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Also, for total recursive functions one can show that every decidable set is clopen as
a subset of Baire space, which I guess is in a similar format to (the contra-positive
of) Rice’s theorem. But by the example this is not true for PR functions. By aws

B As posted in mathoverflow

computability/188137

From http://mathoverflow.net/questions/188137 with small modifications.

B.1 Original question

Consider decision problems in which the instance is a PR index i (or equivalently
a “recursive” definition, or a LOOP program of) of a primitive recursive function.
Denote the PR function (with PR index i) by ϕi. Examples of PR problems (in-
put i):

Problem P1 (decidable): let n = ϕi(0). Are all integers ϕi(1),. . . , ϕi(n)
prime?

Problem P2: (undecidable, see http://www.dcc.fc.up.pt/~acm/pr3.pdf):
∃n : ϕi(n) = 0?

Conjecture. Looking to the program (index) is not more powerful than evaluating
the function. In more detail:

Conjecture. The computational model 〈Turing machine M(i) with the PR index i of
a PR function ϕi as input〉 can not decide more properties than the (more restricted)
model 〈Turing machine Mf whose “input” is an oracle for computing f(n) given n〉.

Notes.

– We stress that the instance is a PR index (ϕi is always PR), not a TM index
- it represents a LOOP program (say), not a set of quadruples.

– I use the following definition of “decidable” (transcribed from user aws): “P
is decidable if there is a recursive function (or TM, using the CT thesis), that
given the code for a primitive recursive function returns 1 if the function it
codes is in P , and returns 0 otherwise”.

– In “Rice (like) Theorem for primitive recursive functions?” I posted a similar
but more vague question (no conjectures).

– We may obtain some information by looking to the definition of f . The
maximum loop nesting of the LOOP program that defines f allows us to
positive answers to to properties like

∃n0∀n ≥ n0 : f(n) ≤ g(n)? (4)

(the answer is positive for certain combinations of g and the Loop program
corresponding to the index of f , see [15]). But this is not sufficient to decide
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that property. Note: apparently no oracle machine Mf implements the partial
decision problem (4).

asked by Armando Matos

+1. This is a great question – very subtle. You want to know essentially whether having

the PR definition of a primitive recursive function gives you any extra information beyond

the course of values of that function.

Joel David Hamkins

B.2 Hoyrup example

In an answer to “Rice (like) Theorem” for primitive recursive functions?”10

Hoyrup gives an example of a property P that is decidable if a Loop program

for the PR function is given, but undecidable by a Turing machine that only

has access to an oracle for obtaining values of f . The results obtained also

apply to other classes of total recursive functions.

It happens that there do exist non-trivial universal properties that are decidable.
This property is expressed in terms of what we could call “primitive recursive Kol-
mogorov complexity”.

Definition. If v = (v0, . . . , vn−1) is a sequence of natural numbers then let Kpr(v)
be the size of a shortest Loop program computing a function f extending v, i.e.
satisfying f(0) = v0,. . . , f(n− 1) = vn−1.

Unlike the usual notions of Kolmogorov complexity, Kpr(v) is computable. However
it is not primitive recursive.

For a function f , let f |n be the finite sequence (f(0), . . . , f(n− 1)).

Claim. The property ∀n,Kpr(f |n) ≤ n is decidable, given a Loop program for f .

Proof. Given a loop program p for f , one has Kpr(f |n) ≤ |p| for all n. In order
to check the property, one can only look at n < |p|. As Kpr is computable, the
property is decidable.

Observe that the property is not decidable if one is only given f as oracle, as
no finite prefix of f is sufficient to ensure the property: for each finite sequence
v = (v0, . . . , vn−1) there is vn such that Kpr(v0, . . . , vn) > n+ 1 hence no extension
of (v0, . . . , vn) satisfies the property (the property is a closed subset of the Baire
space that has empty interior).

More generally and for the same reasons, if h : N → N is a computable non-
decreasing unbounded function then the property Ph defined by

f ∈ Ph ⇔ [∀n : Kpr(f |n) ≤ h(n)]

is decidable given a Loop program for f but not given f as oracle. If h(1) is
sufficiently large then Ph is non-empty as it contains all the functions computed by
Loop programs of size ≤ h(1).
10http://mathoverflow.net/questions/155413 Question by: Armando B. Matos, answer by:

Mathieu Hoyrup.
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An analog of Rice and Rice-Shapiro theorem
So far, we know some basic properties that are decidable: extending a finite se-
quence v (decidable given f), the property Ph of having h-compressible prefixes
(decidable given a Loop program). Now, there is an analog of Rice and Rice-Shapiro
theorems, stating that they form a “subbasis” (as in topology) of the semi-decidable
properties: every semi-decidable property can be obtained as a union of finite in-
tersections of these simple properties.

Theorem. Let P be a property of primitive recursive function. The following are
equivalent:

f ∈ P is semi-decidable given a Loop program for f ,
P is a computable disjunction of properties of the form

f extends v and ∀n : Kpr(f |n) ≤ h(n).

The result is more general as it applies to any class of total computable functions
that can be computably enumerated (for instance the polynomial-time computable
functions, the provably total computable functions, etc.). All this can be found in
the paper [8].

B.3 Turetsky construction

– In the beginning you say “there is no Turing functional Γ with i ∈ A⇔ Γϕi(0)↓.
This is a counterexample to your conjecture”.

So we may suppose that ϕi is an enumeration of the PR functions (not of all

partial recursive functions), right?

– An important detail in the construction of the recursive set A not recognized

by any Turing functional is, I think, the selection in step 2 of a “very large” n”.

Here, “very large” is related to a function that grows faster than any PR function,

so that “no ϕi extends. . . ”. Using this very large functions, can’t we define a

simpler construction?

Extremly spaced 1’s in a sea of’0s seem not to disturb the conjecture.

– Is A recursive? More specifically, isn’t the following problem undecidable for many

(all nontrivial?) sets A?

Parameter: a nontrivial set (whatsoever) A:

Input: two PR function indices (say PR definitions or Loop programs) i and j.

Question: Is ϕi = ϕj? (function equality)

Your conjecture is false. We can construct a recursive set A such that if ϕi = ϕj ,
then i ∈ A ⇔ j ∈ A, but there is no Turing functional11 Γ with i ∈ A ⇔ Γϕi(0)↓.
This is a counterexample to your conjecture.
11See for instance [22], page 23.
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