions and the SRL transformations have
essentially the same maximum growth rate in the sense that

m For every kK > 1 there is a PR function f(n) that grows faster

k
than 21 n.

m For every kK > 1 there is a SRL program using k + 2 registers
such that, if all the registers are initialized with n > 2, then all

k
their final contents are at least 2T n.

m No PR function f(n) grows faster than the diagonal Ackermann
n

function 2T n.

n
m No SRL transformation grows faster than 27 n. O
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The end
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This is optional material: Another proof of the existence of
k
SRL programs with lower bound > 2 [ n".
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> Optional section

This is optional material: Another proof of the existence of
k
SRL programs with lower bound > 2 0n.

The program Hyper,(n, a, b):

Line Instruction

A OwWODN =

K k even: Q(a, b, n)
k odd: Q(n, a, b)
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A sequence of two SRL “Fibonacci programs”

The sequence:
Q(n, a, b); Q(a, b, n)

(1) (2)
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The sequence:
Q(n, a, b); Q(a, b, n)

M (2
Lower bounds of (1) and (2) for initial value n > 4:

n = n a = 4
(¢ & > 27 2){ b > 27
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b > 2a’ = b > 2(2”)
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A sequence of two SRL “Fibonacci programs”

The sequence:
Q(n, a, b); Q(a, b, n)

M (2
Lower bounds of (1) and (2) for initial value n > 4:

n = n a = 4
(¢ & > 27 2){ b > 27
b > 2" n > 27

For b” we get
b > 2a’ = b > 2(2”)

Similarly: &’ > 2", o/’ > 22",
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Recalling the notation. ..

k 2"
20n = 22 where the number of 2’s is k
— 212...121n

2
> 27k forn > 2.
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Recalling the notation. ..

k 2"
20n = 22 where the number of 2’s is k
— 212...121n
2
> 27k forn > 2.

More generally,

aln = atn=4a"
m m—1 m—1 m—1
afn=atTat- -1 a form > 2.

nas
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SRL The theorem...

Theorem 4.

For every positive integer k, there is a SRL program Pr(n, a, b)
such that, in the computation Pr(n,0,0) and for every n > 0, the
final contents of the registers satisfy

n'(n), d(n), b'(n) > 2 E n
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The proof, |: a sequence

Lower bounds.

Sequence of instructions mem[n] mem[a] mem][b]
inc b; 4 0 1
1 for n(for b(inc a); for a(inc b));
1 1 1
for b(inc a); for b(inc n) 20n 20n 210n
2 for a(for n(inc b); for b(inc n));
2 2 2
for b(inc a); for b(inc n) 20n 20n 20n
3 for n(for b(inc a); for a(inc b));
3 3 3
for b(inc a); for b(inc n) 20n 20n 20n
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The proof, Il: generalization

Proof: generalize the previous program!
Bottom lines for k odd:

mem[n] mem[a] mem[b]

k for n(for b(inc a); for a(inc b));

for b(inc a); for b(inc n) 20n 20n 20n

Bottom lines for k even:

mem[n] mem[a] mem|b]

k for a(for n(inc b); for b(inc n));

for b(inc a); for b(inc n) 20n 20n 210n
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The end
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