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Abstract Evaluating scientists based on their scientific production is a very contro-
versial topic. Nevertheless, bibliometrics and algorithmic approaches can improve
traditional peer review in numerous tasks, such as attributing research grants, decid-
ing scientific committees, or choosing faculty promotions. Traditional bibliometrics
focus on individual measures, disregarding the whole data (i.e., the whole network).
Network algorithms, such as PageRank, have been used to measure node/author im-
portance in a network. However, traditional PageRank and state-of-the-art (STOA)
variations either ignore or do not combine effectively relevant information, such
as the the author’s productivity or the venue and year of the publication/citation.
Furthermore, STOA algorithms assume that we have access to the full network
which, for most real cases, is impossible. Here we put forward OTARIOS, a graph-
ranking method which combines multiple publication/citation criteria to rank au-
thors. OTARIOS divides the original network in two subnetworks, insiders and out-
siders, which is an adequate representation of citation networks with missing infor-
mation. We evaluate OTARIOS on a set of five real networks, each with publications
in distinct areas of Computer Science. We observe that OTARIOS is > 30% more
accurate than traditional PageRank and > 20% more accurate than STOA.

1 Introduction

Deciding scientific committees, research grants, or faculty promotions is still done
mostly by peer review. Nevertheless, bibliometrics have been proposed that assist
the peer review process [12]. Bibliometrics typically rely on the author’s produc-
tivity (i.e., statistics of author’s papers) and the author’s impact (i.e., statistics of
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author’s citations)[1], e.g., one of the most widely used bibliometrics is the author’s
h-index[5], which measures the impact only of the author’s most relevant works.

However, traditional bibliometrics have the drawback of only assigning impact
to direct citations and ignore indirect citations. For example, if author A cites B, and
B cites C, traditional bibliometrics give no additional merit to C from A’s indirect
citation. To tackle this problem, researchers have started developing metrics using
graph algorithms on citation networks [2, 8, 3, 14, 9, 3]. These strategies are based
on the PageRank algorithm [7]. One of PageRank’s major ideias is that not all nodes
are equal, i.e., it is good to be referenced by any page but it is better to be referenced
by important pages. This idea also applies to citation networks, where it is important
to be cited by important authors and not just by any author. State of the art ranking
algorithms for citations networks adapt PageRank and introduce modifications to
favour different types of authors (e.g., authors cited in important venues, or authors
cited more recently).

We find that state of the art is lacking in two aspects. First, these methods do not
adequately combine publication attributes (e.g., author’s productivity, the venues
prestige of where the usually publishes, and how recent his papers are) with citation
attributes (e.g., the prestige of the venue he is being cited from, how recent his
citations are). Second, these methods assume that the full network is known and the
algorithm does not distinguish between fully explored nodes and partially explored
nodes.

Here we propose a graph-ranking algorithm to rank scientists/authors, named
OTARIOS (OpTimizing Author Ranking with Insiders/Outsiders Subnetworks).
OTARIOS handles the first problem by efficiently combining different publica-
tion/citation attributes in a multi-edge weighted network (instead of a simple un-
weighted network used by state of the art methods). OTARIOS is also a flexible
algorithm in the sense that publication/citation attributes can be personalised to fit
what the user wants the researchers to be ranked by (e.g., value venue prestige highly
or lowly). OTARIOS handles the second problem by dividing the citation network
in two subnetworks, insiders and outsiders. Then, only insiders are ranked (since we
have their full information) while outsiders contribute to the ranks of insiders, not
being themselves ranked. Our results on five networks belonging to different areas
of Computer Science show that OTARIOS is > 20% more accurate than state of the
art methods.

The paper is organised as follows. Section 2 describes terminology that is used
throughout the work, as well as an overview of state of the art methods. Section 3
describes OTARIOS and our methodology. Section 4 presents the performance of
OTARIOS against state of the art methods on a set of five networks. Finally, Section
5 presents our main conclusions and gives some directions for future work.
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2 Preliminaries

2.1 Terminology

Recency of a paper Recency of an author

δ (Pj) =
(

max
Pj′∈P

y(Pj′)
)
− y(Pj) (1) δ (Ai) = min

Pj∈PAi

δ (Pj) (2)

Venue prestige Cited individuality

λ (Vk,y) =
c(Vk,y)

3

∑
x=1

p(Vk,y− x)

(3) w(Ai′ → Ai,Pj) =
1
|APj |

,Ai ∈APj (4)

Citation recency Citation prestige

a(Ai′→ Ai,Pj) = e
−δ (Pj)

τ ,Ai′ ∈APj (5) v(Ai′ → Ai,Pj) = v(Pj),Ai′ ∈APj (6)

For consistency, we denote sets by calligraphic letters (e.g., S), elements of those
sets (i.e., entities) by capital letters with an index (e.g., Si), attributes of entities (e.g.,
year, impact factor) as functions named in lower-case alphabetic or greek letters
(e.g., a(Si) or α(Si)) and constants as sole greek letters (e.g., τ). Cardinality of a
given set S is denoted by |S|. We address the following problem.

Problem 1. Given a set of papers P published in a set of venues V by a set of
authors A, who are the n top-ranked authors?

A paper Pj ∈ P is co-authored by authors APj ⊆ A. Likewise, an author
Ai ∈A is (one of) the author(s) of papers PAi ⊆P. In paper-level networks, graph
G = {N,E} comprises a set N of nodes that represent papers and a set E of edges
that represent paper citations, written as Pj′ → Pj. In author-level networks, nodes
represent authors and edges represent citations between authors, written as Ai′→ Ai.

Regarding node attributes, papers have publication metadata which we use as at-
tributes, namely the year, venue prestige, and the number of references, represented
by y(Pj), v(Pj) and rout(Pj), respectively. The recency of a paper, represented by
δ (Pj), is given by Equation 1. Similarly, the recency of an author, represented by
δ (Ai), is simply the recency of his most recent paper (Equation 2). The venue pres-
tige of a paper Pj depends on the venue Vk ∈ V where it was published and the
year when it was published, represented by v(Pj) = λ (Vk,y(Pj)). We estimate venue
prestige with CiteScore, a widely used metric[1] (Equation 3), where p(Vk,y) is the
number of papers published in Vk in year y and c(Vk,y) is the number of citations
that all papers published in Vk in year y received. We are thus giving higher prestige
to venues that have many citations per paper.

Regarding edges, in paper-level networks edges are traditionally unweighted and
simple, i.e., two papers are connected by a single edge with weight equal to 1 [6, 3].
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In author-level networks, edges are weighted and multiple, i.e., two authors are con-
nected by multiple edges with different weights. These multiple edges concern dif-
ferent edge attributes that depend on the publication Pj where author Ai′ cites author
Ai. The recency of an edge, represented by a(Ai′ → Ai,Pj), gives more importance
to recent citations (Equation 5). As discussed in the NewRank paper which orig-
inally proposes this concept for author ranking algorithms [3], we set the decay
factor τ = 4. The venue prestige of an edge, represented by v(Ai′ → Ai,Pj), gives
more importance to citations in important venues (Equation 6). Finally, the indi-
viduality of an edge, represented by w(Ai′ → Ai,Pj), gives more importance to ci-
tations received in papers that author Ai has few (or no) co-authors (Equation 4).
Thus, w(Ai′ → Ai,Pj), unlike a(Ai′ → Ai,Pj) and v(Ai′ → Ai,Pj), depends on the
cited author Ai and not on the citing author Ai′ . The author’s attribute total out-
edge weight is obtained by summing all of its out-edges, e.g., for citation recency,
aout(Ai) = ∑

(Ai→Ai′ ,Pj)
a(Ai→ Ai′ ,Pj) – wout and vout are obtained in the same way.

2.2 State of the art

Measuring the scientific impact of institutions, journals, or authors is an important
task in the peer review process. Here we focus on measuring the impact of authors,
i.e., author ranking. Traditional bibliometrics, such as the widely used h-index [5],
evaluate an author’s impact simply by the number of citations of his most relevant
papers. Other metrics, such as CountRank[4], measure scientific impact as a com-
bination of the author’s productivity (i.e., the number of papers that he publishes)
and the author’s popularity (i.e., the number of citations that he receives). How-
ever, these metrics fail to capture the nature of scientific development since they
disregard the fact that a new discovery is not due solely to previous work directly
referenced. Graph-based metrics, on the other hand, correctly spread the credit to
previous works that paved the way [13].

There are two groups of graph-ranking methods: paper-level and author-level [13].
On one hand, paper-level ranking uses the papers’ citation network to diffuse sci-
entific credit to cited papers, and then author credit is derived from the credit of his
papers [6, 3]. On the other hand, author-level ranking uses the authors’ citation net-
work to diffuse scientific credit to cited authors, thus the authors’ credit is directly
obtained [8, 2, 14]. While these two methods give origin to different networks (Fig-
ure 1), PageRank-like [7] methods are typically used to measure node importance
in both.

The score initialisation step creates a vector R that defines an initial score for
every node using a priori information. In the simplest case, every node (i.e., paper
or author) is considered equally important, thus an uniform distribution is used (i.e.,
R[i] = 1

N , where i is a node and N is the number of nodes in the network) [2, 9].
Approaches based on paper citation networks typically assign higher initial scores
to more recent papers [3] or favour a combination of recent papers and papers pub-
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Fig. 1 Comparison of paper-level and author-level networks.

lished in venues with higher impact factor [6]. Approaches based on author cita-
tion networks typically assign higher initial scores to authors that publish many
papers [14] or favour authors that publish many papers but with few co-authors [8].

The score diffusion step updates the node scores taking into consideration net-
work dynamics. Score diffusion is an iterative process which computes three ad-
dends: random restart, dangling nodes, and score term. Random restart (RR) eval-
uates how likely it is to reach a certain node by moving randomly in the network.
Graph-ranking algorithms define a value q as the random restart probability, and q is
multiplied by the node’s initial score R (thus, nodes with higher initialisation receive
higher random restart score). Dangling nodes (DN) is a process where the score of
nodes that do not have any out-links is split by all other nodes. This is performed to
avoid having nodes that do not disseminate their credit. Like random restart, this di-
vision takes into consideration the initialisation vector R, thus nodes initialised with
higher values give more credit to other nodes. Score term (ST ) updates the score of
a node i, according to the score of his in-links (i.e., nodes citing i). There are several
strategies to distribute this score, and the simplest ones simply take into consider-
ation the weight defined in the citation network (i.e., distribute the score evenly by
co-authors of the cited publication, e.g., if the papers has two authors, the score is
divided by the two authors, if it has three authors, the score is divided by the three
authors, thus, in the case of three authors, each author receives less credit than in the
case with just two authors) [8, 2, 14]. SCEAS [9] adds a constant value b to the ev-
ery score received by nodes and divides the total score received by another constant
a in order to make the algorithm converge faster. YetRank and NewRank [6, 3] take
into consideration the vector R in the score distribution (i.e., if a paper cites a paper
Pa from 2015 and another paper Pb from 2010, Pa receives a bigger chunk of the
score. In case of the YetRank, the distribution of score also takes into consideration
the impact factor of the venues where Pa and Pb where published, favouring papers
published in venues higher prestige.

Table 1 summarises state of the art graph-ranking methods and their differences.
One drawback of current graph-ranking approaches is that they assume that the

complete citation network is known. However, in real-world cases, it is not possible
to obtain a complete network. Let us consider an author-level citation network: to
rank a set of authors A, we extract all authors B that cite any Ai ∈A. Then, we
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Method Initialisation: RRR(((NNNiii))) Score term: ST (Ni)

A
ut

ho
r-

le
ve

l

RLPR [2]
1
|A|

(1−q) ∑
(Ai′ →Ai ,Pj )

S(Ai′ )×w(Ai′ →Ai ,Pj )
wout (Ai′ )

SARA [8]

∑

(Pj∈PAi
)

1
|APj

|

∑

(Ai′ ∈A)
∑

(Pj∈PAi′
)

1
|APj

|

ALEF [14]
|PAi |
|P|

SCEAS [9]
1
|A|

(1−q)
a ∑

(Ai′ →Ai ,Pj )

(S(Ai′ )+b)×w(Ai′ →Ai ,Pj )
wout (Ai′ )

Pa
pe

r-
le

ve
l

YetRank [6] v(Pi)× e
−δ (Pi)

τ

τ
(1−q) ∑

(Pi′ →Pi)

S(Pi′ )×R(Pi)
rout (Pi′ )

NewRank [3] e
−δ (Pi)

τ

Table 1 Comparison of state of the art methods. Ni represents a node in the network, i.e., Ni = Ai
in author-level networks, and Ni = Pi in paper-level networks. Score diffusion S(Ni) is equal to
ST (Ni)+RR(Ni)+DN(Ni). For all methods, RR(Ni) = q×R(Ni) and DN(Ni) = (1−q)×R(Ni),
thus we omit them from the table.

need to extract all authors C that cite any Bi ∈ B, to correctly determine the scores
of all Ai ∈A, i.e., Ci ∈ C does not cite Ai ∈A directly but he cites some Bi that
cites Ai, thus Ci cites Ai indirectly. Ideally, this should be performed until the com-
plete set of citations with seed A is obtained. Due to memory and time constraints,
current algorithms only obtain a sample of the full network but disregard that some
information was lost. As a result, current state of the art graph-ranking algorithms
are estimating scientific rankings based on incorrect information, i.e., authors in the
periphery are not being adequately taken into account since their citations are not in
the network. Although there is no ideal solution for this problem, one can be more
careful in estimating the rank of nodes in the periphery.

In this paper we put forward OTARIOS, a novel graph-ranking algorithm for au-
thors. OTARIOS uses the concept of outsiders to estimate the rank of nodes/authors
in the periphery and, thus, does not require the complete citation network. Fur-
thermore, OTARIOS efficiently combines node properties (i.e., statistics about the
authors’ publicatitons) with edge properties (i.e., statistics about the author’s cita-
tions), information that state of the art methods mostly disregard (Table 2).
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Publications Citations Limited Info.Method Volume Recency Venues Individuality Recency Venues
RLPR 3
SARA 3 3
ALEF 3* 3
SCEAS 3
YetRank 3 3 3
NewRank 3 3
OTARIOS 3 3 3 3 3 3 3

Table 2 Comparison of state of the art methods with OTARIOS. OTARIOS tries to combine all
criteria efficiently and is also the only method that adequately deals with networks with limited
information by using insiders/outsiders subnetworks.
*ALEF gives higher score to authors with many publications but ignores the number of authors in the publications.

3 Methodology

3.1 Problem Description

Fig. 2 Example of insiders and outsiders subnetworks. Insiders are nodes/authors coloured in black
and outsiders are coloured in blue. Note that no links between outsiders exists (dashed red lines).
Furthermore, no information exists of outsiders that do not cite any insiders (coloured in red).

We propose a new author-level graph-ranking methodology. We assume that we
want to rank a specific set of authors I (e.g., authors that publish in certain con-
ferences, or in certain countries). First, we obtain all citations between all authors
Ii, Ii′ ∈ I (i.e., we obtain a complete citation network for I). Second, for each author
Ii, we obtain all of his received citations coming from any author Oi 6∈ I. The pro-
cess stops here, i.e., we do not obtain all received citations for authors Oi ∈O. Doing
so repeatedly is very costly computationally and unfeasible in practice because the
number of authors added at each step grows very rapidly.

We thus divide the citation network into two groups of nodes: insiders (I) and
outsiders (O) (Figure 2). Thus, the whole set of authors A = {I,O}. Moreover, I∩
O= /0 since no outsider can also be an insider, and vice-versa. With respect to edges
in the network, there are edges between insiders or from an outsider to an insider, but
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no edges exist from insiders to outsiders nor between outsiders (i.e.,¬∃(Ai′ → Ai ∈
E) : Ai ∈ O). The set of edges connecting insiders is represented as EI and the set
of edges connecting outsiders to insiders is represented as EO, thus, E = {EI,EO}.

We aim to estimate the prestige of insiders (i.e., obtain a rank). We do not rank
outsiders, instead we use them to increase the accuracy of ranks calculated for in-
siders. Information about the outsiders is limited (i.e., we do not have information
about who cites them) but we assume that some outsiders are more important than
others. We estimate outsiders’ prestige (λ ) before insiders rank initialisation. We
use the outsiders’ history of publications, giving higher prestige to authors with
many citations (c(Ai)) in few publications (p(Ai)) (Equation 7). Our objective is to
increase the initial rank of insiders that are cited by outsiders with high prestige.

λ (Ai) =
c(Ai)

p(Ai)
(7)

3.2 OTARIOS

OTARIOS is a graph-based algorithm for author-level citation networks. Its aim is
to rank authors based on their publication and citation history. OTARIOS uses the
notion of insider/outsider subnetworks to adequately estimate authors scores in a
network with limitation information. Furthermore, OTARIOS is a flexible algorithm
that analyses which set of publication/citation attributes lead to better rankings.

On the first step, OTARIOS computes an initial score for each author, represented
by R(Ai). OTARIOS calculates R(Ai) by taking into account multiple criteria that
favour different author characteristics (Table 3). We divide the criteria into two cat-
egories: productivity and outsiders influence. Productivity gives credit to authors
considering the value of their previously published work, while outsider influence
gives credit to authors considering the value of the outsiders that cite them. Re-
garding productivity, OTARIOS takes three factors into account: volume (i.e., the
amount of papers the author published in function of the number of co-authors),
recency (i.e., the number of years since the author’s last publication) and venues
(i.e., the prestige of the venues where the author has published). Regarding out-
siders influence, OTARIOS takes another three factors into account: individuality
(i.e., exclusiveness of citations received), recency (i.e., how recent the author’s ci-
tations are) and venues (i.e., the prestige of the venues where the author’s citations
come from). We compute the author’s initial score R(Ai) as the sum of the two prod-
ucts of the factors in each group (i.e., productivity (volume× recency× venues) +
outsiders influence (individuality× recency× venues)).

On the second step, OTARIOS computes the rank scores in an iterative process.
At this step outsiders are not considered part of the network. We remove them from
the network since their presence degrades the score diffusion step, as we discuss
and evaluate in the results section. In each iteration, OTARIOS updates an author’s
score S(Ai) as ST (Ai)+RR(Ai)+DN(Ai). Like state of the art methods, we com-
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Criteria Initialisation: RRR(((AAAiii))) Description

Pr
od

uc
tiv

ity
Volume (P)

∑
(Pj∈PAi

)

1
|APj

|

∑
(Ai′ ∈A)

∑
(Pj∈PAi′

)

1
|APj

|
Favours publishing many pa-
pers with few co-authors.

Recency (A) e
−δ (Ai)

τ Favours publishing recently.

Venues (V)
(

∑
(Pj∈PAi )

v(Pj)
)
×|PAi |−1 Favours publishing in presti-

gious venues.

O
ut

si
de

rs
In

flu
en

ce Individuality (W) ∑
(Ai′→Ai,Pj)

λ (Ai′ )×w(Ai′→Ai,Pj)

wout (Ai′ )
,Ai′ ∈O Favours being cited by out-

siders that cite few authors.

Recency (A) ∑
(Ai′→Ai,Pj)

λ (Ai′ )×a(Ai′→Ai,Pj)

aout (Ai′ )
,Ai′ ∈O Favours being cited by out-

siders more recently.

Venues (V) ∑
(Ai′→Ai,Pj)

λ (Ai′ )×v(Ai′→Ai,Pj)

vout (Ai′ )
,Ai′ ∈O Favours being cited by out-

siders in prestigious venues.

Table 3 List of criteria used for OTARIOS’ author rank initialisation: R(Ai). OTARIOS considers
both the authors’ productivity and the direct influence of outsiders on the authors. We use different
combinations of these criteria to create different variants, e.g., OTARIOS(PV +V ), or simply PV +
V for brevity, uses volume (P) and venue prestige (V) to measure author productivity, and uses
venue prestige (V) to measure the direct influence of outsiders.

pute RR(Ai) and DN(Ai) in function of the initial rank of each author, and compute
ST (Ai) in function of the author’s citations coming from other authors (Table 1).
Similar to how outsiders influence is calculated in the rank initialisation step, OTAR-
IOS considers three different criteria to assess insiders influence (i.e., score term):
individuality, recency and venues (Table 4). Like for rank initialisation, the ST (Ai)
at each iteration is the product of every criteria.

Here we do not assume that every criteria is equally important and that they
should all be used for author ranking. The criteria’s importance depends greatly
on the dataset. For instance, venue prestige might be very important to rank some
communities (i.e., top authors publish in top conferences of that scientific area, e.g.,
machine learning) but irrelevant in some other community because we are study-
ing a specific conference (i.e., all authors published in the same venue, e.g., KDD).
OTARIOS is not a single static algorithm, instead it is a flexible algorithm that uses
different user-defined criteria for author ranking. For example, for a certain appli-
cation, we may want to rank authors taking into account productivity with recency,
outsiders influence with venues and individuality, and score term with venues. While
for another application we may want to give credit only based on citations (i.e., dis-
regarding author publications) and use a variant that only considers outsider influ-
ence using recency and score term using venues 1.

1 Note that we define variants using notation APV +AVW +AVW , where the addends define the
criteria used at each group. The first for productivity, the second for outsiders influence and the last



10 J. Silva et al.

Criteria Score term: SSSTTT (((AAAiii))) Description

Individuality (W) ∑
(Ai′→Ai,Pj)

S(Ai′ )×w(Ai′→Ai,Pj)

wout (Ai′ )
,Ai′ ∈ I Favours being cited by insid-

ers that cite few authors.

Recency (A) ∑
(Ai′→Ai,Pj)

S(Ai′ )×a(Ai′→Ai,Pj)

aout (Ai′ )
,Ai′ ∈ I Favours being cited by insid-

ers more recently.

Venues (V) ∑
(Ai′→Ai,Pj)

S(Ai′ )×v(Ai′→Ai,Pj)

vout (Ai′ )
,Ai′ ∈ I Favours being cited by insid-

ers in prestigious venues.

Table 4 List of criteria used for OTARIOS’ author score term calculation: ST (Ai). Combined with
author initialisation (Table 3), we create different variants, e.g., PV+V+A combines initialisation
PV+V with score term calculation A, i.e., using citation recency. Like state of the art methods,
S(Ai) = ST (Ai)+RR(Ai)+DN(Ai). RR(Ai) and DN(Ai) are calculated as described in Table 1.

4 Results

We compare OTARIOS against state of the art methods over five created networks,
each consisting of top-tier conferences in computer science (Table 5). For each net-
work, we created a ground truth ranking using the best paper award information
for every conference 2. Each awarded paper has a unit of prestige which is equally
divided by its authors. In the end, the final author-ranking consists of the sum of
the prestige obtained from the awards. As a result, we are assuming that authors
that have won more awards with fewer co-authors should be ranked higher in our
experiments.

Network Conferences Nodes Edges
|I| |O| |EI| |EO|

CM AAAI, IJCAI, ICML, ACL, ICCV, CVPR 35.6k 224.9k 4.6M 4.9M
TC FOCS, SODA, STOC 5.0k 82.4k 0.5M 0.8M
NET INFOCOM, NSDI, SIGCOMM, MOBICOM, SIGMETRICS 15.2k 138.8k 2.1M 3.7M
IS KDD, CIKM, PODS, SIGMOD, VLDB, WWW, SIGIR 282.7k 190.9k 4.0M 5.1M
SE PLDI, FSE, ICSE, OSDI, SOSP 10.8k 99.9k 1.0M 2.1M

Table 5 Set of networks used for experimental evaluation. Data was taken from [11, 10]. The full
DBLP dataset contains over 3M publications from 1936 to 2018. Each network contains publica-
tions from only a set of conferences, e.g., networks TC contains publications from FOCS, SODA
and STOC. For each network we show the number of insider and outsider nodes, |I| and |O|
respectively, and the number of insider and outsider edges, |EI| and |EO| respectively.

In our experiment, methods that produce rankings more similar to the ground
truth one (obtained by human judgement) are better. For the purpose, for every net-

for score term. For the first example on the text, the variant nomenclature is A+VW +V , while for
the second it is /0+A+V .
2 Awards information obtained from: https://jeffhuang.com/best_paper_awards.
html



Optimizing author ranking with OTARIOS 11

work and method, we compare the method’s predicted ranking with the network’s
ground truth using two commonly used ranking quality measures: Normalized Dis-
counted Cumulative Gain (NDCG) and Mean Reciprocal Rank (MRR). NDCG pe-
nalises predicted rankings that rank less prestigious authors above more prestigious
ones 3, while MRR is the mean predicted ranking position for a set of authors. Com-
monly, both measures are estimated considering only the top @n authors. In the case
of NDCG, it estimates the number of incorrect ranking placements at the top @n au-
thors from the predicted ranking. The NDCG values range between 0 and 1, with
1 indicating a perfect ranking (i.e. all the authors have an higher or equal ground
truth prestige than all the others above them). On the other hand, MRR estimates
the mean predicted rank for the top @n authors from the ground truth, thus lower
MRR values imply a better predicted ranking since the top authors are on average
closer to the top.

For a more detailed analysis of our tests, we estimated both metrics considering
different sizes of top authors (@5,@10,@20,@50,@100). Table 6 shows the re-
sults obtained for some of the OTARIOS variants in the network NET. The results
demonstrate the process of tuning the OTARIOS criteria in order to find the variant
that yields the best results. For the NET network our best variant (with an average
of 0.330 NDCG and an average of 606 MRR) used productivity with recency and
volume, outsiders influence with recency, and score term with recency and individ-
uality.

OTARIOS NDCG MRR
variant @5 @10 @20 @50 @100 Mean @5 @10 @20 @50 @100 Mean
/0 + A + /0 0.269 0.233 0.207 0.186 0.174 0.214 443 1125 903 1526 2066 1213
/0 + V + /0 0.269 0.233 0.207 0.186 0.185 0.216 412 1108 916 1522 2096 1211
/0 + AV + /0 0.269 0.233 0.207 0.186 0.177 0.215 419 1109 902 1511 2074 1203
AP + A + /0 0.288 0.246 0.259 0.218 0.241 0.250 350 500 440 1121 1502 783
AP + V + /0 0.288 0.246 0.258 0.218 0.239 0.250 344 489 439 1134 1527 787
AP + AV + /0 0.288 0.246 0.259 0.218 0.240 0.250 345 494 439 1143 1523 789
AP + A + A 0.380 0.297 0.283 0.282 0.280 0.304 385 647 472 1111 1416 806
AP + A + V 0.350 0.261 0.217 0.203 0.203 0.247 255 726 617 1251 1615 893
AP + A + AV 0.407 0.345 0.291 0.291 0.274 0.322 242 614 473 1116 1455 780
AP + A + AW 0.381 0.369 0.313 0.302 0.288 0.330 219 386 328 879 1219 606
Table 6 Comparison of OTARIOS variants on network NET (from Table 5). For each OTARIOS
variant, we measure its ranking’s NDCG and MRR for the top-5, top-10, top-20, top-50 and top-
100 authors, as well as the metric’s mean value. In bold we highlight the highest score for each
metric. The best OTARIOS variant is coloured in blue.

3 The prestige of an author is determined from the ground truth.
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existem outro tipo de analises mais detalhadas que podemos fazer mas que
nao ha espaco, Por exemplo analisar o melhor metodo por conferencia so ol-
hando para o SOA e focar a importancia de em algumas redes escolher como
criterio a idade, noutras venues etc... Depois defender que no meio desta in-
certeza toda, os nossos metodos foram mais robustos etc...

We compared OTARIOS with the state of the art algorithms discussed in Sec-
tion 2.2 and a baseline method. Commonly, ranking algorithms compare themselves
against the h-index metric. However, in our case, we are using information from the
DBLP dataset which does not provide this information. Moreover, we have more
than 300k different authors meaning that it is impossible to collect this information
for all the authors. As a result we used CountRank (CR) as baseline. This method
is a simpler version of the h-index that counts the citations received by each author.
We created three CR variants: uniform, individuality and position. For each citation
received, uniform assigns the same merit to all of the authors in publication (1), indi-
viduality equally divides the merit for all the authors ( 1

|A| ), and position gives more
credit to authors which name appears first in the publication (first author: 1, second
author: 1

2 , third author: 1
3 , ...). Table 7 shows the results obtained for all the state of

the art methods and 5 OTARIOS variants over all networks. For each network, we
obtained the mean of both metrics (@5,@10,@20,@50and@100)). Furthermore,
we estimated the mean metric value obtained over all networks. The results demon-
strate that SCEAS is the best method state of the art method, obtaining a maximum
NDCG mean of 0.208 and a best MRR mean of 691. The CRposition method pre-
sented the worst mean for the NDCG (0.154), while NewRank obtained the worst
(by a high margin) MRR mean of 4091. Another important aspect to highlight is
that CRindividuality despite being a baseline strategy, produced the second best results
for NDCG and MRR.
mais uma vez, outras analises que podiamos fazer, mas para as quais nao
temos espao, era ver que metodos que usam recency parecem sem melhores
do que aqueles que usam venues para este problema e etc...

With respect to OTARIOS variants, we tested 53 variants and in total, 21 pro-
duced better MRR and NDCG results than the best state of the art method (SCEAS).
Our variants were able to obtain a best score of 0.246 NDCG mean and 567 MRR
mean. Our most robust variant in both metrics and the one that we consider our best
method (AP+A+AW), uses productivity with criteria recency and volume, outsiders
influence with recency and the score term with recency and individuality. This vari-
ant obtained a mean NDCG of 0.245 and a mean MRR of 570. We compared the
gain of this variant with respect to state of the art methods, using equations 8 and 9.
Compared to RLPR, a traditional PageRank algorithm applied to author citation net-
works, we obtained a gain of 28% for the NDCG mean and 27% for the MRR mean.
With respect to the best state of the art method, we improved the NDCG mean value
by 18% and the MRR mean by 21%.

GNDGC =
OTARIOS<NDGC>−STOA<NDGC>

min(OTARIOS<NDGC>,STOA<NDGC>)
(8)
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NDGC MRR
Method CM TC NET IS SE Mean CM TC NET IS SE Mean

St
at

e
of

th
e

ar
t

CRposition 0.097 0.049 0.189 0.176 0.261 0.154 1427 463 1009 892 324 823
YetRank 0.128 0.028 0.206 0.157 0.271 0.158 2083 673 1047 846 491 1028
ALEF 0.152 0.020 0.182 0.129 0.323 0.161 1260 561 670 803 310 721
CRuni f orm 0.138 0.045 0.278 0.189 0.222 0.174 1659 516 1066 1067 387 939
RLPR 0.180 0.032 0.231 0.176 0.338 0.191 1203 508 817 720 356 721
SARA 0.193 0.035 0.232 0.156 0.354 0.194 1122 461 738 668 303 658
NewRank 0.115 0.004 0.297 0.319 0.266 0.200 5057 3112 3597 6637 2050 4091
CRindividuality 0.129 0.043 0.247 0.211 0.372 0.200 1171 438 878 744 289 704
SCEAS 0.143 0.035 0.275 0.255 0.335 0.208 1154 493 776 752 279 691

O
TA

R
IO

S /0 + AVW + AW 0.143 0.081 0.323 0.213 0.315 0.215 1161 324 664 707 289 629
/0 + V + AW 0.148 0.080 0.321 0.214 0.314 0.215 1169 325 671 709 294 634
AP + VW + AW 0.150 0.087 0.330 0.268 0.383 0.244 1070 273 604 680 207 567
AV + VW + AW 0.143 0.085 0.356 0.264 0.383 0.246 1333 285 618 676 215 626
AP + A + AW 0.152 0.087 0.330 0.273 0.383 0.245 (+18%) 1079 272 606 688 207 570 (+21%)

Table 7 Comparison of state of the art (STOA) methods against OTARIOS over all networks. The
value of each cell is the metric’s mean value for that network (e.g., the mean NDCG and MRR of
AP+A+AW for network NET is highlighted in Table 6). In bold we highlight the highest score for
each metric. The best STOA method (i.e., SCEAS) is colored in red and the best OTARIOS variant
is colored in blue. Inside parentheses we show the gain of OTARIOS versus SCEAS, i.e., GNDGC
and GMRR, respectively.

GMRR =
STOA<MRR>−OTARIOS<MRR>

min(OTARIOS<MRR>,STOA<MRR>)
(9)

4.1 More is not always better

In our previous experiments, for the state of the art methods results, we only consid-
ered the author citation networks for the insiders authors (i.e. outsiders authors were
not part of the network). However, for the OTARIOS, since we require outsiders
for some of our criteria, we used a network consisting of insiders and outsiders. In
order to demonstrate that we were not unfairly comparing our variants with other
methods with less information, we tested their algorithms using the complete net-
work and compared the results with the ones obtained only on the insiders network.
Table 8 shows the results of this comparison 4. The results demonstrate that on av-
erage, the state of the art methods obtained a negative gain of −17% for NDCG
and −25% for MRR when using the complete network. The NewRank and SCEAS
methods were the ones that presented the worst gains (−54% and−30% on NDCG,
and −63% amd −37% on MRR). These methods were among the top state of the
art methods when considering only the insiders network, as a result the complete
network had a higher impact when compared to other methods that were already not
too good. The only method that presented an overall positive gain was the YetRank
one on the NDCG metric. However, this was a very small gain, and it came as no

4 Gains estimated using equations 8 and 9
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NDCG MRR
Method CM TC NET IS SE Mean CM TC NET IS SE Mean
SCEAS 0.144 0.036 0.275 0.255 0.335 0.209 1154 493 776 753 279 691
Fullnet SCEAS 0.106 0.024 0.224 0.198 0.250 0.160 1517 845 929 999 433 945
Gain -36% -51% -23% -29% -34% -30% -31% -71% -20% -33% -55% -37%
SARA 0.194 0.036 0.232 0.157 0.355 0.195 1123 461 739 668 303 659
Fullnet SARA 0.181 0.030 0.227 0.177 0.300 0.183 1146 602 885 719 408 752
Gain -7% -20% -2% +13% -18% -6% -2% -31% -20% -8% -35% -14%
RLPR 0.181 0.032 0.231 0.177 0.338 0.192 1203 508 817 721 357 721
Fullnet RLPR 0.174 0.027 0.227 0.162 0.276 0.173 1274 728 864 757 436 812
Gain -4% -18% -2% -9% -22% -11% -6% -43% -6% -5% -22% -13%
ALEF 0.152 0.021 0.183 0.130 0.323 0.162 1261 561 670 804 310 721
Fullnet ALEF 0.125 0.024 0.203 0.151 0.299 0.160 1373 608 930 735 432 816
Gain -22% +13% +11% +16% -8% -1% -9% -8% -39% +9% -39% -13%
NewRank 0.116 0.004 0.297 0.320 0.267 0.201 5057 3113 3598 6638 2050 4091
Fullnet NewRank 0.089 0.020 0.180 0.191 0.170 0.130 11277 6951 6877 6541 1651 6659
Gain -29% +381% -66% -68% -57% -54% -123% -123% -91% +1% +24% -63%
YetRank 0.128 0.028 0.206 0.158 0.272 0.158 2084 673 1048 846 492 1029
Fullnet YetRank 0.157 0.029 0.224 0.149 0.259 0.163 2031 874 1200 836 561 1101
Gain +22% +1% +9% -6% -5% +3% +3% -30% -15% +1% -14% -7%

Table 8 Gain of using outsiders as part of the network in the score diffusion step. The fullnet
versions incorporate outsiders in the network, i.e., they convert outsiders in insiders. Note that
OTARIOS does not use outsiders as part of the network in the score diffusion step, only in the
initialisation step. The mean of both NDCG and MRR is highlighted, showing that, overall, STOA
methods’ performance degrades when they use outsiders as insiders.

surprise due to the fact that it presented the worst results in the insiders network.
This test demonstrated that adding incomplete information to the citation network
(authors whose received citations are unknown), decreases the author rankings if
this information is considered on the score diffusion process.

4.2 Which criteria are more important?

In order to understand which criteria are more important to create more accurate
OTARIOS variants, we analysed the top variants for the NDCG metric. Table 9
shows the criteria considered in the top 20 OTARIOS variants. The results demon-
strate that the best variants use a combination of productivity, outsiders influence
and score term. Only

5 Conclusions

Here we put forward OTARIOS, a new graph-ranking algorithm to measure authors’
scientific impact. Previous graph-ranking algorithms did not combine relevant in-
formation effectively, such as the author’s productivity and the citations’ relevance.
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A
PProductivity
W
A
VOutsiders Influence
W
A
VScore Term
W

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Table 9 Criteria considered on the top 20 OTARIOS variants on the NDCG metric. The rows
represent different criteria and the columns the variants that ranked at position n. The blue colour
in a column indicates that the criteria is considered on the variant, while the red colour indicates
its absence.

Furthermore, previous methods assume that the full network is known, which is not
true for most real cases. We thus divided the network into insiders (i.e., the authors
that we want to rank) and outsiders (i.e., the authors that cite insiders but we do
not rank). In our experiments, we analysed which publication/citation information
is more relevant and how it can be efficiently combined.

We obtained the best results when OTARIOS considers (i) the author’s publica-
tion volume and publication recency, (ii) how recently his work is being cited by
outsiders, and (iii) how recently his work is being cited by insiders and how indi-
vidual his work is (i.e., publishing with few authors is better). This evaluation was
performed on a set of five networks where the ground-truth was the number of best
awards in the conferences belonging to the specific network. Our tests showed that
OTARIOS is ≈ 20% more efficient than the best state of the art method (SCEAS)
and≈ 30% more efficient than traditional PageRank (RLPR). We demonstrated that
OTARIOS efficiently uses outsiders (i.e., authors whose received citations are not
fully known) on the score initialisation process. Furthermore, we showed that adding
outsiders to the score diffusion process decreases the performance of state of the art
algorithms. These results indicate that current methods have poor results on net-
works where some nodes have missing information (which is true for most real
cases), while OTARIOS is able to use nodes with limited information adequately.

Finally, regarding future work, we plan to test OTARIOS on paper-level citations
and verify that we are also capable of improving that approach from the state of
the art. Furthermore, we plan to develop a method to automatically identify out-
siders (e.g., insiders with low density in the citation network, or insiders with low
co-authorship ratio to other insiders) and analyse if this strategy improves author-
ranking.
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