
Classes of sub-recursive function

Selected bibliography

Armando B. Matos1

November 7, 2012

1Email: armandobcm@yahoo.com



This is a personal bibliography on

classes of sub-recursive functions.

The references in the abstracts have been omitted.

1



Bibliography

[AAV10] Philippe Andary, Bruno Patrou Andary, and Pierre Valarcher. A rep-

resentation theorem for primitive recursive algorithms. Fundamenta

Informaticae, XX:1–18, 2010. Abstract. We formalize the algorithms

computing primitive recursive (PR) functions as the abstract state machines

(ASMs) whose running length is computable by a PR function. Then we

show that there exists a programming language (implementing only PR

functions) by which it is possible to implement any one of the previously

defined algorithms for the PR functions in such a way that their complexity

is preserved.

[Axt59] Paul Axt. On a subrecursive hierarchy and primitive recursive degrees.

Transactions of the American Mathematical Society, 92:85–105, 1959.

(From the Introduction) We shall investigate some problems connected

with these classifications [of general and primitive recursive degrees]. First

a uniqueness property of classes Cy associated with notations for the same

ordinal is described and shown to hold at ordinals less than ω2 and to

fail at ω2. The k-recursive functions of Peter are located in the hierarchy

below the ωω level. Although it is not yet settled whether all recursive

functions are obtained, it is clear that ∪y∈OCy is a large and interesting

class. Finally primitive recursive degrees are studied, and certain similarities

to and differences from the theory of general recursive degrees of [Kleene

and Post reference] are obtained.

[Axt63] Paul Axt. Iteration of primitive recursion. Zeitschrift fur Mathematis-

2



che Logik und Grundlagen der Mathematik, 11, 1963.

[BD95] Stephen Brookes and Denis Dancanet. Sequential algorithms, deter-

ministic parallelism, and intensional expressiveness. In Proceedings of

the 22nd ACM SIGPLAN-SIGACT Symposium on POPL, pages 13–

24, 1995. Abstract. We call a language L1 intensionally more expressive

than a language L2 if there are functions that can be computed faster in L1

than in L2. We study the intensional expressiveness of several languages:

the Berry-Curien programming language of sequential algorithms, CDS0, a

deterministic parallel extension to it, named CDSP, and various parallel ex-

tensions to the functional programming language PCF. The paper consists

of two parts. In the first part we show that CDS0 can compute the mini-

mum of two numbers n and p in unary representation in time O(min(n, p))

[. . . ] In the second part, we show that deterministic parallelism adds in-

tensional expressiveness, setting a “folk” conjecture from the literature in

the negative. [. . . ] We identify a hierarchy of intensional expressiveness for

deterministic problems.

[BHN98] Stephen J. Bellantoni and Karl Heinz Niggl. Ranking primitive recur-

sions: The low Grzegorczyk classes revisited. SIAM Journal of Com-

puting, 29:401–415, 1998. Abstract. Traditional results in subrecursion

theory are integrated with the recent work in “predicative recursion” by

defining a simple ranking ρ of all primitive recursive functions. The hier-

archy defined by this ranking coincides with the Grzegorczyk hierarchy at

and above the linear-space level. Thus, the result is like an extension of the

Schwichtenberg/Müller theorems. When primitive recursion is replaced by

recursion on notation, the same series of classes is obtained except with

the polynomial time computable functions at the first level.

[CF98] Löic Colson and Daniel Fredholm. System T, call-by-value and the

minimum problem. Theoretical Computer Science, 206:301–315, 1998.

Abstract. It is shown that for Gödel s system T, evaluated call-by-value,

3



if an algorithm computes a non-trivial binary function (where trivial means

constant or projection plus constant), then the time-complexity is at least

linear in one of the inputs. This is in contrast to the call-by-name case.

As a corollary, it follows that there is no algorithm in this setting which

computes the minimum function in time-complexity O(min).

[Col91] Löic Colson. About primitive recursive algorithms. Theoretical Com-

puter Science, 83:57–69, 1991. Abstract. In the past few years, there

has been a growing interest in the application of proof-theoretical methods

to the design of functional programming languages. One approach relies on

representation theorems, which show that a large class of general recursive

functions can be encoded in a language where general recursion is replaced

by primitive recursion with functions, functionals, as parameters. These re-

sults are however purely extensional in nature: they state that a large class

of mathematical functions is representable in a given system, but they say

nothing about the efficiency of such a representation. Although the inten-

sional aspect is of primary concern for computer science, very little seems

to be known about this question. This paper is a beginning in the study of

this problem. We take as a case study the following computational model:

a primitive recursive function is seen as defining a rewriting system which

is evaluated in call-by-name. In this setting, we give a non-trivial necessary

condition for an algorithm to be representable. As an application, we can

show that the function inf (which computes the minimum of two integers

in unary representation) cannot be programmed in complexity O(inf(n, p)).

Our proof method uses some basic notions of denotational semantics.

[Coq92] Thierry Coquand. Une preuve directe du theoreme d’ultime obstination.

In Compte Rendus de l’Academie des Sciences, Serie I, number 314,

1992. Abstract. (not yet).

[Dav01] René David. On the asymptotic behaviour of primitive recursive al-

gorithms. Theoretical Computer Science, 266(1-2):159–193, 2001. Ab-

4



stract. This paper develops a new semantics (the trace of a computation)

that is used to study intensional properties of primitive recursive algorithms.

It gives a new proof of the “ultimate obstination theorem” of L. Colson and

extends it to the case when mutual recursion is permitted. The ultimate

obstination theorem fails when other data types (e.g. lists) are used. I de-

finene another property (the backtracking property) of the same nature but

which is weaker than the ultimate obstination. This property is proved for

every primitive recursive algorithm using any kind of data types.

[Fre96] Daniel Fredholm. Computing minimum with primitive recursion over

lists. Theoretical Computer Science, 163(3):269–276, 1996. Abstract.

We show that there is no primitive recursive algorithm over the natural

numbers and lists of natural numbers that computes the minimum of two

numbers in time O(min), in call-by-value evaluation order. This is in con-

trast to the call-by-name case.

[Grz53] A. Grzegorczyk. Some classes of recursive functions. Rozprawy Matem-

atyczne, 4:1–45, 1953. Introduction. In this paper an increasing sequence

E0, E1,. . . of classes of recursive functions is examined. Each class En is

closed under the operations of substitution and under the operation of lim-

ited recursion. The initial functions are primitive recursive ones. Therefore

En ⊂ R, where R is the class of primitive recursive functions. Strictly

speaking R = ∪nEn. Hence in the definition of the class R the operation

of recursion cannot be eliminated or exchanged into the operation of lim-

ited recursion. The classes E0 and E3 will be examined in particular. For

each function f ∈ E0 there exists a number k0 such that f(n) < n + k0.

However, each recursive enumerable set is enumerable by some function of

the class E0. We start with the investigation of the class E3. It is the class

of elementary computable functions of Kalmar.

[Mey65] A. R. Meyer. Depth of nesting and the Grzegorczyk hierarchy. No-

tices of the American Mathematical Society, 12:342, 1965. Abstract.

5



Loop programs have the property that an upper bound on the running time

of a program is determined by its structure. Each program consists only

of assignment and iteration (loop) statements, but all the arithmetic func-

tions commonly encountered in digital computation can be computed by

Loop programs. A simple procedure for bounding the running time is shown

to be best possible; some programs actually achieve this bound, and it is

effectively undecidable whether a program runs faster than the bound. The

complexity of functions can be measured by the loop structure of the pro-

grams which compute them. The functions computable by Loop programs

are precisely the primitive recursive functions.

[Mol73] Robert Moll. Complexity classes of recursive functions. PhD in Mathe-

matics, Massachusetts Institute of technology, 1973. Contents of Chap-

ter 1, “A survey of work on subrecursive hierarchies and subrecursive de-

grees”: (i) ω-hierarchies of primitive recursive functions. (ii) ω-hierarchies

of elementary functions. (iii) Transfinite hierarchies. (iv) Subrecursive de-

grees.

[Mos03] Yiannis N. Moschovakis. On primitive recursive algorithms and the

greatest common divisor function. Theoretical Computer Science,

301(3):1–30, 2003. Abstract. We establish linear lower bounds for the

complexity of non-trivial, primitive recursive algorithms from piecewise lin-

ear given functions. The main corollary is that logtime algorithms for the

greatest common divisor from such givens (such as Stein’s) cannot be

matched in efficiency by primitive recursive algorithms from the same given

functions. The question is left open for the Euclidean algorithm, which

assumes the remainder function.

[MR67a] A. R. Meyer and D. M. Ritchie. The complexity of loop programs.

Proceedings of 22nd National Conference of the ACM, pages 465–469,

1967. (From the Intruduction) Although Loop [a language described in this

paper]programs cannot compute all the computable functions, they can

6



compute all the primitive recursive functions. The functions computable by

Loop programs are, in fact, precisely the primitive recursive functions. Sev-

eral of our results can be regarded as an attempt to make precise the notion

that the complexity of a primitive recursive function is apparent from its

definition or program. This property is one of the reasons that the primitive

recursive functions are used throughout the theory of computability, for

[. . . ] knowing that a function is computable is not very useful unless one

can tell how difficult the function is to compute. A bound on the running

time of a Loop program provides a rough estimate of the degree of difficulty

of the computation defined by the program. Loop programs are so powerful

that our bounds on running time cannot be of practical value-for functions

computable by Loop programs are almost wholly beyond the computational

capacity of any real device. Nevertheless they provide a good illustration of

the theoretical issues involved in estimating the running time of programs,

and we believe that readers with a practical orientation may find some of

the results provocative.

[MR67b] A. R. Meyer and D. M. Ritchie. Computational complexity and pro-

gram structure. IBM Research Report RC 1817, 1967.

[Nig01] Karl-Heinz Niggl. Control structures in programs and computa-

tional complexity. Habilitationsschrift zur Erlangung des akademis-

chen Grades Dr. rer. nat. habil, Fakultät fur Informatik und Automa-

tisierung, Technischen Universitä Ilmenau, 2001. This thesis is concerned

with analysing the impact of nesting (restricted) control structures in pro-

grams, such as primitive recursion or loop statements, on the running time

or computational complexity. The method obtained gives insight as to why

some nesting of control structures may cause a blow up in computational

complexity, while others do not. The method is demonstrated for three types

of programming languages. Programs of the first type are given as lambda

terms over ground-type variables enriched with constants for primitive re-

cursion or recursion on notation. A second is concerned with ordinary loop

7



pro- grams and stack programs, that is, loop programs with stacks over an

arbitrary but fixed alphabet, supporting a suitable loop concept over stacks.

Programs of the third type are given as terms in the simply typed lambda

calculus enriched with constants for recursion on notation in all finite types.

As for the first kind of programs, each program t is uniformly assigned a

measure µ(t), being a natural number computable from the syntax of t.

For the case of primitive recursion, it is shown that programs of µ-measure

n+ 1 compute exactly the functions in Grzegorczyk level n+ 2. In particu-

lar, programs of µ-measure 1 compute exactly the functions in FLINSPACE,

the class of functions computable in binary on a Turing machine in linear

space. The same hierarchy of classes is obtained when primitive recursion is

replaced with recursion on notation, except that programs of µ-measure 1

compute precisely the functions in FPTIME, the class of the functions com-

putable on a Turing machine in time polynomial in the size of the input.

Another form of measure µ is obtained for the second kind of programs. It

is shown that stack programs of µ-measuren compute exactly the functions

computable by a Turing machine in time bounded by a function in Grze-

gorczyk level n+ 2. In particular, stack programs of µ-measure 0 compute

precisely the FPTIME functions. Furthermore, loop programs of µ-measure

n compute exactly the functions in Grzegorczyk level n + 2. In particular,

loop programs of µ-measure 0 compute precisely the FLINSPACE functions.

As for the third kind of programs, building on the insight gained so far, it

is shown how to restrict recursion on notation in all finite types so as to

characterise polynomial-time computability. The restrictions are obtained

by using a ramified type structure, and by adding linear concepts to the

lambda calculus. This gives rise to a functional programming language RA

supporting recursion on notation in all finite types. It is shown that RA

programs compute exactly the FPTIME functions.

[Par68] Charles Parsons. Hierarchies of primitive recursive functions. Zeitschrift

f. math. Logik und Grundlagen, D, 1968. Abstract. In this paper we

8



shall introduce a hierarchy of classes of primitive recursive functions and

compare it to Grzegorczyk hierarchy of classes En, and with two hierarchies

of classes, which we call Dn, based directly on nesting of primitive recursion

[. . . ] and on our classes Ln, which are based on a more complex measure of

the complexity of primitive recursive functions. The main outcome of our

discussion is that except near the beginning, all three hierarchies coincide:

if p ≥ 2, Lp = Ep+1, and Schwichtenberg has shown that if p ≥ 3,

Dp = Ep+1. In particular, L2 is the class of elementary functions. Thus

our work yields a characterization of the elementary functions in terms

of nesting of recursion. We strengthen a result of Rödding by showing

that every function elementary in a given function Ψ can be obtained by

explicit definition from a constant set of elementary functions and a single

function Ψ elementary in Ψ.

[RK66] B. Rotman and G. T. Kneebone. The Theory of Sets and Transfinite

Numbers. Elsevier, 1966.

[Rob47] Raphael Robinson. Primitive recursive functions. Bull. Amer. Math.

Soc., 53(10):925–942, 1947.

[Rob65] Joel Robbin. Subrecursive Hierarchies. PhD in Mathematics, Prince-

ton University, 1965. Abstract. The classification problem for recursive

functions is the problem of assigning ordinals to recursive functions as a

measure of their complexity. In this paper we consider three approaches to

this problem: the ordinal recursion hierarchy, the extended Grzegorczyk hi-

erarchy, and the Kleene subrecursive hierarchy. We obtain characterizations

of the nested n-fold recursive functions in terms of each of these hierar-

chies. In the last section of the paper we show some of the problems that

arise when we try to generalize these hierarchies. A characterization of the

nested n-fold recursive functions in terms of computational complexity on

a Turing machine is also given in the paper.

9



[Rob68] Julia Robinson. Recursive functions of one variable. Proceedings of the

American Mathematical Society, 9:815–820, 1968. .

[Tsi70] D. Tsichritzis. The equivalence problem of simple programs. Journal

of the ACM, 17(4):729–738, 1970. Abstract. Many problems, some

of them quite meaningful, have been proved to be recursively unsolvable

for programs in general. The paper is directed towards a class of programs

where many decision problems are solvable. The equivalence problem has

been proved to be unsolvable for the class L2 of Loop programs defining the

class of elementary functions. A solution is given for the class L1 defining

the class of simple functions. Further, a set of other decision problems

not directly connected with the equivalence problem is investigated. These

problems are found again to be unsolvable for the class L2; but, as before,

a solution is given for the class L1. It is concluded, therefore, that there is

a barrier of unsolvability between the classes L1 and L2.

[vdD03] Lou van den Dries. Generating the greatest common divisor, and limi-

tations of primitive recursive algorithms. Foundations of Computational

Mathematics, 3(3):297–324, 2003. Abstract. The greatest common di-

visor of two integers cannot be generated in a uniformly bounded number

of steps from these integers using arithmetic operations. The proof uses an

elementary model-theoretic construction that enables us to focus on “inte-

gers with transcendental ratio”. This unboundedness result is part of the

solution of a problem posed by Y. Moschovakis on limitations of primitive

recursive algorithms for computing the greatest common divisor function.

[Wai94] Stanley S. Wainer. The hierarchy of terminating recursive programs

over N. In LCC, pages 281–299, 1994. Abstract. A terminating recur-

sive program defines a total recursive functional, taking “given” functions

to the function defined from them by the program. Termination means that

the program has a well-founded computation tree with a recursive ordinal

as it height, and Kleene noted that, in contrast with the well known “col-

10



lapsing phenomenon” for hierarchies of recursive functions, the resulting

hierarchy expands right the way through ωCK
1 : i.e. for each recursive ordi-

nal α there is a total recursive functional which can not be defined by any

program of height less than α. In this paper we examine some of the ways in

which the ordinal height of a program encodes its complexity. By a careful

assignment of (proof theoretic) ordinal bounds to derivations in Kleene’s

equation calculus, the standard “fast”, “medium”, and “slow” growing hi-

erarchies emerge as canonical complexity measures allowing different forms

of recursion to be classified and compared. Known relationships between

these hierarchies then yield measures of “transformational complexity” (e.g.

recursive to tail recursive) in terms of their corresponding ordinal trade-offs.

The underlying theme is that of Cut Elimination, but in an equational set-

ting.

11


