
The most difficult Sudoku puzzles are quickly solved

by a straightforward depth-first search algorithm

Armando B. Matos

armandobcm@yahoo.com

LIACC
Artificial Intelligence and Computer Science Laboratory

Universidade do Porto

September 9, 2016

Contents

1 Introduction 2

2 A brief note on the technique of “generate and test” 2

3 “Straightforward” depth-first search (SDFS) technique 3

3.1 General comments . 3

3.2 Visits and branching . 6

3.3 A few examples analysed in detail 8

3.3.1 Example A: a “very difficult” puzzle, 24 clues 9

3.3.2 Example B: a “difficult” minimum puzzle 10

3.3.3 Example B with the order of the rows reversed 11

3.3.4 Example C: from [3], minimum puzzle 13

3.3.5 Example D: a minimum puzzle from [2] 14

3.3.6 Example E: “only for the sharpest minds”, 21 clues . . . 17

3.3.7 Other difficult puzzles. 17

4 SDFS solves all 49151 minimum puzzles (Gordon Royle file) 19

4.1 Solving all the 49151 minimum Sudoku puzzles 19

4.2 “The most difficult” puzzle . 21

5 Tentative conclusions. . . 26

Abstract

In this experimental work we apply a straightforward depth-first-search
(SDFS) algorithm to some of the most difficult Sudoku puzzles. Here,
“SFDF” means a very simple DFS algorithm using a fixed cell order and
without any algorithmic enhancements (like constraint propagation).

The computational experiments are divided in two parts:

– A few difficult or very difficult (under the human point of view)
puzzles were solved by the SDFS program; the results are analysed
in some detail.

– All the 49 151 minimum (17 clues) puzzles in the file prepared by
Gordon Royle (of The University of Western Australia) were solved
by the same program. Some statistic information is presented. The
puzzle requiring more cell visits (about 1.9 × 109 for the exaustive
search) is also analised. The median of the execution time is 0.28
seconds.

Most of the puzzles were quickly solved, usually in less than one second.
No puzzle requiring more than 3 minutes (in a relatively old computer)
was found.
This experiment suggests: (i) a very simple algorithms quickly solves the
most difficult Sudoku puzzles, (ii) the difficulty level (for an human) of
a Sudoku puzzle has nothing to do with the CPU execution time of the
SDFS algorithm that solves it, (iii) the cell nodes with the largest average
branching are located at the top of the tree, while the most visited cells
correspond to nodes of the search tree that are roughtly located at half
height of the tree.

Note. Although the the title of this report is very probably true (“. . . the
most difficult. . . are quickly solved”), a complete “proof” requires testing
the SDFS algorithm for many other inputs, such as all the symmetries of
each of the 49 151 puzzles.

1

1 Introduction

Sudoku is played by hundreds of millions of people worldwide, therefore there is
no need to explain the rules (all relevant information can be found on a simple
Google search). In this work we consider only the more usual 9×9 version.
and assume that each puzzle has an unique solution. However, we will often
measure the CPU time used to find the first solution and the CPU time used
in an exaustive search (which would detect further solutions, if they existed).

Sudoku is often considered a challenging puzzle whose solution requires human
intelligence as well as some knowledge of techniques and tricks. We will see that
that is not the case: there are straightforward computer programs that quickly
solve puzzles that, under the human point of view, are extremely difficult.

In this short work we first consider (and discard) a really stupid programming
technique known as “generate and test”. Then we turn our attention to a more
efficient, but perhaps equally stupid (under the human viewpoint), technique
known as “depth-first-search”, DFS, and apply this technique to a few difficult
or very difficult Sudoku puzzles (under the human point of view); the results
of this experiment are analised. With the same primitive DFS algorithm we
also solve all the 49151 minimum puzzles prepared by Gordon Royle of the
University of Western Australia.

As we will see, intelligence, smart techniques, and complex heuristics can be
surpassed by a primitive DFS search.

It was shown in [3] that any Sudoku puzzle having an unique solution must
have at least 17 clues1. We may expect that puzzles with 17 clues (“minimum
number of clues”) are difficult.

Definition 1 A Sudoku puzzle is minimum if it has exactly 17 clues.

The great majority of the puzzles analised in this work is minimum.

2 A brief note on the technique of “generate and

test”

Some algorithms for solving Sudoku puzzles that are really unfeasible. For
instance, “generate and test” (GT) is a very stupid algorithm indeed. It consists
in generating all the possible ways of filling the free cells of a Sudoku puzzle
(ignoring the constraints), considered in some fixed order. For each possibility,
check if it is a solution.

To get an idea of the computation time needed to find the solution using an
algorithm based on the GT technique, suppose that there are 18 clues, so that
1In 2006, when [2] was published, it was not known whether that minimum is 16 or 17.

2

9× 9− 18 = 63 free cells remain. Suppose further that the multiset of clues is
{1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9}. Then we have to fill the 63 free cells
with seven 1’s, seven 2’s, . . . , and seven 9’s. The number of ways of doing this
is

63!
(7!)9

≈ 0.945× 1054.

If our very fast computer generates and tests each possibility in one picosecond
(10−12sec)2, the execution time is about 1042 seconds. This is MUCH longer
than the age of the universe. I don’t call this “feasible”.

3 “Straightforward” depth-first search (SDFS) tech-

nique

By “straightforward” depth-first search (SDFS) we mean the simple depth-first
search without any improvements. In particular, (i) no constraint propagation
technique is used [2, page 84] and (ii) the cell order that defines the search
tree is fixed. This very primitive algorithm seems (I tested more than 49000
minimum Sudoku puzzles) to solve in a short time all Sudoku puzzles.

3.1 General comments

We begin with a few considerations about the hardware and software used.

– The computer used was a somewhat old iMac with a 2.66GHz Intel Core Duo
CPU, so the reader should have no difficulties in getting significantly faster
execution times.

– The programming language used was C. Every program used, say prog.c,
was compiled with the usual command gcc -O3 prog.c.

– The SDFS search order is shown in Figure 1, page 4. The search tree asso-
ciated with some fixed Sudoku puzzle and some particular cell order may be
very large – sometimes it has many millions of nodes.

– The main function of the SDFS program (not to be confused with the C main

function) can be seen in Figure 2, page 5. This version corresponds to an
exhaustive search, that is, a search for every possible solution.

– The programs and examples we used can be obtained from “2016 – Straight-
forward depth-first search solves difficult Sudoku puzzles” in
http://www.dcc.fc.up.pt/∼acm/

2This is a very fast computer, because in 10−12 it has to test if the digit placed in each one
of the 63 free cells of the grid does not occur in the corresponding row, column and 3 × 3
square.

3

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Figure 1. The cell order used to define the depth-first search.

4

void solve(int i,int j){

int v;

if(j==9){ // When next cell is in next row:

j=0;

i++;

}

if(i==9 && j==0){ // When a solution was found:

display(); // Print the solution, CPU time, branching...

return;

}

nodes++; // One more node visited

cnt[i][j]++; // One more visit to this node

if(m[i][j]>0){ // When this cell is a clue:

br[i][j]++;

solve(i,j+1);

return;

}

for(v=1;v<=9;v++){ // Free cell. Assign all possible values

m[i][j]=v;

if(ok(i,j)){ // Test constraints: row, column, 3*3 square

br[i][j]++; // One more branch

solve(i,j+1);

}

m[i][j]=0; // Mark the cell as free

}

Figure 2. The main SDFS function. In this version a call “solve{0}{0}” finds
all the solutions. A cell containing 0 is currently free.

5

3.2 Visits and branching

Relatively to a DFS algorithm, we will often mention the “number of visits” to
a cell of a Sudoku puzzle.

Definition 2 The number of visits that a DFS algorithm makes to some par-
ticular cell is the number of call’s made from a tree node corresponding to the
previous cell.

In terms of the Prolog box model (due to Lawrence Bird), redo’s are not con-
sidered visits of the current cell; however, they are counted as visits of the cell
that is called.

We will also use the concept of average branching.

Definition 3 Let n be the number of visits of some specific cell. For i = 1,
2,. . . , n, that is, for each visit to this cell, let bi be the number of integers that
can be assigned to that cell without violating the rules of Sudoku. The average
branching of that cell is (b1 + b2 + . . . + bn)/n. �

For instance, in the example of Figure 8 (page 14), the top left cell, that is, the
cell in which the SDFS starts, has n = 1 and average branching of 5 (possible
assignments: 2, 3, 4, 7, and 9). If the cell is a clue, its average branching is of
course 1.

Properties 1 The following properties are easy to prove.

1. For any Sudoku puzzle P with solution S, any of the following opera-
tions T generates a Sudoku puzzle T (P) with solution T (S). We say that
the puzzles P and T (P) are mathematically equivalent. The operations
are combinations of the following (we transcribe [6]):

– permutations of the 9 symbols,
– transposing the matrix (that is, exchanging rows and columns),
– permuting rows within a single block,
– permuting columns within a single block,
– permuting the blocks row-wise,
– permuting the blocks column-wise,

2. Whenever a Sudoku puzzle has a unique solution, the DFS algorithm
visits exactly once both the initial (top left) and the final (bottom right)
cells.

3. Using the order shown in Figure 1, page 4, the average branching of the
following 21 cells is at most 1: bottom row cells, rightmost column cells,
bottom-right block cells. �

6

In the following section we analyse in some detail a few Sudoku puzzles, while
in Section 4 (page 19) we describe the use of the same SDFS algorithm to solve
all the 49151 minimum Sudoku puzzles in the file prepared by Gordon Royle
(University of Western Australia) [5, 6].

The main conclusion of this work is perhaps the following:

Every Sudoku puzzle we tested was quickly solved by the SDFS
algorithm. We have not yet found a puzzle whose solution requires
more than 3 minutes.

7

3.3 A few examples analysed in detail

We selected a few difficult or very difficult puzzles and tried to solve them using
a straightforward DFS technique, see for instance [4, 7].

8

3.3.1 Example A: a “very difficult” puzzle, 24 clues
This puzzle3 is represented in Figure 3, page 9. It is considered very difficult.

The SDFS algorithm found the first solution in 7 milliseconds, while the ex-
haustive search took only 8 milliseconds!

Example A

9 7 4

3 2

8 3

2 8 4 6

8 1

9 1 5 7

6 9

5 1

4 2 5

1. CPU time: 0.007 seconds
2. Number of visits: 74 210
3. Total CPU time: 0.008 seconds
4. Total no. of visits: 81 420

Figure 3. A “very difficult” Sudoku puzzle is solved almost instantaneously.
Lines 1, 2, 3, and 4, denote respectively: the CPU time used to find the first
solution, the number of visits to the nodes of the search tree during that search,
the CPU time used to find all the solutions (there is only one), and the total
number of visits to the nodes of the search tree during the exaustive search.

3Alastair Chisholm 2008, www.indigopuzzles.com, Problem number 6907.

9

3.3.2 Example B: a “difficult” minimum puzzle
See4 Figure 4, page 10.

The first solution was found in 0.17 seconds, while the exhaustive search took
slightly more (0.23 seconds). This “difficult” puzzle took more time to solve
than the “very difficult” puzzle of Example A (Figure 3, page 9).

Example B

3 8 5

1 2

5 7

4 1

9

5 7 3

2 1

4 9

1. CPU time: 0.173 seconds
2. Number of visits: 1 857 828
3. Total CPU time: 0.227 seconds
4. Total no. of visits: 2 443 465

Figure 4. This Sudoku puzzle is minimum. The meaning of the lines below the
grid is explained in Figure 3 (page 9).

4Alastair Chisholm 2008, www.indigopuzzles.com.

10

3.3.3 Example B with the order of the rows reversed
If we reverse the order of the rows (9, 8. . . , 1) in Figure 4 (page 10), we get the
puzzle in Figure 5 (page 11).

The first 14 cells of the SDFS order (see Figure 1, page 4) do not contain any
clue and so that we may perhaps expect a larger branching at the top of the
search tree. This may justify the large increase in execution time: it is now
about 8 seconds for both algorithms (first solution and exhaustive search), while
in the initial example it was about 0.2 seconds!

Example B-inv

3 8 5

1 2

5 7

4 1

9

5 7 3

2 1

4 9

1. CPU time: 7.847 seconds
2. Number of visits: 88 178 562
3. Total CPU time: 7.851 seconds
4. Total no. of visits: 88 217 462

Figure 5. The puzzle of Figure 4, page 10 with the rows in reverse order. This
example is from a Wikipedia entry with the name “Sudoku puzzle hard for
brute force”, see [8].

Note. In [9] a “brute force” C++ program was used to solve this example in 21
seconds. “Our” SDFS, in a somewhat old computer, took less than 8 seconds. �

11

For an human reversing of the order of the rows does not change the apparent
difficulty of the problem, but the execution time of the SDFS algorithm can
change dramatically.

We could think that a puzzle with no clues in the first 2 rows (18 instead of
14 empty cells) would be still more difficult. However, no such puzzle (with an
unique solution) can exist because, for any solution, the swap of those 2 rows
generates a different solution, see Properties 1, page 6.

The cells with the largest average branching (see Definition 3 in page 6) are
displayed in Figure 6, page 12. They are either at the top of the search tree or
in the third column of the puzzle.

Example B-inv: branching

3 8 5

1 2

5 7

4 1

9

5 7 3

2 1

4 9

Figure 6. Example from [8]: largest branchings in the search for all solutions.
Cells with average branching larger than 3 are coloured blue. The cell at the
top of the search tree (top left cell in the figure) has the average branching
equal to 7.

12

3.3.4 Example C: from [3], minimum puzzle
See Figure 7, page 13.

Except for Example A (page 9) all the examples used in this work, including
this one, have the minimum number of clues.

Although this problem is probably difficult for humans, it was solved (find the
first solution) by the SDFS program in less than 0.2 seconds. The exhaustive
search took about 0.3 seconds.

Example C

1 9

3 8

6

1 2 4

7 3

5

8 6

4 2

7 5

1. CPU time: 0.174 seconds
2. Number of visits: 1 811 816
3. Total CPU time: 0.313 seconds
4. Total no. of visits: 3 229 226

Figure 7. An example of a minimum puzzle from [3].

13

3.3.5 Example D: a minimum puzzle from [2]
See Figure 8, page 14. See also Figure 9 (page 15) and Figure 10 (page 16).

This is another minimum puzzle. The first solution was found in less than 0.2
seconds. However, the exhaustive search took about 21 seconds.

Example D

8 1

4 3

5

7 8

1

2 3

6 7 5

2

3 4

2 6

1. CPU time: 1.456 seconds
2. Number of visits: 15 050 935
3. Total CPU time: 20.854 seconds
4. Total no. of visits: 215 473 266

Figure 8. An example of a minimum puzzle from [2].

Figure 9 (page 15) gives an idea of the average branching for an exhaustive
search. Cells with larger branching seem to be at the upper part of the search
tree.

14

Example D: branching

8 1

4 3

5

7 8

1

2 3

6 7 5

2

3 4

2 6

Figure 9. Example D, Figure 8 (page 14). Search for all solutions (not only for
the first one): cells with average branching in [2, 3) are coloured light blue. Cells
with average branching 3.0 or more are coloured darker blue. Larger branching
occurs at the beginning of the search.

15

Figure 10 (page 16) shows the cells that are visited more often during the
(exhaustive) SDFS. They seem to concentrate at half height of the search tree.

Example D: visits

8 1

4 3

5

7 8

1

2 3

6 7 5

3 4

2 6

Figure 10. Example D, Figure 8 (page 14). Search for all solutions: cells with
more than 5 million visits are red; Cells with more than 10 million visits are
darker red.

16

3.3.6 Example E: “only for the sharpest minds”, 21 clues
SDFS seems to solve every Sudoku puzzle, no matter how difficult, in a few
seconds at most. Here we present a Sudoku puzzle devised by Arto Inkala.
Transcribing “the Telegraph” (July 8, 2016):

World’s hardest Sudoku: can you crack it? Readers who spend hours

grappling in vain with the Telegraph’s daily Sudoku puzzles should look

away now. [See Figure 11, page18]
The Everest of numerical games was devised by Arto Inkala,

[http://www.sudokuwiki.org/Arto_Inkala_Sudoku]
a Finnish mathematician, and is specifically designed to be unsolvable

to all but the sharpest minds.

The straightforward DFS algorithm solved5 this very very difficult puzzle in
6 milliseconds! An exhaustive search (looking for more solutions) took 0.2
seconds.

3.3.7 Other difficult puzzles.
Several other difficult Sudoku puzzles were considered. The SDFS algorithm
solved most of them in less than 1 second.

For instance, I tested the following “Extreme Unsolveable” puzzles:
www.sudokuwiki.org/Weekly_Sudoku.asp?puz=28

First solution: 0.337 seconds, exaustive search: 0.575 seconds;
and

www.sudokuwiki.org/Weekly_Sudoku.asp?puz=49

First solution: 0.128 seconds, exaustive search: 0.404 seconds.
�

5When I noticed that the computer printed the answer almost instantaneously, I thought that
all this was perhaps some kind of joke. . . until I tried to solve the puzzle myself and look at
Inkala’s “Sudoku page”.

17

Example E: Devised by Arto Inkala

(in “The Telegraph”, “The Sun”, and “Metro”)

8

3 6

7 9 2

5 7

4 5 7

1 3

1 6 8

8 5 1

9 4

1. CPU time: 0.006 seconds
2. Number of visits: 72 069
3. Total CPU time: 0.234 seconds
4. Total no. of visits: 3 031 696

Figure 11. A Sudoku puzzle published in The Telegraph, The Sun, and Metro.
It was devised by Arto Inkala. (21 clues). This puzzle is “unsolvable to all but
the sharpest minds”, but the SDFS solved it almost instantaneously.

18

4 SDFS solves all 49151 minimum puzzles (Gordon

Royle file)

We first describe the solution of all the 49151 minimum puzzles (list prepared
by Gorden Royle) and then analise in some detail the “most difficult” one (for
the SDFS algorithm), that is, the puzzle that took more time to be solved.

4.1 Solving all the 49151 minimum Sudoku puzzles

In this section we describe the use of the same SDFS algorithm (see Figure 2,
page 5: “pure” DFS, no algorithmic improvements) to solve all the 49151 Su-
doku puzzles prepared by Gordon Royle (University of Western Australia),
[5, 6]. All these puzzles are minimum and have a unique solution. Moreover
they are “mathematically inequivalent in that that no two of them can be trans-
lated to each other by” the operations6 mentioned in Properties 1, page 6.

Figure 12 gives some idea of the execution times.

Puzzles solved by time interval

4 120

12 059

19 751

11 766

1 449
6

0 0.01 0.1 1 10 100 CPU time
(seconds)

N
o
.

o
f
p
u
zz

le
s

Figure 12. 49151 minimum Sudoku puzzles: they were all solved by the SDFS
algorithm (“first solution” version). More than 73% of the puzzles were solved
in less than 1 second (those to the left of the dotted line). For other statistics
see Figure 13, page 20.

The SDFS algorithm was used only to search for the first solution.
6The application of such operations may of course change the CPU time (and the number of
visits).

19

Some statistics corresponding to the SDFS of the 49151 minimum Sudoku puz-
zles are shown in Figure 13, page 20. The median (see for instance [1]) of
{a1, a2, . . . , an} is defined here as a(n+1)/2 if n is odd and as (an/2 + a1+n/2)/2
if n is even. Obviously, the “number of visits” column is computer independent.

Number of visits CPU time
Median 2688418 0.280 seconds
Average 14983449 1.490 seconds
Largest 1553023932 162.583 seconds

Figure 13. Statistics corresponding to the solution of 49151 minimum Sudoku
puzzles (by Gordon Royle, The University of Western Australia) by the SDFS
algorithm using the “first solution” version.

20

4.2 “The most difficult” puzzle

Consider the 49151 Sudoku puzzles in the list [6]. The puzzle with the longest
CPU time, about 2 minutes and 40 seconds, is shown in Figure 14, page 21.

The most difficult Sudoku

9 8

5

2 1 3

1 6

4 7

7 8 6

3 1

4 2

1. CPU time: 162.583 seconds
2. Number of visits: 1 553 023 932
3. Total CPU time: 194.891 seconds
4. Total no. of visits: 1 884 424 814

Figure 14. “The most difficult puzzle” found. Here, the “difficulty” is measured
by the CPU time used by the SDFS algorithm to find the first solution.

Figure 15 (page 22) gives an idea of the cells with more visits (lighter and darker
red) and of cells with larger average branching (see Definition 3 in page 6).

21

The most difficult Sudoku: visits and branching

Figure 15. “The most difficult” puzzle: largest number of visits and largest
average branching. Here we consider an exaustive tree search by the SDFS
algorithm. Clue cells are indicated by a green border (the branching of a clue
cell is 1).

Average branching ≥ 3.
Average branching in [2, 3).
Number of visits ≥ 107.
Number of visits in [106, 107).
Average branching in [2, 3) AND number of visits in [106, 107).

Recall that the order of the cells that characterises the DFS is left to right, top
to bottom (starting cell pointed by the red arrow; see Figure 1, page 4).

22

The bar graph in Figure 16 (page 24) shows the number of visits to each cell of
the grid when the SDFS algorithm makes an exaustive search.

Note in particular that (i) Cells with numbers 0, 72, 73,. . . , 80 are visited
exactly once (see also Properties 1, page 6), (ii) the number of visits to a clue
cell equals the number of visits to the next cell; for instance, the 8 in the top
row (see Figure 14, page 21) corresponds to the cell number 3; cell number 4
has the same number of visits.

23

F
ig

ur
e

16
.

“T
he

m
os

t
di

ffi
cu

lt
”

Su
do

ku
pu

zz
le

(s
ee

al
so

F
ig

ur
e

13
,p

ag
e

20
):

ex
au

st
iv

e
se

ar
ch

of
th

e
SD

F
S

al
go

ri
th

m
.

T
he

ho
ri

zo
nt

al
nu

m
be

rs
,0

to
80

,d
en

ot
e

th
e

gr
id

ce
lls

w
it

h
th

e
ce

ll
or

de
r

of
F

ig
ur

e
1

(p
ag

e
4)

.
T

he
he

ig
ht

of
ea

ch
ba

r
is

th
e

nu
m

be
r

of
vi

si
ts

to
ea

ch
gr

id
ce

ll
(t

ha
t

th
e

ve
rt

ic
al

sc
al

e
is

lo
ga

ri
th

m
ic

).
G

re
en

ba
rs

co
rr

es
po

nd
to

cl
ue

s
(w

he
n

th
er

e
is

m
or

e
th

an
1

vi
si

t)
.

24

Reverse the row order
If we reverse the row order of “the most difficult” puzzle, the execution time
is much shorter. In fact, as shown in the table below, the answer is almost
instantaneous!

Original row order Reversed row order
CPU time (first solution) 162.6 seconds 0.001 seconds
Visits (first solution) 1553023932 7744
CPU time (exaustive search) 194.9 seconds 0.010 seconds
Visits (exaustive search) 1884424814 76181

Compare with the puzzles in Figures 4 (page 10) and 5 (page 11).

More generally, the transformations mentioned in the footnote of page ?? result
in other puzzles whose computation times (and number of visits to the search
tree) are often drastically different.

25

Partitioning the Royle set of puzzles

Let us mention a study related to this report which is not described here. Based
on Properties 1 (page 6), we define a set of invariant characteristics of a Sudoku
puzzle.
By “invariant” we mean that the corresponding value does not change when
any of the operations (described in Properties 1, item 1) is applied. As an
example, an invariant characteristics is 〈r0, r1, . . . , r9〉, where ri is the number
of 3×3 blocks with i clues. For Example A (Figure 3, page 3) this value is
〈0, 0, 4, 4, 1, 0, 0, 0, 0, 0〉.

A set of invariant characteristics correspond to a partition of the Royle set of
puzzles [6]. In order to answer the question “how much can a set of invari-
ant characteristics discriminate the Royle set?”, we analysed the size of the
individual sets of the partition.

5 Tentative conclusions. . .

We used the straightforward depth-first search (SDFS) to try to solve difficult
Sudoku puzzles7 (The only conclusion that really surprised me was 1).

1. Most of the examples were solved by a straightforward DFS algorithm in
less than one second. I was unable to find a puzzle that was not solved in
a relatively short time.

2. A puzzle can have the minimum number of clues and be easy (fast) to
solve. That is the case of Example C, see Figure 7, page 13.

3. In difficult puzzles, that is, where the computation time is higher, the
branching degree is often larger for the cells at top of the search tree. On
the other hand, the cells with most “visits” often correspond to nodes
at “middle-height” of the search tree8. See Figures 15 (page 22) and 16
(page 24). This statement is somewhat vague and needs further experi-
ment and, also, a theoretical justification.

4. The total number of cell visits is roughly proportional to the execution
time. A typical proportionality constant is about 10 million to 30 million
visits per second.

5. Some fixed, but arbitrary, sequence of cells is initially defined in order
to fully characterise the search tree. We used the sequence shown in
Figure 1, page 4. The execution time may depend critically on that se-
quence: compare for instance Example 3.3.2 (page 10) with Example 3.3.3
(page 11).

6. Let t1 be the computation time used to find the first solution and let tex
be the computation time of an exhaustive search. There are puzzles with

7The reader is invited to send me errors and comments regarding this work!
8This kind of behaviour is expected, because at the top of the search tree there are few nodes
(not to be confused with the puzzle cells), while at the bottom of the tree, that is, at the
lower rows, there are few nodes that satisfy the Sudoku constraints (of course, every node of
the search tree is visited at most once).

26

t1 ≈ tex (see Figure 5, page 11) and puzzles with t1 � tex (see Figure 8,
page 14).

7. The level of difficulty (of a Sudoku puzzle) for an human is unrelated
to the SDFS execution time. But, perhaps, this should be expected. It
seems that an “intelligent being” develops methods and uses facts that
allow him to solve the problem with little effort, almost without any trial-
and-error. By contrast, the rather primitive SDFS algorithm solves the
puzzle using a simple technique that is essentially based on backtracking.
Thus, an intelligent method is very different from – almost the opposite
of – the method used in SDFS!

27

References

[1] H. D. Brunk, Mathematical Statistics (2nd Ed.), Blaisdell Publishing, 1965.

[2] Jean-Paul Delahaye, “The science behind sudoku”, Scientific American,
June 2006.

[3] Gary McGuire, Bastian Tugemann, Gilles Civario, There is no 16-
Clue Sudoku: solving the sudoku minimum number of clues problem,
http://arxiv.org/abs/1201.0749

[4] Donald E., Knuth, The Art of Computer Programming, Volume 1 (3rd Ed.):
Fundamental Algorithms, Addison Wesley Longman Publishing Co. 1997.

[5] Gordon Royle, The University of Western Australia, Minimum Sudoku,
http://staffhome.ecm.uwa.edu.au/~00013890/sudokumin.php,
July 2016.

[6] Gordon Royle, The University of Western Australia, Minimum Sudoku file,
http://staffhome.ecm.uwa.edu.au/~00013890/sudoku17,
July 2016.

[7] Robert Sedgewick and Kelvin Wayne, Algorithms (4th Ed.), Addison-
Wesley, 2011.

[8] https://en.wikipedia.org/wiki/File:

Sudoku_puzzle_hard_for_brute_force.jpg

[9] https://github.com/Mathilde94/Sudoku

28

	Introduction
	A brief note on the technique of ``generate and test''
	``Straightforward'' depth-first search (SDFS) technique
	General comments
	Visits and branching
	A few examples analysed in detail
	Example A: a ``very difficult'' puzzle, 24 clues
	Example B: a ``difficult'' minimum puzzle
	Example B with the order of the rows reversed
	Example C: from GTC, minimum puzzle
	Example D: a minimum puzzle from sciam
	Example E: ``only for the sharpest minds'', 21 clues
	Other difficult puzzles.

	SDFS solves all 49 151 minimum puzzles (Gordon Royle file)
	Solving all the 49 151 minimum Sudoku puzzles
	``The most difficult'' puzzle

	Tentative conclusions…

