
SRL transformations can grow as fast as
any primitive recursive function

May 2022

Luca Roversi
Luca Paolini
Armando Matos

1 / 47

Abstract

SRL computations can grow as fast as any primitive recursive
function in the sense that

For any positive integer k there are positive SRL programs with

outputs larger than 2
k
↑n.

The proof is constructive: the corresponding SRL programs are described.

Note. See Knuth’s notation [Knu76].

Note. The Ackermann function a(m, n) = [2
m−2
↑ (n + 3)− 3], see

[MP80, MP95], is not primitive recursive and thus can not be the output of a
SRL computation.

2 / 47

(Abstract: primitive recursive as large as SRL)

The “other direction” of the inequality,

Primitive recursive functions can grow as fast as any SRL trans-
formation

is simpler to prove and is not discussed here.

For that purpose a small overhead simulation technique, for instance
represent x ∈ Z by a pair of non-negative integers can be used.

3 / 47

Index

Goals. General observations. →

Background: Ackermann / Knuth / Fibonacci →

SRL programs that grow faster than 2
1
↑n = 2n →

SRL programs that grow faster than 2
k
↑n →

Loop and SRL: essentially the same growth rate. →

Bibliography . →

Optional: SRL programs that grow faster than 2
2
↑n →

A blank slide marks the end of the section

4 / 47

index

5 / 47

. Goals and general observations index

Goal. Prove that the outputs of SRL transformations may grow
as fast as any primitive recursive function. The converse also
holds.

For any positive integer k , there are SRL programs P with

outputs that grow faster than 2
k
↑n, where the input values

of P(x) are either 0 or n, n ∈ N. Thus |x | ≤ n.
The programs P are explicitly described, as a function of k .

6 / 47

. Goals and general observations index

Goal. Prove that the outputs of SRL transformations may grow
as fast as any primitive recursive function. The converse also
holds.

For any positive integer k , there are SRL programs P with

outputs that grow faster than 2
k
↑n, where the input values

of P(x) are either 0 or n, n ∈ N. Thus |x | ≤ n.
The programs P are explicitly described, as a function of k .

6 / 47

. Goals and general observations index

Goal. Prove that the outputs of SRL transformations may grow
as fast as any primitive recursive function. The converse also
holds.

For any positive integer k , there are SRL programs P with

outputs that grow faster than 2
k
↑n, where the input values

of P(x) are either 0 or n, n ∈ N. Thus |x | ≤ n.
The programs P are explicitly described, as a function of k .

6 / 47

. Goals and general observations index

The SRL language is a very simple, but non-trivial, reversible
total language, whose programs define bijections Zk → Zk for
some positive integer k .

See [Mat03, MRP18, PPR16, Per14].

7 / 47

index

8 / 47

. Comparing different things index

SRL computation P : Zn → Zn, bijection

PR computation Q : Nn → N, function

9 / 47

. Comparing different things index

“For any PR Q there is a SRL program P that grows as fast
as Q” It is enough to consider a part of the SRL computations:

1 SRL programs without the “dec” instruction.
2 Non-negative SRL inputs.
3 A particular output of the SRL computation is selected.

Property. The contents of any SRL register never decreases —
and thus is never negative.

10 / 47

. Comparing different things index

“For any PR Q there is a SRL program P that grows as fast
as Q” It is enough to consider a part of the SRL computations:

1 SRL programs without the “dec” instruction.

2 Non-negative SRL inputs.
3 A particular output of the SRL computation is selected.

Property. The contents of any SRL register never decreases —
and thus is never negative.

10 / 47

. Comparing different things index

“For any PR Q there is a SRL program P that grows as fast
as Q” It is enough to consider a part of the SRL computations:

1 SRL programs without the “dec” instruction.
2 Non-negative SRL inputs.

3 A particular output of the SRL computation is selected.

Property. The contents of any SRL register never decreases —
and thus is never negative.

10 / 47

. Comparing different things index

“For any PR Q there is a SRL program P that grows as fast
as Q” It is enough to consider a part of the SRL computations:

1 SRL programs without the “dec” instruction.
2 Non-negative SRL inputs.
3 A particular output of the SRL computation is selected.

Property. The contents of any SRL register never decreases —
and thus is never negative.

10 / 47

. Comparing different things index

“For any PR Q there is a SRL program P that grows as fast
as Q” It is enough to consider a part of the SRL computations:

1 SRL programs without the “dec” instruction.
2 Non-negative SRL inputs.
3 A particular output of the SRL computation is selected.

Property. The contents of any SRL register never decreases —
and thus is never negative.

10 / 47

. A notation used in this work index

“2
k

n” notation / Knuth’s hyperpower notation / Fibonacci sequences.

A notation used in this report:

2
k

n = 22. . .2
n

where the number of 2’s is k .

For instance, 2
1

n = 2n.

Right associativity of exponentiation is assumed.

11 / 47

. A notation used in this work index

“2
k

n” notation / Knuth’s hyperpower notation / Fibonacci sequences.

A notation used in this report:

2
k

n = 22. . .2
n

where the number of 2’s is k .

For instance, 2
1

n = 2n.

Right associativity of exponentiation is assumed.

11 / 47

. A notation used in this work index

“2
k

n” notation / Knuth’s hyperpower notation / Fibonacci sequences.

A notation used in this report:

2
k

n = 22. . .2
n

where the number of 2’s is k .

For instance, 2
1

n = 2n.

Right associativity of exponentiation is assumed.

11 / 47

“Hyperpower” Knuth’s notation index

Knuth “hyperpower” notation [Knu76]

a
1
↑n = a↑n = an

a
m
↑ n = a

m−1
↑ a

m−1
↑ · · ·

m−1
↑ a︸ ︷︷ ︸

n a’s

for m ≥ 2.

For instance,

2
2
↑ n = 2 ↑ 2 · · · ↑ 2 number of 2’s is n

12 / 47

“Hyperpower” Knuth’s notation index

Knuth “hyperpower” notation [Knu76]

a
1
↑n = a↑n = an

a
m
↑ n = a

m−1
↑ a

m−1
↑ · · ·

m−1
↑ a︸ ︷︷ ︸

n a’s

for m ≥ 2.

For instance,

2
2
↑ n = 2 ↑ 2 · · · ↑ 2 number of 2’s is n

12 / 47

“Hyperpower” Knuth’s notation index

Knuth “hyperpower” notation [Knu76]

a
1
↑n = a↑n = an

a
m
↑ n = a

m−1
↑ a

m−1
↑ · · ·

m−1
↑ a︸ ︷︷ ︸

n a’s

for m ≥ 2.

For instance,

2
2
↑ n = 2 ↑ 2 · · · ↑ 2 number of 2’s is n

12 / 47

A simple property index

Property. For a, m ≥ 1, n ≥ 2:

a
m
↑ n = a

m−1
↑ [a

m
↑ (n − 1)]

(Assuming right associativity of exponentiation, the square brackets may be
removed.)

In the sequel: a = 2, and we rename m and n as k and m.
For instance

2
k
↑m = 2

k−1
↑ [2

k
↑(m − 1)]

13 / 47

A simple property index

Property. For a, m ≥ 1, n ≥ 2:

a
m
↑ n = a

m−1
↑ [a

m
↑ (n − 1)]

(Assuming right associativity of exponentiation, the square brackets may be
removed.)

In the sequel: a = 2, and we rename m and n as k and m.
For instance

2
k
↑m = 2

k−1
↑ [2

k
↑(m − 1)]

13 / 47

Ackermann function: recursive and closed-form index

A recursive definition

a(m,n) =


n + 1 if m = 0
a(m − 1,1) if m ≥ 1 and n = 0
a(m − 1,a(m,n − 1)) if m ≥ 1 and n ≥ 1

A closed-form expression, see [MP95]

a(m,n) = 2
m−2
↑ (n + 3)− 3

14 / 47

Ackermann function: recursive and closed-form index

A recursive definition

a(m,n) =


n + 1 if m = 0
a(m − 1,1) if m ≥ 1 and n = 0
a(m − 1,a(m,n − 1)) if m ≥ 1 and n ≥ 1

A closed-form expression, see [MP95]

a(m,n) = 2
m−2
↑ (n + 3)− 3

14 / 47

Ackermann function: not primitive recursive index

Theorem. The Ackermann function a(m,n) is not primitive
recursive. �

Theorem. The diagonal Ackermann function d(m) = a(m,m) is
not primitive recursive. �

15 / 47

Ackermann function: not primitive recursive index

Theorem. The Ackermann function a(m,n) is not primitive
recursive. �

Theorem. The diagonal Ackermann function d(m) = a(m,m) is
not primitive recursive. �

15 / 47

Fibonacci sequences index

Fibonacci sequences
Definition. 

F0(x , y) = x
F1(x , y) = y
Fn(x , y) = Fn−1(x , y) + Fn−2(x , y)

Note that Fn−2(x , y) = Fn(x , y)− Fn−1(x , y). Thus Fn(x , y) is
defined for every n ∈ Z (given x and y).

For x = 0, y = 1:

n : . . . -3 -2 -1 1 0 1 2 3 4 5 6 7 8 . . .
Fn(0, 1) : . . . -3 2 -1 1 0 1 1 2 3 5 8 13 21 . . .

16 / 47

Fibonacci sequences index

Fibonacci sequences
Definition. 

F0(x , y) = x
F1(x , y) = y
Fn(x , y) = Fn−1(x , y) + Fn−2(x , y)

Note that Fn−2(x , y) = Fn(x , y)− Fn−1(x , y). Thus Fn(x , y) is
defined for every n ∈ Z (given x and y).

For x = 0, y = 1:

n : . . . -3 -2 -1 1 0 1 2 3 4 5 6 7 8 . . .
Fn(0, 1) : . . . -3 2 -1 1 0 1 1 2 3 5 8 13 21 . . .

16 / 47

Fibonacci sequences index

Fibonacci sequences
Definition. 

F0(x , y) = x
F1(x , y) = y
Fn(x , y) = Fn−1(x , y) + Fn−2(x , y)

Note that Fn−2(x , y) = Fn(x , y)− Fn−1(x , y). Thus Fn(x , y) is
defined for every n ∈ Z (given x and y).

For x = 0, y = 1:

n : . . . -3 -2 -1 1 0 1 2 3 4 5 6 7 8 . . .
Fn(0, 1) : . . . -3 2 -1 1 0 1 1 2 3 5 8 13 21 . . .

16 / 47

Closed-form expression of Fn(0, 1) index

Fn(0,1) =
1√
5
(φn − φ̂n)

= round(φn/(
√

5)) for n ≥ 0

where
φ = (1 +

√
5)/2,

φ̂ = (1−
√

5)/2,
round(x) = bx + 0.5c.

17 / 47

Closed-form expression of Fn(0, 1) index

Fn(0,1) =
1√
5
(φn − φ̂n)

= round(φn/(
√

5)) for n ≥ 0

where
φ = (1 +

√
5)/2,

φ̂ = (1−
√

5)/2,
round(x) = bx + 0.5c.

17 / 47

. Programs that grow faster than 2
1
↑n index

SRL programs: lower bound 2
1
↑n = 2n

A SRL program:

Q(n,a,b) : for n(for b(inc a); for a(inc b)).

Initial values a = 0, b = 1. Some final values a′, b′:

n a′ b′

0 0 1
1 1 2
2 3 5

(n′ = n)

18 / 47

. Programs that grow faster than 2
1
↑n index

SRL programs: lower bound 2
1
↑n = 2n

A SRL program:

Q(n,a,b) : for n(for b(inc a); for a(inc b)).

Initial values a = 0, b = 1. Some final values a′, b′:

n a′ b′

0 0 1
1 1 2
2 3 5

(n′ = n)

18 / 47

. Programs that grow faster than 2
1
↑n index

SRL programs: lower bound 2
1
↑n = 2n

A SRL program:

Q(n,a,b) : for n(for b(inc a); for a(inc b)).

Initial values a = 0, b = 1. Some final values a′, b′:

n a′ b′

0 0 1
1 1 2
2 3 5

(n′ = n)

18 / 47

Recall Fibonacci. . . index

m : . . . -3 -2 -1 1 0 1 2 3 4 5 6 7 . . .
Fm(0, 1) : . . . -3 2 -1 1 0 1 1 2 3 5 8 13 . . .


a′ = F2n(0,1)
b′ = F2n+1(0,1)
n′ = n

(§)

(Proof ahead. . .)

Example n = 100.
a′ = 280571172992510140037611932413038677189525
b′ = 453973694165307953197296969697410619233826
n′ = 100

19 / 47

Recall Fibonacci. . . index

m : . . . -3 -2 -1 1 0 1 2 3 4 5 6 7 . . .
Fm(0, 1) : . . . -3 2 -1 1 0 1 1 2 3 5 8 13 . . .


a′ = F2n(0,1)
b′ = F2n+1(0,1)
n′ = n

(§)

(Proof ahead. . .)

Example n = 100.
a′ = 280571172992510140037611932413038677189525
b′ = 453973694165307953197296969697410619233826
n′ = 100

19 / 47

Recall Fibonacci. . . index

m : . . . -3 -2 -1 1 0 1 2 3 4 5 6 7 . . .
Fm(0, 1) : . . . -3 2 -1 1 0 1 1 2 3 5 8 13 . . .


a′ = F2n(0,1)
b′ = F2n+1(0,1)
n′ = n

(§)

(Proof ahead. . .)

Example n = 100.
a′ = 280571172992510140037611932413038677189525
b′ = 453973694165307953197296969697410619233826
n′ = 100

19 / 47

A note on the proof of (§) index

Proof of (§) may be based on the following observations

Base case, a = 0, b = 1: trivial
Step of the Fibonacci sequence:{

a′ = b
b′ = a + b

matrix
[
0 1
1 1

]

Loop body of program “for n(for b(inc a); for a(inc b))”:{
a′′ = a + b
b′′ = a + 2b

matrix
[
1 1
1 2

]
=

[
0 1
1 1

]
×
[
0 1
1 1

]

20 / 47

A note on the proof of (§) index

Proof of (§) may be based on the following observations
Base case, a = 0, b = 1: trivial

Step of the Fibonacci sequence:{
a′ = b
b′ = a + b

matrix
[
0 1
1 1

]

Loop body of program “for n(for b(inc a); for a(inc b))”:{
a′′ = a + b
b′′ = a + 2b

matrix
[
1 1
1 2

]
=

[
0 1
1 1

]
×
[
0 1
1 1

]

20 / 47

A note on the proof of (§) index

Proof of (§) may be based on the following observations
Base case, a = 0, b = 1: trivial
Step of the Fibonacci sequence:{

a′ = b
b′ = a + b

matrix
[
0 1
1 1

]

Loop body of program “for n(for b(inc a); for a(inc b))”:{
a′′ = a + b
b′′ = a + 2b

matrix
[
1 1
1 2

]
=

[
0 1
1 1

]
×
[
0 1
1 1

]

20 / 47

A note on the proof of (§) index

Proof of (§) may be based on the following observations
Base case, a = 0, b = 1: trivial
Step of the Fibonacci sequence:{

a′ = b
b′ = a + b

matrix
[
0 1
1 1

]

Loop body of program “for n(for b(inc a); for a(inc b))”:{
a′′ = a + b
b′′ = a + 2b

matrix
[
1 1
1 2

]
=

[
0 1
1 1

]
×
[
0 1
1 1

]

20 / 47

A lower bound index

Theorem 1.
Let R(n,a,b) = inc b; for n(for b(inc a); for a(inc b)).
After the computation R(n,0,0) the final contents of a and b
satisfy

a′(n) > 2n for n ≥ 4
b′(n) > 2n for n ≥ 3.

21 / 47

index

22 / 47

. The theorem. . . index

The main result of this report: for every positive integer k there are SRL pro-

grams that grow faster than lower bound 2
k
↑n

Theorem 2.
For every k ≥ 1 there is a SRL program using k + 2 registers such
that, if all the registers are initialized with n ≥ 2, then all the registers

have a final contents of at least 2
k
↑n. �

(Thus the registers a and b are also initialized with n.)

23 / 47

Proof: a note. . . index

Note. A condition like “n ≥ . . .” — usually not mentioned — may
be a consequence of inequalities like

2
k

n = 22. . .2
n

#(2’s)= k
= 2 ↑ 2 . . . ↑ 2 ↑ n #(2’s)= k
≥ 2 ↑ 2 . . . ↑ 2 ↑ 2 for n ≥ 2, #(2’s)= k + 1
> 2 ↑ 2 . . . ↑ 2 ↑ 2 for n ≥ 2, #(2’s)= k

= 2
2
↑k .

where #(2’s) denotes the number of 2’s.

24 / 47

Proof: a note. . . index

Note. A condition like “n ≥ . . .” — usually not mentioned — may
be a consequence of inequalities like

2
k

n = 22. . .2
n

#(2’s)= k
= 2 ↑ 2 . . . ↑ 2 ↑ n #(2’s)= k
≥ 2 ↑ 2 . . . ↑ 2 ↑ 2 for n ≥ 2, #(2’s)= k + 1
> 2 ↑ 2 . . . ↑ 2 ↑ 2 for n ≥ 2, #(2’s)= k

= 2
2
↑k .

where #(2’s) denotes the number of 2’s.

24 / 47

Proof index

The proof is by induction on k

Statement of the theorem

∀k ∈ N+, ∃(SRL program P : Zk+2 → Zk+2) :

∀n ∈ N+,n ≥ 2 : P(n)|all ≥ 2
k
↑n

P(n)|all: the final contents of all the registers, when all the initial contents
are n.

Recall the “hyperpower” symbols. . .
k k
↑

25 / 47

Proof index

The proof is by induction on k

Statement of the theorem

∀k ∈ N+, ∃(SRL program P : Zk+2 → Zk+2) :

∀n ∈ N+,n ≥ 2 : P(n)|all ≥ 2
k
↑n

P(n)|all: the final contents of all the registers, when all the initial contents
are n.

Recall the “hyperpower” symbols. . .
k k
↑

25 / 47

Proof index

The proof is by induction on k

Statement of the theorem

∀k ∈ N+, ∃(SRL program P : Zk+2 → Zk+2) :

∀n ∈ N+,n ≥ 2 : P(n)|all ≥ 2
k
↑n

P(n)|all: the final contents of all the registers, when all the initial contents
are n.

Recall the “hyperpower” symbols. . .
k k
↑

25 / 47

Proof index

The proof is by induction on k

Statement of the theorem

∀k ∈ N+, ∃(SRL program P : Zk+2 → Zk+2) :

∀n ∈ N+,n ≥ 2 : P(n)|all ≥ 2
k
↑n

P(n)|all: the final contents of all the registers, when all the initial contents
are n.

Recall the “hyperpower” symbols. . .
k k
↑

25 / 47

Proof, case k = 1 index

Recall that
T (n,a,b) = inc b; inc n; inc n; inc n; inc n; Q(n,a,b); Q(a,b,n)

k = 1
Let n = n, a = 0, b = 0 be the initial values.
We have seen that see here and here

T (n,n,n) ≥ T (n,0,0) ≥ 2n = 2
1

n ≥ 2
1
↑n

for every output of T .

26 / 47

Proof, case k = 1 index

Recall that
T (n,a,b) = inc b; inc n; inc n; inc n; inc n; Q(n,a,b); Q(a,b,n)

k = 1
Let n = n, a = 0, b = 0 be the initial values.
We have seen that see here and here

T (n,n,n) ≥ T (n,0,0) ≥ 2n = 2
1

n ≥ 2
1
↑n

for every output of T .

26 / 47

Proof, case k = 1, continuation index

k = 1

Summary of the proof
Let Q(n,a,b)=“for n(for b(inc a); for a(inc b))” →

Q(n,0,1): a′ = F2n(0,1), b′ = F2n+1(0,1), n′ = n. →

Q(n,0,1)|a,b ≥ 1√
5
(φ2n − φ̂2n) ≥ 2n →

T (n,a,b)=“inc b; inc n; inc n; inc n; inc n;
Q(n,a,b); Q(a,b,n)”,

T (n,0,0)|all ≥ 2n →

T (n,n,n)|all ≥ 2n = 2
1
↑n

Thus the program P of the statement may be T (n,a,b). QED

27 / 47

Proof, case k = 1, continuation index

k = 1

Summary of the proof

Let Q(n,a,b)=“for n(for b(inc a); for a(inc b))” →

Q(n,0,1): a′ = F2n(0,1), b′ = F2n+1(0,1), n′ = n. →

Q(n,0,1)|a,b ≥ 1√
5
(φ2n − φ̂2n) ≥ 2n →

T (n,a,b)=“inc b; inc n; inc n; inc n; inc n;
Q(n,a,b); Q(a,b,n)”,

T (n,0,0)|all ≥ 2n →

T (n,n,n)|all ≥ 2n = 2
1
↑n

Thus the program P of the statement may be T (n,a,b). QED

27 / 47

Proof, case k = 1, continuation index

k = 1

Summary of the proof
Let Q(n,a,b)=“for n(for b(inc a); for a(inc b))” →

Q(n,0,1): a′ = F2n(0,1), b′ = F2n+1(0,1), n′ = n. →

Q(n,0,1)|a,b ≥ 1√
5
(φ2n − φ̂2n) ≥ 2n →

T (n,a,b)=“inc b; inc n; inc n; inc n; inc n;
Q(n,a,b); Q(a,b,n)”,

T (n,0,0)|all ≥ 2n →

T (n,n,n)|all ≥ 2n = 2
1
↑n

Thus the program P of the statement may be T (n,a,b). QED

27 / 47

Proof, case k = 1, continuation index

k = 1

Summary of the proof
Let Q(n,a,b)=“for n(for b(inc a); for a(inc b))” →

Q(n,0,1): a′ = F2n(0,1), b′ = F2n+1(0,1), n′ = n. →

Q(n,0,1)|a,b ≥ 1√
5
(φ2n − φ̂2n) ≥ 2n →

T (n,a,b)=“inc b; inc n; inc n; inc n; inc n;
Q(n,a,b); Q(a,b,n)”,

T (n,0,0)|all ≥ 2n →

T (n,n,n)|all ≥ 2n = 2
1
↑n

Thus the program P of the statement may be T (n,a,b). QED

27 / 47

Proof, case k = 1, continuation index

k = 1

Summary of the proof
Let Q(n,a,b)=“for n(for b(inc a); for a(inc b))” →

Q(n,0,1): a′ = F2n(0,1), b′ = F2n+1(0,1), n′ = n. →

Q(n,0,1)|a,b ≥ 1√
5
(φ2n − φ̂2n) ≥ 2n →

T (n,a,b)=“inc b; inc n; inc n; inc n; inc n;
Q(n,a,b); Q(a,b,n)”,

T (n,0,0)|all ≥ 2n →

T (n,n,n)|all ≥ 2n = 2
1
↑n

Thus the program P of the statement may be T (n,a,b). QED

27 / 47

Proof, case k = 1, continuation index

k = 1

Summary of the proof
Let Q(n,a,b)=“for n(for b(inc a); for a(inc b))” →

Q(n,0,1): a′ = F2n(0,1), b′ = F2n+1(0,1), n′ = n. →

Q(n,0,1)|a,b ≥ 1√
5
(φ2n − φ̂2n) ≥ 2n →

T (n,a,b)=“inc b; inc n; inc n; inc n; inc n;
Q(n,a,b); Q(a,b,n)”,

T (n,0,0)|all ≥ 2n →

T (n,n,n)|all ≥ 2n = 2
1
↑n

Thus the program P of the statement may be T (n,a,b). QED

27 / 47

Proof, case k = 1, continuation index

k = 1

Summary of the proof
Let Q(n,a,b)=“for n(for b(inc a); for a(inc b))” →

Q(n,0,1): a′ = F2n(0,1), b′ = F2n+1(0,1), n′ = n. →

Q(n,0,1)|a,b ≥ 1√
5
(φ2n − φ̂2n) ≥ 2n →

T (n,a,b)=“inc b; inc n; inc n; inc n; inc n;
Q(n,a,b); Q(a,b,n)”,

T (n,0,0)|all ≥ 2n →

T (n,n,n)|all ≥ 2n = 2
1
↑n

Thus the program P of the statement may be T (n,a,b). QED

27 / 47

Proof, case k = 1, continuation index

k = 1

Summary of the proof
Let Q(n,a,b)=“for n(for b(inc a); for a(inc b))” →

Q(n,0,1): a′ = F2n(0,1), b′ = F2n+1(0,1), n′ = n. →

Q(n,0,1)|a,b ≥ 1√
5
(φ2n − φ̂2n) ≥ 2n →

T (n,a,b)=“inc b; inc n; inc n; inc n; inc n;
Q(n,a,b); Q(a,b,n)”,

T (n,0,0)|all ≥ 2n →

T (n,n,n)|all ≥ 2n = 2
1
↑n

Thus the program P of the statement may be T (n,a,b). QED

27 / 47

Proof, induction step index

k ⇒ k + 1

Assume that all the k + 2 registers x have the initial contents n.

IH, induction hypothesis: P(x)|all ≥ 2
k
↑n.

Consider the sequence U(m, x) =“for m(P(x))”, which, with the
initial contents of the new register m also equal to n is
(semantically)

U(n, x) =

n︷ ︸︸ ︷
P; . . . P︸ ︷︷ ︸

n−1

; P (x). Compare with

2
k+1
↑ n = 2

k
↑ 2

k
↑ · · ·2

k
↑ 2︸ ︷︷ ︸

n 2’s

28 / 47

Proof, induction step index

k ⇒ k + 1

Assume that all the k + 2 registers x have the initial contents n.

IH, induction hypothesis: P(x)|all ≥ 2
k
↑n.

Consider the sequence U(m, x) =“for m(P(x))”, which, with the
initial contents of the new register m also equal to n is
(semantically)

U(n, x) =

n︷ ︸︸ ︷
P; . . . P︸ ︷︷ ︸

n−1

; P (x). Compare with

2
k+1
↑ n = 2

k
↑ 2

k
↑ · · ·2

k
↑ 2︸ ︷︷ ︸

n 2’s

28 / 47

index

Usual convention:
U is executed from left to tight,

2
k+1
↑ n is interpreted from right to left.

29 / 47

Proof, induction step, continuation index

(Recall: the initial contents of every element of x is n.)

Leftmost P(x) is executed first and (by the IH): P(x) ≥ 2
k
↑n.

P(x) ≥ 2
k
↑n ≥ 2

k
↑2 (for n ≥ 2) and

“2
k
↑2” is also at the right of the expression 2

k+1
↑ n.

The leftmost sequence “(P; P)(x)” satisfies

(P; P)(x) ≥ P(2
k
↑2) (IH)

(The second P receives all inputs ≥ 2
k
↑2)

. . . Thus (P; P)(x) ≥ 2
k
↑(2

k
↑2) (IH+monotonicity)

. . . and this is exactly the rightmost sequence with three 2’s of

2
k+1
↑ n = 2

k
↑ 2

k
↑ · · ·

(P; P)(x)≥︷ ︸︸ ︷
2

k
↑ 2

k
↑ 2︸ ︷︷ ︸

n 2’s

30 / 47

Proof, induction step, continuation index

(Recall: the initial contents of every element of x is n.)

Leftmost P(x) is executed first and (by the IH): P(x) ≥ 2
k
↑n.

P(x) ≥ 2
k
↑n ≥ 2

k
↑2 (for n ≥ 2) and

“2
k
↑2” is also at the right of the expression 2

k+1
↑ n.

The leftmost sequence “(P; P)(x)” satisfies

(P; P)(x) ≥ P(2
k
↑2) (IH)

(The second P receives all inputs ≥ 2
k
↑2)

. . . Thus (P; P)(x) ≥ 2
k
↑(2

k
↑2) (IH+monotonicity)

. . . and this is exactly the rightmost sequence with three 2’s of

2
k+1
↑ n = 2

k
↑ 2

k
↑ · · ·

(P; P)(x)≥︷ ︸︸ ︷
2

k
↑ 2

k
↑ 2︸ ︷︷ ︸

n 2’s

30 / 47

Proof, induction step, continuation index

(Recall: the initial contents of every element of x is n.)

Leftmost P(x) is executed first and (by the IH): P(x) ≥ 2
k
↑n.

P(x) ≥ 2
k
↑n ≥ 2

k
↑2 (for n ≥ 2) and

“2
k
↑2” is also at the right of the expression 2

k+1
↑ n.

The leftmost sequence “(P; P)(x)” satisfies

(P; P)(x) ≥ P(2
k
↑2) (IH)

(The second P receives all inputs ≥ 2
k
↑2)

. . . Thus (P; P)(x) ≥ 2
k
↑(2

k
↑2) (IH+monotonicity)

. . . and this is exactly the rightmost sequence with three 2’s of

2
k+1
↑ n = 2

k
↑ 2

k
↑ · · ·

(P; P)(x)≥︷ ︸︸ ︷
2

k
↑ 2

k
↑ 2︸ ︷︷ ︸

n 2’s

30 / 47

Proof, induction step, continuation index

(Recall: the initial contents of every element of x is n.)

Leftmost P(x) is executed first and (by the IH): P(x) ≥ 2
k
↑n.

P(x) ≥ 2
k
↑n ≥ 2

k
↑2 (for n ≥ 2) and

“2
k
↑2” is also at the right of the expression 2

k+1
↑ n.

The leftmost sequence “(P; P)(x)” satisfies

(P; P)(x) ≥ P(2
k
↑2) (IH)

(The second P receives all inputs ≥ 2
k
↑2)

. . . Thus (P; P)(x) ≥ 2
k
↑(2

k
↑2) (IH+monotonicity)

. . . and this is exactly the rightmost sequence with three 2’s of

2
k+1
↑ n = 2

k
↑ 2

k
↑ · · ·

(P; P)(x)≥︷ ︸︸ ︷
2

k
↑ 2

k
↑ 2︸ ︷︷ ︸

n 2’s

30 / 47

Proof, induction step, continuation index

(Recall: the initial contents of every element of x is n.)

Leftmost P(x) is executed first and (by the IH): P(x) ≥ 2
k
↑n.

P(x) ≥ 2
k
↑n ≥ 2

k
↑2 (for n ≥ 2) and

“2
k
↑2” is also at the right of the expression 2

k+1
↑ n.

The leftmost sequence “(P; P)(x)” satisfies

(P; P)(x) ≥ P(2
k
↑2) (IH)

(The second P receives all inputs ≥ 2
k
↑2)

. . . Thus (P; P)(x) ≥ 2
k
↑(2

k
↑2) (IH+monotonicity)

. . . and this is exactly the rightmost sequence with three 2’s of

2
k+1
↑ n = 2

k
↑ 2

k
↑ · · ·

(P; P)(x)≥︷ ︸︸ ︷
2

k
↑ 2

k
↑ 2︸ ︷︷ ︸

n 2’s

30 / 47

Proof, induction step, continuation index

(Recall: the initial contents of every element of x is n.)

Leftmost P(x) is executed first and (by the IH): P(x) ≥ 2
k
↑n.

P(x) ≥ 2
k
↑n ≥ 2

k
↑2 (for n ≥ 2) and

“2
k
↑2” is also at the right of the expression 2

k+1
↑ n.

The leftmost sequence “(P; P)(x)” satisfies

(P; P)(x) ≥ P(2
k
↑2) (IH)

(The second P receives all inputs ≥ 2
k
↑2)

. . . Thus (P; P)(x) ≥ 2
k
↑(2

k
↑2) (IH+monotonicity)

. . . and this is exactly the rightmost sequence with three 2’s of

2
k+1
↑ n = 2

k
↑ 2

k
↑ · · ·

(P; P)(x)≥︷ ︸︸ ︷
2

k
↑ 2

k
↑ 2︸ ︷︷ ︸

n 2’s 30 / 47

Proof, induction step, continuation index

. . . and so on. . .
More formally, use induction on k . We get

U(m, x) ≥ 2
k+1
↑ n, (?)

assuming that the k + 3 parameters (m, x) are initialized with n

This inequality holds for all registers x. . . but the final contents
of m is still n. Solution: the program

U(m, x1, . . . , xk+2); U(x1,m, x1, . . . , xk+2)
satisfies (?) for the outputs of all the registers.

This finishes the proof by induction on k . �

31 / 47

Proof, induction step, continuation index

. . . and so on. . .
More formally, use induction on k . We get

U(m, x) ≥ 2
k+1
↑ n, (?)

assuming that the k + 3 parameters (m, x) are initialized with n

This inequality holds for all registers x. . . but the final contents
of m is still n.

Solution: the program
U(m, x1, . . . , xk+2); U(x1,m, x1, . . . , xk+2)

satisfies (?) for the outputs of all the registers.

This finishes the proof by induction on k . �

31 / 47

Proof, induction step, continuation index

. . . and so on. . .
More formally, use induction on k . We get

U(m, x) ≥ 2
k+1
↑ n, (?)

assuming that the k + 3 parameters (m, x) are initialized with n

This inequality holds for all registers x. . . but the final contents
of m is still n. Solution: the program

U(m, x1, . . . , xk+2); U(x1,m, x1, . . . , xk+2)
satisfies (?) for the outputs of all the registers.

This finishes the proof by induction on k . �

31 / 47

Proof, induction step, continuation index

. . . and so on. . .
More formally, use induction on k . We get

U(m, x) ≥ 2
k+1
↑ n, (?)

assuming that the k + 3 parameters (m, x) are initialized with n

This inequality holds for all registers x. . . but the final contents
of m is still n. Solution: the program

U(m, x1, . . . , xk+2); U(x1,m, x1, . . . , xk+2)
satisfies (?) for the outputs of all the registers.

This finishes the proof by induction on k . �

31 / 47

index

32 / 47

. Loop and SRL: the same lower bounds index

In Loop and SRL programs, the (absolute value of the) maximum contents of
the registers is essentially the same.

Given that
in SRL and in Loop: for every k ∈ N+ there are

functions/transformations with lower bound 2
k
↑n;

the Ackermann function a(m,n) = [2
m−2
↑ (n + 3)− 3]

grows faster than any primitive recursive function (and thus
is not primitive recursive);
SRL can be simulated in Loop without much difficulty

the lowest upper bounds of PR functions and of (the final
register contents of) SRL programs are essentially the same.

33 / 47

. Loop and SRL: the same lower bounds index

In Loop and SRL programs, the (absolute value of the) maximum contents of
the registers is essentially the same.

Given that

in SRL and in Loop: for every k ∈ N+ there are

functions/transformations with lower bound 2
k
↑n;

the Ackermann function a(m,n) = [2
m−2
↑ (n + 3)− 3]

grows faster than any primitive recursive function (and thus
is not primitive recursive);
SRL can be simulated in Loop without much difficulty

the lowest upper bounds of PR functions and of (the final
register contents of) SRL programs are essentially the same.

33 / 47

. Loop and SRL: the same lower bounds index

In Loop and SRL programs, the (absolute value of the) maximum contents of
the registers is essentially the same.

Given that
in SRL and in Loop: for every k ∈ N+ there are

functions/transformations with lower bound 2
k
↑n;

the Ackermann function a(m,n) = [2
m−2
↑ (n + 3)− 3]

grows faster than any primitive recursive function (and thus
is not primitive recursive);
SRL can be simulated in Loop without much difficulty

the lowest upper bounds of PR functions and of (the final
register contents of) SRL programs are essentially the same.

33 / 47

. Loop and SRL: the same lower bounds index

In Loop and SRL programs, the (absolute value of the) maximum contents of
the registers is essentially the same.

Given that
in SRL and in Loop: for every k ∈ N+ there are

functions/transformations with lower bound 2
k
↑n;

the Ackermann function a(m,n) = [2
m−2
↑ (n + 3)− 3]

grows faster than any primitive recursive function (and thus
is not primitive recursive);

SRL can be simulated in Loop without much difficulty

the lowest upper bounds of PR functions and of (the final
register contents of) SRL programs are essentially the same.

33 / 47

. Loop and SRL: the same lower bounds index

In Loop and SRL programs, the (absolute value of the) maximum contents of
the registers is essentially the same.

Given that
in SRL and in Loop: for every k ∈ N+ there are

functions/transformations with lower bound 2
k
↑n;

the Ackermann function a(m,n) = [2
m−2
↑ (n + 3)− 3]

grows faster than any primitive recursive function (and thus
is not primitive recursive);
SRL can be simulated in Loop without much difficulty

the lowest upper bounds of PR functions and of (the final
register contents of) SRL programs are essentially the same.

33 / 47

. Loop and SRL: the same lower bounds index

In Loop and SRL programs, the (absolute value of the) maximum contents of
the registers is essentially the same.

Given that
in SRL and in Loop: for every k ∈ N+ there are

functions/transformations with lower bound 2
k
↑n;

the Ackermann function a(m,n) = [2
m−2
↑ (n + 3)− 3]

grows faster than any primitive recursive function (and thus
is not primitive recursive);
SRL can be simulated in Loop without much difficulty

the lowest upper bounds of PR functions and of (the final
register contents of) SRL programs are essentially the same.

33 / 47

The theorem. . . index

Theorem 3.
Primitive recursive (PR) functions and the SRL transformations have
essentially the same maximum growth rate in the sense that

For every k ≥ 1 there is a PR function f (n) that grows faster

than 2
k
↑n.

For every k ≥ 1 there is a SRL program using k + 2 registers
such that, if all the registers are initialized with n ≥ 2, then all

their final contents are at least 2
k
↑n.

No PR function f (n) grows faster than the diagonal Ackermann

function 2
n
↑n.

No SRL transformation grows faster than 2
n
↑n. �

34 / 47

The theorem. . . index

Theorem 3.
Primitive recursive (PR) functions and the SRL transformations have
essentially the same maximum growth rate in the sense that

For every k ≥ 1 there is a PR function f (n) that grows faster

than 2
k
↑n.

For every k ≥ 1 there is a SRL program using k + 2 registers
such that, if all the registers are initialized with n ≥ 2, then all

their final contents are at least 2
k
↑n.

No PR function f (n) grows faster than the diagonal Ackermann

function 2
n
↑n.

No SRL transformation grows faster than 2
n
↑n. �

34 / 47

The theorem. . . index

Theorem 3.
Primitive recursive (PR) functions and the SRL transformations have
essentially the same maximum growth rate in the sense that

For every k ≥ 1 there is a PR function f (n) that grows faster

than 2
k
↑n.

For every k ≥ 1 there is a SRL program using k + 2 registers
such that, if all the registers are initialized with n ≥ 2, then all

their final contents are at least 2
k
↑n.

No PR function f (n) grows faster than the diagonal Ackermann

function 2
n
↑n.

No SRL transformation grows faster than 2
n
↑n. �

34 / 47

The theorem. . . index

Theorem 3.
Primitive recursive (PR) functions and the SRL transformations have
essentially the same maximum growth rate in the sense that

For every k ≥ 1 there is a PR function f (n) that grows faster

than 2
k
↑n.

For every k ≥ 1 there is a SRL program using k + 2 registers
such that, if all the registers are initialized with n ≥ 2, then all

their final contents are at least 2
k
↑n.

No PR function f (n) grows faster than the diagonal Ackermann

function 2
n
↑n.

No SRL transformation grows faster than 2
n
↑n. �

34 / 47

The theorem. . . index

Theorem 3.
Primitive recursive (PR) functions and the SRL transformations have
essentially the same maximum growth rate in the sense that

For every k ≥ 1 there is a PR function f (n) that grows faster

than 2
k
↑n.

For every k ≥ 1 there is a SRL program using k + 2 registers
such that, if all the registers are initialized with n ≥ 2, then all

their final contents are at least 2
k
↑n.

No PR function f (n) grows faster than the diagonal Ackermann

function 2
n
↑n.

No SRL transformation grows faster than 2
n
↑n. �

34 / 47

The theorem. . . index

Theorem 3.
Primitive recursive (PR) functions and the SRL transformations have
essentially the same maximum growth rate in the sense that

For every k ≥ 1 there is a PR function f (n) that grows faster

than 2
k
↑n.

For every k ≥ 1 there is a SRL program using k + 2 registers
such that, if all the registers are initialized with n ≥ 2, then all

their final contents are at least 2
k
↑n.

No PR function f (n) grows faster than the diagonal Ackermann

function 2
n
↑n.

No SRL transformation grows faster than 2
n
↑n. �

34 / 47

The end

35 / 47

index

36 / 47

. Bibliography index I

Donald Knuth.
Mathematics and computer science: coping with finiteness.
Science, 194(17), 1976.

Armando B. Matos.
Analysis of a simple reversible language.
Theoretical Computer Science, 290(3):2063–2074, 2003.

Armando B. Matos and António Porto.
Ackermann and the superpowers.
ACM SIGACT, 12 (Fall 1980), 1980.

Armando B. Matos and António Porto.
Ackermann and the superpowers.
Technical report, Faculdade de Ciências da Universidade do Porto,
1995.
(also in ACM SIGACT News, Volume 12 Issue 3).

37 / 47

. Bibliography index II

Armando B. Matos, Luca Roversi, and Luca Paolini.
The fixed point problem for general and for linear SRL programs is
undecidable, 2018.
Submitted.

Kalyan Perumalla.
Introduction to Reversible Computing.
CRC Press, 2014.

Luca Paolini, Mauro Piccolo, and Luca Roversi.
A class of reversible primitive recursive functions.
Electronic Notes in Theoretical Computer Science,
322(18605):227–242, 2016.

38 / 47

index

39 / 47

. Optional section index

This is optional material: Another proof of the existence of

SRL programs with lower bound ≥ 2
k

n”.

The program Hyperk (n,a,b):

Line Instruction
inc b;

1 Q(n,a,b);
2 Q(a,b,n);
3 Q(n,a,b);
4 Q(a,b,n);
.

k
{

k even: Q(a,b,n)
k odd: Q(n,a,b)

40 / 47

. Optional section index

This is optional material: Another proof of the existence of

SRL programs with lower bound ≥ 2
k

n”.

The program Hyperk (n,a,b):

Line Instruction
inc b;

1 Q(n,a,b);
2 Q(a,b,n);
3 Q(n,a,b);
4 Q(a,b,n);
.

k
{

k even: Q(a,b,n)
k odd: Q(n,a,b)

40 / 47

A sequence of two SRL “Fibonacci programs” index

The sequence:
Q(n,a,b)︸ ︷︷ ︸

(1)

; Q(a,b,n)︸ ︷︷ ︸
(2)

Lower bounds of (1) and (2) for initial value n ≥ 4:

(1)


n′ = n
a′ > 2n

b′ > 2n
(2)


a′′ = a′

b′′ > 2a′

n′′ > 2a′

For b′′ we get
b′′ > 2a′ ⇒ b′′ > 2(2n)

Similarly: a′′ > 2n, n′′ > 2(2n).

41 / 47

A sequence of two SRL “Fibonacci programs” index

The sequence:
Q(n,a,b)︸ ︷︷ ︸

(1)

; Q(a,b,n)︸ ︷︷ ︸
(2)

Lower bounds of (1) and (2) for initial value n ≥ 4:

(1)


n′ = n
a′ > 2n

b′ > 2n
(2)


a′′ = a′

b′′ > 2a′

n′′ > 2a′

For b′′ we get
b′′ > 2a′ ⇒ b′′ > 2(2n)

Similarly: a′′ > 2n, n′′ > 2(2n).

41 / 47

A sequence of two SRL “Fibonacci programs” index

The sequence:
Q(n,a,b)︸ ︷︷ ︸

(1)

; Q(a,b,n)︸ ︷︷ ︸
(2)

Lower bounds of (1) and (2) for initial value n ≥ 4:

(1)


n′ = n
a′ > 2n

b′ > 2n
(2)


a′′ = a′

b′′ > 2a′

n′′ > 2a′

For b′′ we get
b′′ > 2a′ ⇒ b′′ > 2(2n)

Similarly: a′′ > 2n, n′′ > 2(2n).

41 / 47

A sequence of two SRL “Fibonacci programs” index

The sequence:
Q(n,a,b)︸ ︷︷ ︸

(1)

; Q(a,b,n)︸ ︷︷ ︸
(2)

Lower bounds of (1) and (2) for initial value n ≥ 4:

(1)


n′ = n
a′ > 2n

b′ > 2n
(2)


a′′ = a′

b′′ > 2a′

n′′ > 2a′

For b′′ we get
b′′ > 2a′ ⇒ b′′ > 2(2n)

Similarly: a′′ > 2n, n′′ > 2(2n).

41 / 47

Recalling the notation. . . index

2
k

n = 22. . .2
n

where the number of 2’s is k
= 2 ↑ 2 . . . ↑ 2 ↑ n

≥ 2
2
↑k for n ≥ 2.

More generally,

a
1
↑n = a↑n = an

a
m
↑ n = a

m−1
↑ a

m−1
↑ · · ·

m−1
↑ a︸ ︷︷ ︸

n a’s

for m ≥ 2.

42 / 47

Recalling the notation. . . index

2
k

n = 22. . .2
n

where the number of 2’s is k
= 2 ↑ 2 . . . ↑ 2 ↑ n

≥ 2
2
↑k for n ≥ 2.

More generally,

a
1
↑n = a↑n = an

a
m
↑ n = a

m−1
↑ a

m−1
↑ · · ·

m−1
↑ a︸ ︷︷ ︸

n a’s

for m ≥ 2.

42 / 47

SRL The theorem. . . index

Theorem 4.
For every positive integer k, there is a SRL program Pr(n,a,b)
such that, in the computation Pr(n,0,0) and for every n ≥ 0, the
final contents of the registers satisfy

n′(n), a′(n), b′(n) > 2
k

n

43 / 47

SRL The theorem. . . index

Theorem 4.
For every positive integer k, there is a SRL program Pr(n,a,b)
such that, in the computation Pr(n,0,0) and for every n ≥ 0, the
final contents of the registers satisfy

n′(n), a′(n), b′(n) > 2
k

n

43 / 47

The proof, I: a sequence index

Lower bounds.

Sequence of instructions mem[n] mem[a] mem[b]

inc b; 4 0 1
1 for n(for b(inc a); for a(inc b));

for b(inc a); for b(inc n) 2
1

n 2
1

n 2
1

n
2 for a(for n(inc b); for b(inc n));

for b(inc a); for b(inc n) 2
2

n 2
2

n 2
2

n
3 for n(for b(inc a); for a(inc b));

for b(inc a); for b(inc n) 2
3

n 2
3

n 2
3

n
. . .

44 / 47

The proof, I: a sequence index

Lower bounds.

Sequence of instructions mem[n] mem[a] mem[b]

inc b; 4 0 1
1 for n(for b(inc a); for a(inc b));

for b(inc a); for b(inc n) 2
1

n 2
1

n 2
1

n
2 for a(for n(inc b); for b(inc n));

for b(inc a); for b(inc n) 2
2

n 2
2

n 2
2

n
3 for n(for b(inc a); for a(inc b));

for b(inc a); for b(inc n) 2
3

n 2
3

n 2
3

n
. . .

44 / 47

The proof, II: generalization index

Proof: generalize the previous program!
Bottom lines for k odd:

mem[n] mem[a] mem[b]

.
k for n(for b(inc a); for a(inc b));

for b(inc a); for b(inc n) 2
k

n 2
k

n 2
k

n

Bottom lines for k even:

mem[n] mem[a] mem[b]

.
k for a(for n(inc b); for b(inc n));

for b(inc a); for b(inc n) 2
k

n 2
k

n 2
k

n

45 / 47

The end

46 / 47

index

47 / 47

