
Direct proofs of Rice’s Theorem
Armando B. Matos

2014 and 2020

Abstract

To our knowledge most proofs of Rice’s Theorem are based on a reduction

of the halting problem (or other unsolvable problem) to an eventual al-

gorithm that decides a non trivial property P. Until recently we thought

that it was the only possible kind of proof, but we found a direct diagonal

proof. Later we noticed an Wikipedia entry containing still another proof

(based on the Recursion Theorem). In this note we present and compare

these proofs.

1 Introduction

In the literature, the proof of Rice’s Theorem usually consists in

proving an implication of the form:

For any non trivial property P of functions:

the existence of a decision algorithm H for P implies the ex-

istence of a decision algorithm for the halting problem.

– The hypothetical decision procedure H receives as input the

description (or its Gödel number) of a Turing machine that

implements some partial function f and outputs “yes” if the

function f has the property P and “no” otherwise.

– P is a mathematical property of functions, that is, say, a first

order logic formula that can include constants, variables and

the function f .

In most proofs of Rice’s Theorem, the halting problem, or possibly

other unsolvable problem, is “reduced” to an eventual algorithm

that decides some non trivial property P. This is the kind of proof

used in many references like [Odi89, Phi92, Mor98, Jon97].

Until recently we thought that it was the only possible kind of proof,

but we discovered a direct diagonal proof (Section 3.1, page 4). Later

we noticed in the Wikipedia another “direct” proof (Section 3.2,

page 7). Still another direct proof was presented by Hamkins in an



answer to a post in mathoverflow (Section 3.3, page 8). All these

proofs are described in this note. A “classical” proof is presented

first (Section 2, page 2).

Notation. If e is the Gödel number of Turing machine, {e} or ϕe

denotes the mathematical function that it implements. HP denotes

the halting problem. “iff” stands for “if and only if”.

2 The “classical” proof: reduction from the halt-

ing problem

As mentioned in Section 1 (page 1), this is the kind of proof that is

usually presented in the textbooks. . . , the proof as I knew it!

First a condensed form of the proof.

Condensed proof: without loss of generality suppose that
the completely undefined function ↑(x) has the property P,
and let g(x) be a function not satisfying the property P.
The instance is the Gödel number e of some Turing machine.
Define the machine with Gödel number e′ that: (i) it runs1

ϕe(e) and, if it halts, (ii) it runs g(x). The function ϕe′(x)
has property P iff ϕe(e) diverges. ◻

Now an expanded version.

Let us now assume that Q(e) is an algorithm that decides if the

function with index e has the property P. That is, Q reads e,

and decides (output 0 or 1) if the corresponding function has the

property P.

Let n be the index of an algorithm that never halts. Without loss

of generality we may assume that Q(n) = 0 (P does not hold for the

function ϕn =↑).

Since P is a non-trivial property, it follows that there is an index m

such that Q(m) = 1 (P holds).

1At this stage the input x is ignored

2



We can then define an algorithm H(a, i) – which, as we will see,

would decide the halting problem for ϕa(i) - as follows:

1. Construct an index t of a Turing machine that implements the

following algorithm T (j):

(a) Simulate the computation of ϕa(i) (this may loop forever).

(b) Simulate the computation of ϕm(j) and returns its result.

2. Return Q(t).

We can now show that H decides the halting problem “does ϕa(i)

halt?”.

– Assume that the algorithm represented by a halts on input i,

that is, ϕa(i) halts. In this case ϕt = ϕm (equality of functions)

and, once Q(m) = 1 (P holds for m) and the output of Q(x)

depends only on x, it follows that:

Q(t) = 1 (P holds) and, therefore H(a, i) = 1 (ϕa(i) halts).

– Assume that the algorithm represented by a does not halt on

input i. In this case ϕt = ϕn, (it is the partial function undefined

on all points). Since Q(n) = 0 (P does not hold) and the output

of Q(x) depends only on x, it follows that:

Q(t) = 0 (P does not hold) and, therefore H(a, i) = 0 (ϕa(i)

does not halt).

Since the halting problem is known to be undecidable, this is a

contradiction – it is decided by H(a, i) - and the assumption that

there is an algorithm Q(x) that decides a non-trivial property (P)

of the function represented by x must be false.

3



3 Proofs without assuming the undecidability of

the halting problem

3.1 A proof based on a Turing machine construction

3.1.1 Non trivial properties

Let P be a non-trivial property of partial recursive functions. Let Y(x)

and N(x) be two programs2 (which are strings), such that the func-

tion implemented by Y(x) has the property P, and the function

implemented by N(x) does not have the property P.

3.1.2 Diagonal proof of Rice Theorem

Assume that it is decidable whether a program with a given text

defines a function that has the property P. This means that there

is a total program H ∶ Σ*
→ Σ* such that3

H(x) = {
“yes” if the program x has property P

“no if the program x does not have property P
(1)

Thus, H(N) =“no” and H(Y) =“yes”.

Define the program A(x) with input x by

A(x) = {
if H(a) = “yes′′ then N(x)

else Y (x)
(2)

where “a” is the program that implements A itself. Note that in

an universal Turing machine A(x) can find “a” from the contents

of the tape which has the form “. . .a . . . x . . .”. The programs H,

N and Y must of course be included explicitly in the program of A.

If A has the property P, H(a) = ”yes”, and A(x) ≡ N(x), and, b

y assumption, N(x) does not have the property P. And we find a

similar situation if A does not have the property P. Thus there is a
2Instead of programs and strings we can of course use Turing machines and Gödel numbers.
3Strings that do not represent a program (illegal syntax) are irrelevant. The string out-

putted by the function H(x) is of no importance.

4



contradiction and the program (or Turing machine) H can’t exist.

◻

3.1.3 The proof in more detail. . .

We will use some fixed universal Turing machine (UTM) as the stan-

dard “mechanical computing device”. Let us agree on the following

format for the UTM:

– The input alphabet is {a, b} and the tape alphabet is {◽, a, b}

where “◽” denotes the blank.

– Initially, the tape contents is as follows “. . . ◽ ◽ P ◽ x ◽ ◽ . . .”

where P is the program being executed and x its input. Both P

and x are words with alphabet {a, b}*. The machine head is at

the leftmost symbol of x.

– When and if the computation finishes, the tape contents has

the form “. . . ◽ ◽ P ◽ x ◽ y ◽ ◽ . . .”, where the machine head is at

the leftmost symbol of y.

Assume that there is a program H that determines whether the pro-

gram x has the property P. The initial configuration is “. . . ◽ ◽ H◽x◽ ◽ . . .”

and the computation halts with output “a” or “b” meaning that the

program x has or does not have the property P respectively:

. . . ◽ ◽ H ◽ x ◽ a ◽ ◽ . . . or . . . ◽ ◽ H ◽ x ◽ b ◽ ◽ . . .

In order to implement the function A(x) (equation (2), page 4) con-

sider a slight modification of H, denoted by H’, that does not “look”

at the string x, but instead analyses the string H′ itself. More pre-

cisely, the program (string) which is analysed is obtained as follows,

assuming that the head is located within the program to be anal-

ysed.

– Let h be the location of the UTM head.

5



Time Tape contents This example

Initial: . . . ◽ ◽

P
­
gH′YN ◽ x ◽ ◽ . . .

After H′(P): . . . ◽ ◽

P
­
gH′YN ◽ x ◽ a ◽ ◽ . . . H′(P) = ”a”

Final: . . . ◽ ◽

P
­
gH′YN ◽ x ◽

y
«
baa ◽ ◽ . . . N(x) = ”baa”

Figure 1: Three snapshots of a Turing machine (TM) computation. This TM
implements a function equal to N(x) if the function that it implements (A(x))
has the property P, and implements a function equal to Y (x) if the function
that it implements does not have the property.

– Go to the left until the first blank is found. Let this location

be l.

– Go (from l) to the right until the first blank is found. Let this

location be r.

– The string x (representing a Turing machine) which will be

analysed by H′ is described by the (possibly empty) segment of

tape from l + 1 to h − 1.

From H ′, the programs Y and N mentioned above, and of course

the UTM, we define a new Turing machine that implements A(x),

(2), page 4. Three snapshots of a possible execution of this Tur-

ing machine for program 2 are sketched in Figure 3.1.3 (page 6),

where, by convention, H′(P) =“a” means “yes” (P has property P)

and H′(P) =“b” means “no”. In the example the first case applies.

The symbol scanned by the head is underlined. The part g of

the program represents the coding “glue” needed to split the pro-

grams H ′, Y and N and to implement the program (2) (page 4),

that is, A(x) ≡ if H ′(A) then N(x) else Y (x). Note that in this

case H′ finds if the complete program A has the property P.

In the example shown H′(P) =“a” (“yes”), so that N(x) is executed,

P(x) = N(x) =“baa”; the corresponding output is (in this example!)

6



“baa”.

In this example the mathematical functions P(x) and N(x) are equal.

Yet, P(x) has the property P (because H′(P) =“a”) and by assump-

tion N(x) does not have the property P, a contradiction.

If H′(x) =“b” (P(x) does not have the property P) we get a similar

contradiction.

The only way out of this contradiction is to suppose that, no matter

what the non trivial function property P is, there is no decision

procedure for P, that is, there is no recursive function H(P) that

determines if the program P implements a function with property P.

This proof was obtained by diagonalization, without assuming the

undecidability of the HP or of any other decision problem. Further-

more, and unlike the proof described in Section 3.2, we do not use

“high level” recursion concepts – like Kleene’s recursion theorem or

quines.

3.2 A proof from the Wikipedia

In: http://en.wikipedia.org/wiki/Rice%27s_theorem

Similarly to the proof presented in Section 3.1 (page 4), the proof

below, transcribed from the Wikipedia, is direct, i.e. it is not based

on a reduction from an undecidable decision problem. The main

argument of the proof is in the second paragraph of the quotation

below.

Proof by Kleene’s Recursion Theorem

Transcription:

A corollary to Kleene’s recursion theorem states that for
every Gödel numbering ϕ ∶ N → P(1) of the computable
functions and every computable function Q(x, y), there
is an index e such that ϕe(y) returns Q(e, y). (In the

7



following, we will say that f(x) “returns” g(x) if either
f(x) = g(x), or both f(x) and g(x) are undefined.) Intu-
itively, ϕe is a quine, a function that returns its own source
code (Gödel number), except that rather than returning
it directly, ϕe passes its Gödel number to Q and returns
the result.

Let F be a set of computable functions such that ∅ ≠

F ≠ P(1). Then there are computable functions f ∈ F

and g /∈ F . Suppose that the set of indices x such that
ϕx ∈ F is decidable; then, there exists a function Q(x, y)
that returns g(y) if ϕx ∈ F , and f(y) otherwise. By the
corollary to the recursion theorem, there is an index e such
that ϕe(y) returns Q(e, y). But then, if ϕe ∈ F , then ϕe

is the same function as g, and therefore ϕe /∈ F ; and if
ϕe /∈ F , then ϕe is f , and therefore ϕe ∈ F . In both cases,
we have a contradiction.

3.3 Hamkins proof
The following proof is by Joel David Hamkins and appeared an

answer to a mathoverflow post.

Here is a proof based on the recursion theorem, rather than a re-

duction of an undecidable problem.

Rice’s Theorem. Let P be a non trivial set of computable functions4.

Then the set {e ∣ ϕe ∈ P} is not decidable, where ϕe is the function

computed5 by program e.

In other words, there is no general procedure to determine from a

program whether the function it computes has property P or not.

4That is, P is neither empty nor the set of all computable functions.
5Another common notation for ϕe is {e}.

8



Proof. Suppose that the set were decidable. Fix a computable func-
tion f that is in P, and another computable function g that is not
in P. Now, for any program e, let h(e) be the program that on in-
put n first determines whether ϕe ∈ P ; if so, it outputs g(n), and oth-
erwise f(n). So ϕh(e) is either g or f , depending on whether ϕe ∈ P
or not, respectively (note that the “opposite function” is used). In
particular, we’ll have ϕe ∈ P ⇔ ϕh(e) /∈ P .
Meanwhile, by the recursion theorem, there is a program e such that
ϕe = ϕh(e), which now gives an immediate contradiction, since ϕe

and ϕh(e) are supposed to be opposite with respect to P. ◻

4 Conclusion

Rice Theorem is very useful for proving the undecidability of some

property P. One only has to show that there is at least one func-

tion that satisfies P and another6. Thus, and as there are direct

proofs of Rice Theorem, it seems that a study of Recursion Theory

can “begin” with such a proof, perhaps Hamkins simple proof in

page 9, and later derive its consequences, namely the undecidabilty

of particular problems.

References

[Jon97] Neil D. Jones. Computability and Complexity - from a Pro-

gramming Perspective. Foundations of Computing Series.

MIT Press, 1997.

[Mor98] Bernard Moret. The Theory of Computation. Addison-

Wesley, 1998.

[Odi89] Piergiorgio Odifreddi. Classical Recursion Theory – The

Theory of Functions and Sets of Natural Numbers, vol-

ume I. Studies in Logic and the Foundations of Mathe-

matics. Elsevier North Holland, 1989.

6It should be noticed that, as often happens in Recursion Theory, none of the proofs
presented in this note is constructive, essentially because we need to have two particular
functions: one with the property and another without.

9



[Phi92] Iain Phillips. Recursion theory. In S. Abramsky, D.M.

Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic

in Computer Science, volume 1, pages 79–187. Oxford Uni-

versity Press, 1992.

10


