
Regularity-preserving letter selections

Armando B. Matos

LIACC, Universidade do Porto

Rua do Campo Alegre 823, 4150 Porto, Portugal

1 Introduction and definitions

Seiferas and McNaughton gave in [SM76] a complete characterization of the family of regularity-

preserving prefix removals of regular languages; see also references to previous work in that paper.

We generalize these results by studying what kind of algorithms for letter selection preserve reg-

ularity.

In Section 2 we characterize subword selection methods based only on the word length. In

Section 3 the regularity-preserving property for some special selection algorithms is proved; in

particular we show that all ultimately periodic selection algorithms are regularity-preserving. In

Section 5 we study sets that may destroy the regularity of a language, that is, sets that are

not regularity-preserving. Finally in Section 7 we present the main conclusions of this work and

mention some open problems.

Note added in 2006 In [BLC+06] the authors have essentially solved the letter selection problem

(also called the “filtering” problem).

1.1 Definitions and notation

The language recognized by a finite automaton A will be denoted by L(A) and the language

represented by the regular expression E by L(E). We identify a regular expression with the

language that it denotes. If Σ is a (finite) alphabet, the set of all semi-infinite words with letters

in Σ is denoted by Σω. A (finite) word w of Σω is identified with the a mapping

w : N → Σ

where w(n) denotes the nth letter of w; the first letter corresponds to index 0. Let x be a possibly

infinite word. We denote by pref(x) the language of all the finite prefixes of x (including ε).

1

Let α be some algorithm mapping words into either words or into the special symbol ⊥ (“un-

defined”). Notice that the corresponding computation always terminates.

α : Σ? → Σ? ∪ {⊥}

This mapping is extended to a function α : P(Σ?) → P(Σ?) as follows: let L be some language;

α(L) is defined as

α(L) = {α(x) | x ∈ L ∧ α(x) 6= ⊥}

The algorithm A is said to preserve regularity (or to be regularity-preserving) if α(L) is regular

whenever L is regular.

A set A ⊆ N is ultimately periodic or u.p. if it is finite or if there is a positive integer p such

that, for all sufficiently large n

n ∈ A iff n + p ∈ A

2 Algorithms for selecting subwords

In this section we consider several methods for selection subwords of a given word.

Definition 1 (Proportional and exact proportional selections) Let q and r be integers with q ≥

1 and 0 ≤ r < q.

– The proportional pq
r selection of the word a0a1 · · · an is the word whose successive letters

are aqi+r for i = 0, 1, . . . , bn−r
q c.

– The exact proportional eq
r selection of the word a0, a1, · · · , an where n = kj + r for some

j ≥ 1, is the word whose successive letters are aki+r for i = 0, 1, . . . , n−r
q .

[Example] We have

p2
0(abacacab) = aaaa

p2
0(abacaca) = aaaa

e3
0(abbabcabc) = aaa

e3
2(abbabcabccc) = bcc

e2
0(abacaca) = ⊥ (because 8− 0 = 8 is not divisible by 2)

[End]

A more general selection method is the following

2

Definition 2 (Selection by index sets) Let S be a recursive set of integers and let x be the

word a0, a1, · · · , an. The selection xS of x by S is the (in general noncontiguous) subword of x

formed by the letters having indices in S.

[Example] We have

aabaccb {2,3,6,12,100} = bab

[End]

[Example] The proportional selection method is also a selection by an index set: for every word w

we have

pq
r(w) = w{qi+r | i∈N}

[End]

Although in this work we are mainly interested in selection by index sets, we now characterize

the “algorithmic method”, a very general selection method. Consider an algorithm α that satisfies

the following conditions.

1. Given a word x, the algorithm tests if some condition p(n) depending on n = |x| is satisfied.

If it is, the output is the (non-necessarily contiguous) subword of x defined below. If not,

the output is ⊥. In this case we say that a(x) is undefined (a non-standard use of the word

“undefined” because the computation terminates).

When we write “a(x) = y” we mean that the condition is satisfied and that the subword

selected is y.

2. The selected letters depend only on the length of |x| and not on the individual letters of x.

Moreover, we assume that the output of such algorithms is a set of indices {i1, i2, · · · , ik}

where every indice is ≥ 0 and ≤ |x| − 1 and. Assume that a1 ≤ a2 ≤ · · · ≤ ak. If

x = a0a1 . . . an, we say that the algorithm selects the subword ai1ai2 · · · aik
. For instance, if

the subword selected from aabcbccc is bb, then the same algorithm applied the word bbaacbbb

(which has the same length) must produce the word “ac”.

We now formalize this method of selecting sub-words.

Definition 3 (Algorithmic selection) Consider a predicate p : N → {F, T} and a function

s : n→ P([0..n− 1])

3

We say that, if p(|w|) is true, [p, s] selects the the subword of w formed by the sequence of letters

of w with indices s(|w|) (by the same order).

These algorithms are partial (in the sense explained above) functions from Σ? to Σ?. They

can be extended to (total) functions mapping languages into languages.

Definition 4 Let α be a selection algorithm and let L be a language. We define α(L) as the

language

α(L) = {y | ∃x ∈ L, α(x) = y, α(x) 6= ⊥}

Notice that, if no word in L satisfies the condition, α(L) = ∅.

All the following methods are selection algorithms.

– The “first half” algorithm of [SM76]

fh(a1a2 · · · an) =

 a1a2 · · · an/2 if n is even

undefined if n is odd

– The proportional and exact selections as defined in Definition1. As an example we charac-

terize an exact proportional selection with q = 2, r = 1 by a selection algorithm.

function e2
1 (x) /* where x = a0a1 · · · an−1 */

if n is odd and n ≥ 2

i← 1;

while i ≤ n− 1

output i;

i← i + 2

else

output ⊥;

– Selections by recursive index sets (see Definition 2).

3 Some index sets that preserve regularity

In this section we show that for certain families of sets, the language LS (see definition 2 is regular

whenever L is regular. The more general result is Theorem 5.

We begin with the selection method e2
0. Recall that, if L is a language, then

e2
0 = {a0a2a4 · · · an−2 | a0a1a2 · · · an−1 ∈ L}

We now show that the function e2
0 is regularity-preserving.

4

Theorem 1 (e2
0 preserves regularity) If L is regular then e2

0(L) is also regular.

Proof. If ε ∈ L, we can write L = {ε} ∪ L′ where L′ is regular and ε 6∈ L′. As e2
0(L) = e2

0(L
′)

we consider only languages not containing ε. Let A = (S, s0, F, Σ, δ) be a (non-deterministic)

finite automaton that recognizes L where ε 6∈ L, and suppose then that ε 6∈ L. We define an

automaton A′ = (S, s0, F, Σ, δ′) and prove that it recognizes e2
0(L). The transition relation δ′ is

defined by

(s1, a, s3) ∈ δ′ ⇔ ∃s2 ∈ S, b ∈ Σ (s1, a, s2) ∈ δ ∧ (s2, b, s3) ∈ δ

The states s1, s2 and s3 are not necessarily distinct.

Suppose that A accepts the word a0a1a2 · · · an−1 and that n is even. The accepting path is

represented in Figure 1. Then it is easy to see that A′ accepts the word a0a2a4 · · · an−2; in fact,

by definition of A′, we see that all the transitions (s0, a0, s2), (s2, a2, s4),. . . , (sn−2, an−2, sn) are

possible in A′ – that is, belong to δ′. We see that e2
0(L) ⊆ L(A′).

Conversely suppose that A′ accepts a word a0a2a4 · · · an−2 (the letter indices are obviously

arbitrary; for notational convenience we use even numbers as indices). By construction of A′,

there are in A states s1, s3,. . . , sn, letters a1, a3,. . . , an−1 and transitions

(s0, a0, s1), (s1, a1, s2), (s2, a2, s3), (s3, a3, s4), · · · , (sn−2, an−2, sn−1), (sn−1, an−1, sn)

We conclude that a0a1a2 · · · an−1 ∈ L, so that L(A′) ⊆ e2
0(L). Then L(A′) = e2

0(L). The lan-

guage e2
0(L), being recognized by a finite automaton, is regular. �

Let us now consider the function e2
1, that is, the subword selection a1a3 · · · an−2.

Theorem 2 (e2
1 preserves regularity) If L is regular then e2

1(L) is also regular.

Proof. The language e2
1(L) depends only on the words of L whose length is odd and ≥ 3.

Supposing that ε 6∈ L (the case ε ∈ L can be handled as in the proof of Theorem 1) the language L

can be represented by (where the ai are the first letters of words in L)

L = a1L1 ∪ a2L2 ∪ · · · ∪ akLk

A word x having a length that is both odd and at least 3 belongs to L iff it has the form x = aiy

where 1 ≤ i ≤ k and y is a word of Li with an even length ≥ 2. That is,

e2
1(L) = a1e

2
0(L1) ∪ a2e

2
0(L2) ∪ · · · ∪ ake2

0(Lk)

Using Theorem 1 and the fact that the class of regular languages is closed for union and that aL

is regular for every regular language L and a ∈ Σ, we see that e2
1(L) is regular. �

5

The following theorem generalizes theorems 1 and 2. The proof is an easy generalization of

the corresponding proofs.

Theorem 3 (eq
r preserves regularity) Let q and r be integers with q ≥ 1 and 0 ≤ r < q. If L

is regular, then eq
r(L) is regular.

To extend this result for proportional selections we need the following lemma.

Lemma 1 (Padding preserves regularity) Let q be a positive integer and a a letter. Define

padq
a(L) as the language obtained by putting at the end of every word of L a minimum number

of a’s so the the length becomes a multiple of q.

padq
a(L) = {xar | x ∈ L, 0 ≤ r < q, |x|+ r = 0 mod q}

If L is regular, padq
a(L) is regular.

Proof. Let A be an automaton with transitions δ that recognizes L. We define an automaton A′

with transitions δ′ that recognizes padq
a(L). For each state si of A, there are q states in A′ denoted

by si,j for 0 ≤ j < q that keep track of the length modulus q of the word read so far; let us denote

this length by j. To every transition (si, a, sk) ∈ δ there are q transitions (si,j , a, sk+1(modq)) ∈ δ′

If si is a final state in A there are also new states and transitions attached to each si,j with j 6= 0

in A′ as follows

si,j
a // si,j,j+1

a // si,j,j+2
a // · · ·

aq−1 // si,j,q−1
a // si,j,q

Of these states only si,j,q is final. If j = 0 there are no new states added at this stage and si,j is

final in A′. (The total number of states in A′ is nq + fq(1 + · · · + q − 1) where n and f denote

respectively the number of states and the number of final states of A). Clearly A′ will accept

exactly the words of padq
a(L). �

This lemma can be easily extended for other forms of padding; we can for instance replace ar by

the prefix with length r of a some fixed word w.

Theorem 4 (pq
r preserves regularity) Let q and r be integers with q ≥ 1 and 0 ≤ r < q. If L

is regular, then pq
r(L) is regular.

Proof. If r > 0, we can write the language L as

L = F ∪ x0L0 ∪ x1L1 ∪ · · · ∪ xkLk

where F is finite, all elements of F have length < k and, for 0 ≤ i ≤ k, the words xi have length r

and the languages Li are regular. We have

pq
r(L) = x0p

q
0(L0) ∪ x1p

q
0(L1) ∪ · · · ∪ xkpq

0(Lk)

6

// s076540123 a0 // s176540123 a1 // s276540123 a2 // s376540123 a3 // s476540123 a4 // s576540123 a5 // · · ·
an−1 // ��������an−3// ��������an−2// �������� an−1// sn?>=<89:;'&%$!"#

// s076540123GF ED
a0

��
s176540123@A BC

a1

OO
s276540123GF ED

a2

��
s376540123@A BC

a3

OO
s476540123 s576540123 · · · ��������@A BC

an−3

OO��������GF ED
an−2

���������� sn?>=<89:;'&%$!"#

Figure 1: The automaton recognizing L (above) accepts the word a0a1 · · · an−1 (with n ≥ 2 and

even) iff the transformed automaton (below) recognizes the word a0a2 · · · an−2. The states are not

necessarily distinct

So let us consider only the case r = 0. We will extend the language L so that the length of every

word is a multiple of q. Let us first notice that, for any words x and y such that |y| < q and

|x|+ |y| is a multiple of q, we have

pq
0(x) = eq

0(xy) = pq
0(xy)

A simple example of this observation can be seen in Figure 2.

Consider now the language padq
a(L) which from Lemma 1 is regular. It follows that pq

0(L) =

eq
0(pad(L)) which is also regular from Theorem 3. �

Now a more general result is easy to prove.

Theorem 5 (UP set selection preserves regularity) Let S be an ultimately periodic set of

integers and let L be a regular language. The set selection LS is regular.

Proof. Any ultimately periodic set A can be written as an union (see for instance [Mat94])

S = F ∪ S1 ∪ S2 ∪ · · · ∪ Sk

where F is finite and each of the Si has the form

Si = {ci + pij | j ≥ 0}

where for each i with 1 ≤ i ≤ k, ci is an integer, pi is a positive integer and ci < pi. Then we have

S = LF ∪ LS1 ∪ LS2 ∪ · · · ∪ LSk

The language LF is regular because it is finite. For each 1 ≤ i ≤ k, the language LSi = ppi
ci

(L) is

regular by Theorem 4. Thus L is regular. �

7

x︷ ︸︸ ︷
•

0

◦

1

◦

2

•

3

◦

4

◦

5

•

6

y︷ ︸︸ ︷
◦

7

◦

8

Figure 2: A proportional method with q = 3 and r = 0, selects the letters of x marked “•”.

The same letters are selected in the word xy (with length 9) by the exact proportional selection

methods (with q = 3 and r = 0). Symbolically, p3
0(x) = e3

0(xy) = p3
0(xy).

4 Selection by index sets: some properties

In this Section we study some properties of the selection by index sets. These properties may

turn out to be useful for the characterization of sets that preserve regularity. First let us state a

collection of simple, easy to prove facts.

Theorem 6 For every languages L and M and set of integers S

1. L∅ = ∅S = ∅

2. (L ∪M)S = LS ∪MS

Observe that LS∪T = LS ∪ LT may be false. Consider for instance the language

L = {(ab)n | n ≥ 0}

and let S and T be respectively the set of even integers and the set of odd integers. We have

L = LN = LS∪T 6= a? + b? = LS ∪ LT

Notice that for certain regular languages L and non-regularity preserving sets S it may happen

that LS is regular. An extreme example is the regular language Σ?. If S is infinite we always

have Σ?
S = Σ?! To prove this, consider an arbitrary word w = a1a2 . . . ak and let the set S be

{n1, n2, · · ·} with n1 < n2 < · · ·. The word w may be obtained by index selection with S in the

following word

z = x1a1x2a2 · · ·xkak

where x2, x2,. . . ,xk have lengths respectively n1, n2 − 1, n3 − 2,. . . , nk − k + 1.

To prove that S is not regularity preserving, we must select some regular language L such

that LS is not regular.

8

5 Index sets that do not preserve regularity

To prove that the selection by a set S does not preserve regularity we only have to find some

regular language L such that LS is not regular. Let us begin with some examples. In the first we

present a proof that a certain set is not regularity preserving.

[Example] Consider the language L denoted by the regular expression (ab)?(ε + a). The words

of this language are exactly the (finite) prefixes of the infinite word

ababababab · · ·

that is, L = {ε, a, ab, aba, · · ·}. The selection by the set S (to be defined below) results in the

language LS of the prefixes of the infinite word

abaabbaaabbbaaaabbbb · · ·

The language LS is not regular. The selection is illustrated in the following diagram

a b a b a b a b a b a b a b a b a b · · ·

0 1 2 4 5 7 8 10 12 13 15 17 · · ·

The set S is the following where, for clarity, we have grouped its elements

S = {〈0, 1〉, 〈2, 4, 5, 7〉, 〈8, 10, 12, 13, 15, 17〉, 〈18, 20, 22, 24, 25, 27, 29, 31〉, · · ·}

[End]

[Example] Consider the language L = (abb)? and the set P of prime numbers. The first letters

of (abb)ω selected by P are illustrated below.

(abbabbabbabbabbabba · · ·){2,3,5,7,11,13,17,···} = babbbbb · · ·

The corresponding infinite word is babω, reflecting the fact that no prime greater than 3 is multiple

of 3. We have LP = bab? [End]

Although in this example the selection by P preserves the regularity of the language, this is

not true in general as the following example suggests.

[Example] Consider the language L′ = (aab)? and the set P of prime numbers. The first letters

of (aab)ω selected by P are

(aabaabaabaabaabaaba · · ·){2,3,5,7,11,13,17,···} = bababababbaababbbaabaabbaba · · ·

9

There is no obvious pattern and LP does not seem to be regular. [End]

[Example] Let S = {3n | n ≥ 0}. We have

((ab)ω)S = b?

((abc)ω)S = ba?

((abcd)ω)S = (bd)?

((abcde)ω)S = (bdec)?

In fact, for every word x 6= ε, (x?)S is regular. This does not prove that S is regularity-preserving.

All possible forms of languages must be considered; for instance

(((abc)? + (cb)? + (abcb)?)?)

must also be regular. [End]

Theorem 5 states that, if L is a regular regular and S is an ultimately set of integers, then the

language LS is also regular. The following theorem, which is the most important result of this

paper, states that the converse is also true.

Theorem 7 An index set preserves regularity if and only if it is ultimately periodic.

We have only to prove the “only if” part: if S is such that LS is regular whenever L is regular,

then S is ultimately periodic.

6 Working Section

Here we establish a number of results that may help to prove Theorem 7. What we want to prove

(or disprove) is the “only if” part of the theorem1:

Statement 1 If an index set preserves regularity it is ultimately periodic.

First let us see if a somewhat weaker condition – a set S ⊆ N preserves regularity for a certain

class of regular languages – is enought to garantee that S is ultimately periodic.

6.1 Repeating a word infinitely

Lemma 2 Let x and y be words of Σ? where Σ is a (finite) alphabet. The language pref(yxω) of

all the finite prefixes of yxω is regular.
1A “statement” is a proposition that has not yet been proved. At this stage, Theorem 7 is in fact a “statement”.

10

Proof. As an example from which the general proof easily follows, let us consider the particular

words y = ε and x = abbb. The language pref(xω) is

pref(xω) = {ε, a, ab, abb, abbb, abbba, abbbab, · · ·}

which can be represented by the regular expression

(abbb)?(ε + a + ab + abb)

Thus pref(xω) is regular. �

Statement 2 Let S be some infinite set of integers. If, for any word x, there are words y and z

such that (xω)S = yz∞, then S is ultimately periodic.

Proof. [Direction ⇒] Let S = {n0, n1, · · ·} where n0 < n1 < n2 < · · ·. After some order k

the sequence nk, nk+1,. . . is periodic, that is, there is some p > 0 such that, for i ≥ k, ni ∈ S iff

ni+p ∈ S. It follows that after that order, the corresponding sequence (xω)S is also periodic; this

part of the sequence corresponds to zω. �

In order to prove statement 2 we have only to show that the previous statement holds. This

is because, if (xω)S = yz∞, the following language is regular

pref(xω)S

Statement 2 implies Theorem 7. Let us sumarize statement 2 as follows

∀S ∈ N [(∀x ∈ Σ? ∃y, z ∈ Σ? (xω)S = yzω) ⇒ S is ultimately periodic]

Let us try to prove this statement by contradiction. So we are going to look for a more positive

charaterizion of sets that are not ultimately periodic.

6.2 When the set is not ultimately periodic

Let us denote a set S of integers by {n0, n1, . . .} with n0 < n1 < n2 < · · ·. Let us call two

integers n and m discordant (relative to S) if either n ∈ S and m 6∈ S or n 6∈ S and m ∈ S. Notice

that, if n and m are discordant, then one of them is equal to some ai.

Lemma 3 If S is a set of integers that is not ultimately periodic then, for each p ≥ 1, there are

infinitely many integers n such that n and m are discordant (relative to S).

11

Proof. By contradiction. Suppose there is some p such that only finitely many pairs (n, m) are

discordant. Then the set S ultimately periodic with period p. �

Using Lemma 3 we can easily define interesting sequences of discordant pairs. For instance, if S

is not ultimately periodic, there is a sequence of discordant pairs

(n1
1, n

1
1 + 1), (n1

2, n
1
2 + 1), (n2

1, n
2
1 + 2), (n1

3, n
1
3 + 1), (n2

2, n
2
2 + 2), (n3

1, n
3
1 + 3), · · ·

where n1
1 + 1 < n1

2, n1
2 + 1 < n2

1, n2
1 + 2 < n1

3,. . .

7 Conclusions and further work

References

[BLC+06] J. Berstel, L.Boasson, O. Carton, B. Pettazzoni, and J.-E. Pin. Operations preserving

regular languages. Theoretical Computer Science, 354:405–420, 2006.

[Mat94] Armando B. Matos. Periodic sets of integers. Theoretical Computer Science, 28(1):577–

693, June 1994.

[SM76] J. I. Seiferas and R. McNaughton. Regularity-preserving relations. Theoretical Com-

puter Science, 2:147–154, 1976.

12

