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Notes.
– File: wire.tex
– Reference in bib.bib: matos-wires
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Abstract

In this preliminary note we analyse a natural correspondence between
the wires of a reversible classical digital circuit and the registers of a SRL-
like program. For instance, during a computation, neither the wires nor
the names of the registers change. Only their contents can be modified.
We review some of the Category Theory background, which is used to
define the category FCC', see for instance [GA08, YY09, Sel11].
The categorical formulation of SRL-like programs is not included in this
note; is only mentioned an the end, as an open task. In the appendices
(starting in page 19) we include several transcriptions.
The questions studied in this note are part of a family of more general
correspondences between Logic, Proof Theory, Type Theory, Computa-
tion and Physics, see for instance [Sel11, BS09, Bae06, Sob17].
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1 Introduction
In a programming language the interplay between the name of a register and the
value it contains is interesting. . . and a source of many confusions. The situation
is similar for digital (or other forms of) circuits, where a “wire” corresponds to a
register1. During the execution of a program — or during “a computation” of a
digital circuit — the content of a register (or of a wire) may, of course, change.

Wires are an important part of both circuits (digital or not) and of diagrams
corresponding to certain programs. Those diagrams (and circuits) are essentially
made of wires and computation blocks.

About wires

1. Individuality.
Each wire is unique. It never merges with another wire nor divides (forks)
in two or more wires.

2. Contents.
Each wire transports some information, which may be a bit, an integer, or
other something else.

3. Change of contents.
The information carried by a wire may change: (i) in a circuit: as the
“signals” propagate from left to right (say), (ii) in a program: as the program
is executed.

4. Time in a program = space in a circuit
More precisely: the evolution of a computation (of a program) may be
specified by certain functions of time (contents of the registers, program
counter. . . ), while the computation of a circuit is characterised by the prop-
agation of information along the wires.

5. What is a wire?
It depends on the case. For digital circuits it may be a metallic conductor.
For the language SRL it corresponds to a programming register.

6. Computation blocks.
Each block has a certain arity, say n. The input is an ordered sequence
of n wires, and the output is the same ordered sequence of wires, usually
containing different values.

7. No circularity in the overall diagram.
The overall diagram is like a block in the sense that it has the same wires
at the input and at the output, by the same order.

In SRL programs the use of wire diagrams is particularly interesting: no cloning,
no new registers are ever created, the input and output registers are the same:

1Given this correspondence, we will sometimes call “wires” to program registers.
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“wires” seem to have some reality.

When looking at wire diagrams, or simply “diagrams”, we should distinguish
between (i) the bents of a wire exist only for the convenience of drawing the
circuit and (ii) the bents of a wire correspond to a permutation of the values
stored in the wires. The later case can only occur inside a block because the
information carried by the wires is modified.

Figure 1, page 6, illustrates the difference between cases (i) and (ii). Two other
examples of the case (i) – drawing convenience – are shown in Figures 2 (page 7)
and 3 (page 8).

Observation. Figure 1 suggests a possible duality between

(i) Change of names: a rename, denoted by ρ, and

(ii) Change of contents: done inside a block (or program) π that permutes
the contents of the registers. The simplest non-trivial case is a swap.

Under a “black box” view, we would have, for instance πswap(a,b) ≡ ρa↔b. �

2 Composing blocks
This section is essentially transcribed from [Mat17b].
We describe some forms of combining two or more programs in a single program.
Due to the reversibility, some common forms of program composition are not al-
lowed; these include, for instance, the compositions that involve the “connection”
of one output register of some program (or part of a circuit) to two or more inputs
registers of other programs (“cloning” not allowed); this kind of connection would
in general result in a program (or circuit) that does not implement a bijective
transformation.

It is possible, and eventually it may be advantageous, to describe various forms
of wire composition (or of program composition) in terms of Category Theory,
see for instance [GA08, YY09] and the citations therein.

2.1 Series and parallel composition
Let A and B be two blocks that use respectively the wire sets Ra∪Rc and Rb∪Rc,
where Ra ∩ Rb = ∅. Figure 4, page 9, illustrates a form of composing A with B
that includes both parallel and series composition.

In fact, the situation is a bit more complex, because when composing blocks, we
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Figure 1: There is a difference between cases (i) and (ii). In case (i) we have
a mere way of drawing the wires: wire a and b exchange vertical coordinates.
There is no modification whatsoever — in other words, the transformation is
the identity, a′ = a0, b′ = b0 (equivalent to two parallel lines).
In case (ii) there is a block (marked as a blue rectangle) that implements a
transformation: a′ = b0, b′ = a0. In summary, (i) is the identity and (ii) is a
swap.

are free to select and permute wires (of course without cloning). See the text of
Figure 4.

{
Rc = ∅ parallel composition
Ra = Rb = ∅ series composition

2.2 Extension and projection
The set of wires (registers) used by a program may be extended, as exemplified
in Figure 5, page 10. The extension operation includes the projection which
consists in removing some registers from the program; clearly, it is only possible
to “remove a register from a program” when the program does not mention it.
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Figure 2: From [FT82]: in this example the names of the six language registers
(or “wires”) are placed inside blue boxes. They are a,. . . , f . An example of
a path with bents is shown in red; it corresponds to register c. This diagram
represents a “1-line-to 4-line demultiplexer”. See [Mat17a] for more details.

2.3 Replacement of a part of a program by another pro-
gram

We mention another form of composing the blocks A and B which consists in
replacing some sequence A′ of instructions of A by B. This replacement is only
possible when the following sets are disjoint

– The set of loop registers whose scope includes the replaced sequence of
instructions A′.

– The set of registers modified (at some step of a computation) by B.

For instance, in “A = for a(inc b; dec c)” we can not replace the instruction “A′ =
dec c” by “B = for b(inc a)”.
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Figure 3: From [MRP17]: the blocks B1, B2, and B3 are identical, each im-
plements the transformation Q(x, y, z). The wires are bent so as to “imple-
ment” the composition “Q(n, a, b); Q(a, b, n); Q(n, a, b)”, where Q(n, a, b) de-
notes “for n(for b(inc a); for a(inc b))” and the block I increments b by 1. (For
a0 = b0 = 0 and n ≥ 0 the final values of n, a and b are greater than 222n

.) All
the bents were introduced for the convenience of the drawing.

2.4 Register renaming
Given a set of blocks composed as described above, we can rename the wires.
This renaming must be done globally, that is, it should affect all the composed
programs.
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Figure 4: A method of composing two programs or circuits; the horizontal lines
represent registers or “wires”, respectively. It is assumed that Ra∩Rb = ∅. This
scheme includes both the parallel (when Rc = ∅) and the series (when Ra =
Rb = ∅) forms of composition.
In fact the admissible connections from block A to block B are more complex:
a selection of the wires of the block A is connected to a selection of the wires
of the block B. Thus, a (fixed) selection of wires and a (fixed) permutation of
wires — or equivalently, two fixed selections — are involved.

3 Drawing, bents, and breaks
During the execution of a program, a register has some form of “identity”. We
can, for instance, observe the contents of a particular register as a function of
time. Moreover a register has a name. Similarly, each “wire” of a circuit (digital
or not) has an “identity”.

When drawing diagrams that represent SRL programs2, the following conditions
are desirable.

– Each register is represented in an horizontal line.

– Let a “block” be a recognisable part of a program or circuit. Do not break
the blocks. More of this later. . .

If these conditions are satisfied, it may be easier to find opportunities for the de-
tection of parallelism and for the application of “series/parallel” transformations.

But, of course, that may be not possible.

2But is this possible in general? How to represent for instructions?
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A
A'

Figure 5: The program (or circuit) on the right was obtained from
the program (or circuit) on the left by the “extend” transformation.
The extension can also be a projection. This case happens when
the program (or “block”) does not mention some registers and they
are “removed”; for instance, A is a projection of A′.
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Figure 6: In this case a neat representation (of a SRL program) is possible:
each wire (or program register) is associated with an horizontal line (1, 2, 3,
or 4), and the blocks (A, B, C, D, and E) were not broken. Compare with
Figures 7 (page 12) and 8 (page 13).

3.1 Drawing: bending the wires so as not to break the
blocks

In Figure 7 the wires have been bent and the blocks are (vertically) continuous,
that is, not “broken”.
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Figure 7: To avoid breaking the blocks (A, B, C, D, or E) there is a crossing
between the wires (or program registers 2 and 3), so that, for instance, the
second line (from the top) is used by two registers, 2 and 3.
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3.2 Drawing: breaking the blocks to keep the wires on the
same horizontal line

In Figure 8, which represents the same SRL program as Figure 7, the blocks were
broken so that each wire remains on the same horizontal line.

1

2

3

1

44

3

2

A

E

C

C

D

D

B

E

Figure 8: In order to keep each wire (or program register) in the same hori-
zontal line (1, 2, 3, and 4), the blocks C, D, and E are broken in two parts.

3.3 SRL programs are trees: how to represent the Fibonacci
program?

Due to the loop (or for) instructions, a SRL program has a tree-like structure, so
that it may be not possible to represent faithfully the program as a wire diagram.

Figure 9 represents the program

for n(for b(inc a); for a(inc b))

in a single block F (top of Figure), while the body of the outer for loop, namely
“X;X

def
= for b(inc a); for a(inc b)”, is represented in the lower part of the Figure.

While “X;X” can be divided in 2 blocks in sequence, the block F can not be
divided in series or parallel blocks.

An alternative, possibly not of general use, is to represent the whole program in
a single diagram, using some ad hoc graphical notation, see Figures 10 and 11.
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b a
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ba

a
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F

Figure 9: Top: the SRL program “for n(for b(inc a); for a(inc b))”. is represented
by a single block. Bottom: a representation of the body of the n loop “X;X

def
=

for b(inc a); for a(inc b)”. The twoX’s represent two identical SRL programs, but
the inputs of the right X have been swapped – no operation, only a drawing
convenience.

4 Recovering inputs and initial values
We describe a technique based on applying the inverse of a SRL program in order
to recover most of the inputs at the output. A similar technique has been used
in [FT82]. It can also be applied in other reversible register languages.

Notation

Program registers are distinguished by lower right index, xi. The tuples “x1, . . . , xn”
and “0, . . . , 0” (m zeros, the initial contents of xn+1,. . . , xn+m) are denoted by x
and 0, respectively. The final contents of register y in a computation P (. . .) is
denoted by P (. . .)|y.

Computing a function with the help of 0’s

Suppose that the function f(x1, . . . , xn) can be obtained as the final contents
of some register y of a SRL program P . The function f is necessarily primitive
recursive. Assume that P uses also m ≥ 1 other registers, say yn+1,. . . yn+m,
which are initialised with zero. Moreover, and without loss of generality, assume
that y is the register xn+m. That is,

f(x1, . . . , xn) = P (x1, . . . , xn, xn+1, . . . xn+m︸ ︷︷ ︸
initially all 0

)|y,

or, in a more compact form f(x) = P (x, 0)|y . Here, x and 0 denote the initial
contents of the corresponding registers.
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Figure 10: A representation of the SRL program “for n(for b(inc a); for a(inc b))”.
Although the wires (or program registers) keep their identity when going from
left to right (and following the bents), this is not a block diagram because the
lower “block” is not independent of the upper line n. The rich and powerful
interdependence between n and the lower block is represented by the red arrow
that means: execute m[n] times the dashed block, where m[n] denotes the
contents of n. Each of the blocks denoted by X has of course an inner block
(consisting of a single inc instruction).

Recovering the information

Define the SRL program Q, using n+m+ 1 registers, as described in Figure 12,
page 17 (diagram in Figure 13, page 18). The block P−1 recovers, at the end of
the computation, the inputs of the registers, as well as the input 0’s.

Figure 14, page 19, shows that this recovering technique can substantially re-
duce the memory used to compute a collection of function values (for the same
arguments).

4.1 Applications of the recovering method
1. Functions that can be computed in the SRL language with the aid of m 0-

initialised registers. These are necessarily PR (primitive recursive) functions.

2. Call them m-zeros functions.

3. Is every PR function an m-zero function?

4. If so, the IDENT decision problem is undecidable for the class of m-zero func-
tions.

5. The values f1(x),. . . , fp(x) can be computed by a (m+p)-zero SRL function.
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Figure 11: A still more detailed of the SRL “Fibonacci” program,
“for n(for b(inc a); for a(inc b))”. Neither the blue nor the “ inc” rectangles are
blocks of the entire program (which can not be divided in blocks).

5 Comparison with the category of classical circuits
As we have seen, classical reversible digital circuits [FT82] and SRL programs [Mat03,
Per14] are, in some sense, similar. But there are also big differences.

For digital circuits it is usual to assume that the inputs and outputs are at the
extreme left and at the extreme right, respectively. The “computation” proceeds
from left to tight.

A block of a digital circuit is a part of the circuit with the same wires at left
(inputs) and the same wires at the right (outputs). No other wires “communicate”
with the exterior.

A block of a SRL program is a part of the program consisting in a sequence of
SRL instructions. A SRL instruction may, of course, include “inner” blocks, as in
“for a(P )”. The input and the output values of a block are the contents of the
block registers before and after an execution of the block.

Similarities
In both digital circuits and SRL programs

– The arity (number of wires or of programming registers) of the input and
output are the same.

– For blocks, the input and output arities are also equal.

– The technique described in Section 4 (page 14) for recovering the input
values, possibly zero, can be applied in both cases.

16



Program Q(x, 0, 0)
Inputs: x1, . . . , xn, xn+1 = 0, . . . , xn+m = 0, z = 0
Output: final contents of register z
1 run P (x1, . . . , xn, xn+1, . . . , xn+m);
2 for y(inc z); {z now contains f(x)}
3 run P−1(x1, . . . , xn, xn+1, . . . , xn+m);

Figure 12: Notes: y is the register xn+m; z is the last argument in
Q(x, 0, 0) (z is initialised with 0).
Line 1: Run P (x, 0), computing f(x) with the help of m ≥ 0 addi-
tional registers initialised with 0.
Line 2: the contents of y, which is f(x), is copied to z.
Line 3: the current contents of x1,. . . , xn+m are used as inputs
of P−1, so that, at the end of the computation all the registers
x1,. . . , xn+m recover their initial values. The final contents of z
is f(z).

Differences between reversible digital circuits and SRL pro-
grams
Registers of SRL program: more “identity”

A SRL program is executed sequentially. The possible modifications in the con-
tents of the registers is determined by the instruction itself, for instance “ inc a”.
Thus, the semantics of SRL provides a method for obtaining the register contents
as a function of time, say m[xi, t]. The registers have an “identity” which is never
lost during the execution. That is, anywhere in a SRL program, x1 (for instance)
refers the same memory location.

For digital circuits, the situation is similar if we agree on the correspondence
between input and output wires of each basic digital units, that is, for for each
indivisible black-box, such as, for instance, a Fredkin gate.

SRL programs: more complex

First notice that a digital circuit with n wires can compute only a finite number
of transformations3.

For SRL programs with n registers the number of possible transformations is
unbounded (it depends on the program: consider for instance the programs “ε”,

3Which is (2n)2
n

.
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Figure 13: Diagram of the program shown in Figure 12, page 17.
Note that, although auxiliary input zeros are used, all the inputs xi

(1 ≤ i ≤ n), and all the 0’s except one (register z) are recovered at
the end of the computation.

“ inc a”, “ inc a; inc a”, “ inc a; inc a; inc a”. . .

Even for a fixed SRL program, the number of possible outputs may be infinite,
consider the program “for n(inc a)” with initial value a = 0. The arity is 2, the
number of possible final contents of a is unbounded (depends on the input value
of n). Thus, and relatively to digital circuits, the SRL programs are enriched by

[Infinite domain (Z)] + [loop instructions]

Division in blocks

A digital circuit can often be partitioned in blocks, possibly at several “levels”.

On the other hand, each loop instruction of a SRL program, say “for n(P )”, is
indivisible. Of course, the inner program P can often be divided in blocks. See
Figures 9 (page 14), 10 (page 15), and 11 (page 16).

The blocks of a SRL program can be defined as we saw in Section 2 (page 5).
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Figure 14: Recall Figure 13, page 18. Assume that the p values f1(x), f2(x),. . . ,
fp(x) are computed by the blocks F1, F2,. . . , Fp, respectively. Each of these p
computations uses n “argument” registers (n is the arity of the functions)
and m ≥ 0 registers initialised with 0. By the recovering method the p values
are computed using only n+m+p programming registers; the straightforward
method uses p× (n+m) registers.

Mainly transcribed – Theoretical foundations

In this section we begin by reviewing the Category Theory formulation of re-
versible classical digital circuits, see for instance [GA08, Gra06, YY09, AG05].
This part contains transcriptions and it should only be used for my personal
study. The reader is invited to consult the original references.

A Reversible classical circuits
We will use the following notation:

N2: a two-valued set,
[a] = {0, 1, . . . , a− 1} (for any positive integer a).

A.1 Definitions and comments
The following is a complete set of reversible digital circuits.

1. X : N2 → N2, the not transformation (which is unary).

2. “wires”4: a permutation of [a], or in other words, a bijection wires : [a]→
[a]. Two equivalent ways of thinking of wires are as a permutation of the
contents and a permutation of the names.

3. Sequential composition, ψ ◦ φ, such that (ψ ◦ φ)(x) = ψ(φ(x)).

4This is the name used in [Gra06]. A more suggestive name would be “permutation”.
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4. Parallel composition, ψ × φ : [2a]→ [2a].

5. Conditional. Let ψ, φ : [a] → [a], and consider an extra control wire c.
Then, (ψ | φ) : [a+ 1]→ [a+ 1] implements “ if c then ψ else φ”.
The not and the “ if/then” are sufficient to implement if/then/else.

The following text is essentially from [Gra06]. For more detail on Category
Theory, see for instance [Lan71].
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A category C is a collection, or class, of objects (a, b, c, ...) with a collection of
unique morphisms, also called arrows, between them.

For any two morphisms f ∈ a→ b, g ∈ b→ c, there exists a unique composi-
tion morphism, g◦f ∈ a→ c, which is associative. There is also the additional
constraint that a distinguished identity morphism must exist for every object.

A monoidal category is a category C, as above, equipped with a binary functor
⊗ ∈ C × C → C, called a tensor, with a unit object I. A monoidal category
must have three natural isomorphisms, which express the fact that the tensor
operation must be associative, have a left and right identity. Associativity is
given by:

αa,b,c ∈ (a⊗ b)⊗ c → a⊗ (b⊗ c),

the left-identity by:
λa ∈ I ⊗ a → a,

and the right identity by:
ρa ∈ a⊗ I → a.

Additionally, these three natural transformations are subject to certain coher-
ence conditions, which are given by [Lan71].

A strict monoidal category is a monoidal category in which the three natural
transformations α, λ, and ρ are all the identity transformation.

Finally, a groupoid is a category in which every morphism is an isomorphism,
i.e. there exists an inverse for every morphism, such that the composition of a
morphism and its inverse gives the identity morphism.
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[. . . ] Reversible circuits, [. . . ], will be reformulated in the category FCC',
the category of reversible finite classical computations. [. . . ] The purpose of
this reformulation is to make precise the informal construction of reversible
computations given previously.

Reversible computations are modelled here as a category, where for every mor-
phism ϕ ∈ (FCC' ab) there is an inverse ϕ−1 ∈ (FCC' ba), such that ϕ
and ϕ−1 are isomorphisms, and a and b are finite sets.

The morphisms represent computations, and the requirement for the existence
of an inverse computation, such that there is an isomorphism, ensures the
computation is reversible. As every morphism in FCC' is an isomorphism, it
follows that FCC' is in fact a groupoid. Any isomorphic objects are assumed
to be equal, i.e. FCC' is strict. It follows from this that (FCC' a b) = { } if
a 6= b, and consequently homsets of FCC' are denoted FCC' a = FCC' a a;
the source and target bit-vectors must be of the same size (have the same
number of wires) for the computation to be reversible.

FCC' has a strict monoidal structure (I,⊗), where I = 0 and a⊗ b = a+ b [a

and b are “thought” as disjoint]. A special object of Booleans is defined as N2,
with N2 = 1;

the monoid of addition lifts to a strict monoidal structure on FCC.

As computations take place on bit-vectors, which are collections of Booleans,
only objects generated from (I = 0,N2 = 1,⊗ = +) are interesting; if N2

represents a wire, then N2 ⊗ N2 is two wires, etc. Hence natural numbers
a ∈ N can be used to denote the object Na

2. This gives I = 0, N2 = 1, and
a ⊗ b = a + b, as stated previously. The objects of the category FCC' are
therefore the initial segment of a, as defined previously, [a] = {i ∈ N | i < a}.
Note that FCC' is the free symmetric monoidal category on one object: N2.

The morphisms of the category FCC'a are the circuits of arity a, [. . . ] which
can be characterised inductively [. . . ]
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B Disjoint union and coproduct
Recall a possible definition of disjoint union A

⋃
+ B, also denoted A+B:

A
⋃
+ B = {(0, a) : a ∈ A} ∪ {(1, b) : b ∈ B}.

The following is from the Wikipedia,
https://en.wikipedia.org/wiki/Coproduct.

In Category Theory the disjoint union is defined as a coproduct in the category
of sets.

In Category Theory, the coproduct, or categorical sum, is a category-theoretic
construction which includes as examples

– the disjoint union of sets and of topological spaces,
– the free product of groups, and
– the direct sum of modules and vector spaces.

The coproduct of a family of objects is essentially the “least specific” object to
which each object in the family admits a morphism. It is the category-theoretic
dual notion to the categorical product, which means the definition is the same
as the product but with all arrows reversed. Despite this seemingly innocuous
change in the name and notation, coproducts can be and typically are dramati-
cally different from products.

B.1 Coproduct
Let C be a category and let X1 and X2 be objects in that category. An object
is called the coproduct of these two objects, written X1

∐
X2 or X1 ⊕ X2 or

sometimes simply X1 + X2, if there exist morphisms i1 : X1 → X1

∐
X2 and

i2 : X2 → X1

∐
X2 satisfying a universal property:

for any object Y and morphisms f1 : X1 → Y and f2 : X2 → Y , there
exists a unique morphism f : X1

∐
X2 → Y such that f1 = f · i1 and

f2 = f · i2.

That is, the following diagram commutes:

The unique arrow f making this diagram commute may be denoted
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f1

∐
f2 or f1 ⊕ f2 or f1 + f2 or [f1, f2]. The morphisms i1 and i2 are

called canonical injections, although they need not be injections nor
even monic.

The definition of a coproduct can be extended to an arbitrary family of objects
indexed by a set J . The coproduct of the family {Xj : j ∈ J} is an object X
together with a collection of morphisms ij : Xj → X such that, for any object Y
and any collection of morphisms fj : Xj → Y , there exists a unique morphism f
from X to Y such that fj = f · ij. That is, the following diagrams commute (for
each j ∈ J):

B.2 Examples
The coproduct in the category of sets is simply the disjoint union with the maps ij
being the inclusion maps. Unlike direct products, coproducts in other categories
are not all obviously based on the notion for sets, because unions don’t behave
well with respect to preserving operations (e.g. the union of two groups need
not be a group), and so coproducts in different categories can be dramatically
different from each other. For example, the coproduct in the category of groups,
called the free product, is quite complicated. On the other hand, in the category
of Abelian groups (and equally for vector spaces), the coproduct, called the direct
sum, consists of the elements of the direct product which have only finitely many
nonzero terms. (It therefore coincides exactly with the direct product in the case
of finitely many factors.)

In the case of topological spaces coproducts are disjoint unions with their disjoint
union topologies. That is, it is a disjoint union of the underlying sets, and the
open sets are sets open in each of the spaces, in a rather evident sense. In the
category of pointed spaces, fundamental in homotopy theory, the coproduct is
the wedge sum (which amounts to joining a collection of spaces with base points
at a common base point).

Despite all this dissimilarity, there is still, at the heart of the whole thing, a
disjoint union: the direct sum of Abelian groups is the group generated by the
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“almost” disjoint union (disjoint union of all nonzero elements, together with a
common zero), similarly for vector spaces: the space spanned by the “almost”
disjoint union; the free product for groups is generated by the set of all letters
from a similar “almost disjoint” union where no two elements from different sets
are allowed to commute.

B.3 A Theorem from “ProofWiki”
Theorem 1 Let Set be the category of sets. Let S and T be sets. Then their
disjoint union S

⋃
+ T is a coproduct in Set.

Note. Here f
∐
g will be denoted by [f, g].

Proof. We have the implicit mappings i1 : S → S
⋃
+ T and i2 : T → S

⋃
+ T defined

by:

i1(s) = (s, 1)

i2(t) = (t, 2).

Now given a set V and mappings f : S → V and g : T → V , there is to be a
unique [f, g] : S

⋃
+ T → V such that:

f = [f, g] · i1
g = [f, g] · i2.

Define [f, g] by:

[f, g](x, δ) =

{
f(x) if δ = 1
g(x) if δ = 2.

Now it is immediate that [f, g] so defined satisfies the two conditions above.
Furthermore, these conditions fix [f, g] uniquely, since every (x, δ) ∈ S

⋃
+ T has

δ = 1 or δ = 2. Hence the result, by definition of coproduct. �

B.4 Discussion
The coproduct construction given above is actually a special case of a colimit in
category theory. The coproduct in a category C can be defined as the colimit of
any functor from a discrete category J into C. Not every family {Xj} will have a
coproduct in general, but if it does, then the coproduct is unique in a strong sense:
if ij : Xj → X and kj : Xj → Y are two coproducts of the family {Xj}, then (by
the definition of coproducts) there exists a unique isomorphism f : X → Y such
that fij = kj for each j in J .

As with any universal property, the coproduct can be understood as a universal
morphism. Let ∆ : C → C × C be the diagonal functor which assigns to each
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object X the ordered pair (X,X) and to each morphism f : X → Y the pair
(f, f). Then the coproduct X + Y in C is given by a universal morphism to the
functor ∆ from the object (X, Y ) in C × C.

The coproduct indexed by the empty set (that is, an empty coproduct) is the
same as an initial object in C.

If J is a set such that all coproducts for families indexed with J exist, then it
is possible to choose the products in a compatible fashion so that the coproduct
turns into a functor CJ → C. The coproduct of the family {Xj} is then often
denoted by

∐
j Xj, and the maps ij are known as the natural injections.

Letting HomC(U, V ) denote the set of all morphisms from U to V in C (that is,
a hom-set in C), we have a natural isomorphism

HomC

(∐
j∈J

Xj, Y

)
∼=
∏
j∈J

HomC(Xj, Y ),

given by the bijection which maps every tuple of morphisms

(fj)j∈J ∈
∏
j∈J

HomC(Xj, Y )

(a product in Set, the category of sets, which is the Cartesian product, so it is a
tuple of morphisms) to the morphism

That this map is a surjection follows from the commutativity of the diagram: any
morphism f is the coproduct of the tuple

(f · ij)j∈J .

That it is an injection follows from the universal construction which stipulates the
uniqueness of such maps. The naturality of the isomorphism is also a consequence
of the diagram. Thus the contravariant hom-functor changes coproducts into
products. Stated another way, the hom-functor, viewed as a functor from the
opposite category Cop to Set is continuous; it preserves limits (a coproduct in C is
a product in Cop).

If J is a finite set, say J = {1, . . . , n}, then the coproduct of objects X1,. . . ,
Xn is often denoted by X1 ⊕ . . . ⊕Xn. Suppose all finite coproducts exist in C,
coproduct functors have been chosen as above, and 0 denotes the initial object
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of C corresponding to the empty coproduct. We then have natural isomorphisms

X ⊕ (Y ⊕ Z) ∼= (X ⊕ Y )⊕ Z ∼= X ⊕ Y ⊕ Z
X ⊕ 0 ∼= 0⊕X ∼= X

X ⊕ Y ∼= Y ⊕X.

These properties are formally similar to those of a commutative monoid; a cate-
gory with finite coproducts is an example of a symmetric monoidal category.

If the category has a zero object Z, then we have unique morphism X → Z
(since Z is terminal) and thus a morphism X ⊕ Y → Z ⊕ Y . Since Z is also
initial, we have a canonical isomorphism Z ⊕ Y ∼= Y as in the preceding para-
graph. We thus have morphisms X ⊕ Y → X and X ⊕ Y → Y , by which we
infer a canonical morphism X ⊕ Y → X × Y . This may be extended by in-
duction to a canonical morphism from any finite coproduct to the corresponding
product. This morphism need not in general be an isomorphism; in Grp it is a
proper epimorphism while in Set? (the category of pointed sets) it is a proper
monomorphism. In any pre-additive category, this morphism is an isomorphism
and the corresponding object is known as the biproduct. A category with all
finite biproducts is known as an semi-additive category.

If all families of objects indexed by J have coproducts in C, then the coproduct
comprises a functor Cj → C . Note that, like the product, this functor is covariant.

C Monoidal categories
from the Wikipedia, “Cartesian monoidal category”
In mathematics, a monoidal category (or tensor category) is a category C equipped
with a bifunctor

⊗ : C × C → C

that is associative up to a natural isomorphism, and an object I that is both a
left and right identity for ⊗, again up to a natural isomorphism. The associated
natural isomorphisms are subject to certain coherence conditions, which ensure
that all the relevant diagrams commute.

The ordinary tensor product makes vector spaces, Abelian groups, R-modules,
or R-algebras into monoidal categories. Monoidal categories can be seen as a
generalisation of these and other examples. Every (small) monoidal category
may also be viewed as a “categorification” of an underlying monoid, namely the
monoid whose elements are the isomorphism classes of the category’s objects and
whose binary operation is given by the category’s tensor product.

In category theory, monoidal categories can be used to define the concept of a
monoid object and an associated action on the objects of the category. They are
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also used in the definition of an enriched category.

Monoidal categories have numerous applications outside of category theory proper.
They are used to define models for the multiplicative fragment of intuitionistic
linear logic. They also form the mathematical foundation for the topological order
in condensed matter. Braided monoidal categories have applications in quantum
information, quantum field theory, and string theory.

C.1 Formal definition
A monoidal category is a category C equipped with a monoidal structure. A
monoidal structure consists of the following:

1. a bifunctor ⊗ : C ×C → C called the tensor product or monoidal product,

2. an object I called the unit object or identity object,

3. three natural isomorphisms subject to certain coherence conditions express-
ing the fact that the tensor operation

– is associative: there is a natural (in each of three arguments A, B, C
isomorphism α, called associator, with components αA,B,C : (A ⊗
B)⊗ C ∼= A⊗ (B ⊗ C),

– has I as left and right identity: there are two natural isomorphisms λ
and ρ, respectively called left and right unitor, with components λA :
I ⊗ A ∼= A and ρA : A⊗ I ∼= A.

The coherence conditions for these natural transformations are similar to those
of coproducts. For instance,
for all A, B, C, and D in C, the pentagon diagram

commutes.

A strict monoidal category is one for which the natural isomorphisms α, λ and ρ
are identities. Every monoidal category is monoidally equivalent to a strict
monoidal category.
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C.2 Examples
Any category with finite products can be regarded as monoidal with the product
as the monoidal product and the terminal object as the unit. Such a category is
sometimes called a Cartesian monoidal category. For example:

Set, the category of sets with the Cartesian product, any particular one-element
set serving as the unit.

Cat, the category of small categories with the product category, where the cate-
gory with one object and only its identity map is the unit.

Dually, any category with finite coproducts is monoidal with the coproduct as the
monoidal product and the initial object as the unit. Such a monoidal category is
called co-cartesian monoidal.

R-Modules, the category of modules over a commutative ring R, is a monoidal
category with the tensor product of modules ⊗R serving as the monoidal product
and the ring R (thought of as a module over itself) serving as the unit.
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