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Abstract

We study the Z2 transformations that can be implemented in SRL-FOR, a
reversible subset of the language SRL. The programs of SRL-FOR consist
in sequences of zero or more instructions of one of the forms “for x(inc y)”,
“for x(dec y)”, “for y(incx)”, and “for y(decx)”. Thus, at most two program-
ming registers are used in a program. The SRL-FOR language is equivalent
to the linear subset of SRL limited to two registers and having no outer inc
nor dec instructions.

A closely related combinatoric problem is the following: define a parti-
tion of Z2 such that (x, y) and (x′, y′) belong to the same set of the partition
iff it is possible to move from (x, y) to (x′, y′) using a finite number of steps
of the form: add or subtract one coordinate from the other. For instance,
the application of one step to (2, 5) may result in (2, 7), (2, 3), (7, 5), or
(−3, 5).
Due to the reversibility of SRL-FOR, the sets of points reachable from a
given initial point (x, y) form a partition of Z2 which is related to the value
gcd(x, y).

The close relation between the language SRL-FOR and the modular
group SL2(Z) is discussed.
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A brief presentation of the paper
A sub-language of SRL
Language SRL-FOR: a program is a sequence (concatenation) of zero or more
instructions of the forms

for x(inc y) for x(dec y) for y(incx) for y(decx)
Thus, a program uses at most 2 registers.

Points of Z2 accessible from (0,1)
Definition: a point (x′, y′) ∈ Z2 is accessible (or “reachable”) from the point
(x, y) if there is a SRL-FOR program P such that P ((x, y)) = (x′, y′).
Example: in the text we show that all the points of a certain “square” of Z2

are accessible from the point (0,1).
Notation. The set of all points accessible from the point (x, y) is denoted by

S(x,y) = {P ((x, y)) : P ∈ SRL-FOR}

These sets form a partition of Z2. The reversibility of the SRL-FOR language
is essential for the symmetry of the “accessibility” binary relation.
Figures 3, 4, 6, and 7 illustrate parts of the sets S(0,1).

The general result: points accessible from (0, a)
The sets S(x,y) form a partition of Z2 because

— The empty program is in SRL-FOR
— SRL-FOR is closed for concatenation (symbol “ ;”)
— SRL-FOR is reversible (very important)

Two pairs of points (x, y) and (w, z) belong to the same set of the partition iff
gcd(x, y) = gcd(w, z), see Theorem 13. See also Figure 9.

Other topics:
The average distance to the origin.
SRL-FOR and the modular group: see Figure 1 and equation (9).
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Figure 3: Let x and y be the contents of registers x and y, respectively. The
factor n has been removed. Start in Z2 in the point (0, 1), that is, the initial
contents of x and y are 0 and 1, respectively. The points in the range [−6, 6] ×
[−6, 6] that are shown are accessible from the point (0, 1). As explained in the
text, some accessible points, like (-4,-5) may be not represented.
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Figure 4: Similar to Figure 3, but with range [−20, 20]× [−20, 20].

33



Figure 5: The complement of the set in Figure 4, that is, points in the range
[−20, 20]× [−20, 20] that are not accessible from (0, 1).
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Figure 6: Similar to Figure 3, but with range [−100, 100]× [−100, 100]. See also
Figure 7, page 36, where the boxed area is shown in detail.
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Figure 7: A close-up zoom over the diagram of Figure 6, page 35. The range
displayed is [40, 80] × [50, 90]. Apparently, the distribution of points accessible
from the point (0, 1) — or, equivalently, from any point of the diagram — is
rather “homogeneous”.
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Figure 8: Points accessible from (2, 2) in range [−20, 20]× [−20, 20].
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Figure 9: Four partitions of Z2: points accessible
from (0, 0): set {(0, 0)}, coloured black,
from (0, 1): coloured yellow,
from (0, 2): coloured green,
from (0, 3): coloured red.

See also Figures 4 (page 33) and 5 (page 34).
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Figure 10: For b = 1, . . . , 30 (horizontal axis), the fraction (vertical axis) of points
of the range [−b, b]× [−b, b] that are accessible from (0, 1).
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Figure 11: Average distance to the origin (vertical axis) as a function of the
length of the path (horizontal axis). These results were obtained by Monte Carlo
simulations. For each length represented (10, 15, 20, 35,. . . , 200) the number of
statistical experiments is 1 million. The vertical scale is logarithmic.
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