
A Scalable Parallel Approach for

Subgraph Census Computation

David Aparicio, Pedro Paredes, Pedro Ribeiro
{daparicio, pparedes, pribeiro}@dcc.fc.up.pt

CRACS & INESC-TEC, Faculdade de Ciencias, Universidade do Porto
R. Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

Abstract. Counting the occurrences of small subgraphs in large net-
works is a fundamental graph mining metric with several possible ap-
plications. Computing frequencies of those subgraphs is also known as
the subgraph census problem, which is a computationally hard task. In
this paper we provide a parallel multicore algorithm for this purpose. At
its core we use FaSE, an efficient network-centric sequential subgraph
census algorithm, which is able to substantially decrease the number of
isomorphism tests needed when compared to past approaches. We use
one thread per core and employ a dynamic load balancing scheme capa-
ble of dealing with the highly unbalanced search tree induced by FaSE
and effectively redistributing work during execution. We assessed the
scalability of our algorithm on a varied set of representative networks
and achieved near linear speedup up to 32 cores while obtaining a high
efficiency for the total 64 cores of our machine.

Keywords: Graph Mining, Subgraph Census, Parallelism, Multicores

1 Introduction

Graphs are a flexible and powerful abstraction of many real-life systems. An
essential graph mining primitive is to compute the frequency of small subgraphs
in large networks. This is known as the subgraph census problem, and lies at the
core of several graph mining methodologies, such as network motifs discovery [6]
or graphlet based metrics [8]. Counting subgraphs is, however, a computation-

ally hard task, closely related to subgraph isomorphism, a classical NP-Complete
problem . This implies that the execution time grows exponentially with the size
of the network or the subgraphs being analyzed. Speeding up this computation
would have a significant and broad impact, making new size limits computation-
ally feasible, hence leading to a new insight on the networks.

Subgraph census algorithms generally follow one of three different paradigms;
network-centric algorithms, such as ESU [16], compute the frequency of all sub-
graphs with a certain number of nodes and then verify the type of each subgraph.
By contrast, subgraph-centric algorithms, such as the one by Grochow and Kel-
lis [3], compute the frequency of only one individual subgraph type at a time.
Set-centric approaches, such as g-tries as used in [9], are conceptually in the

middle and allow the user to compute the frequency of a customized set of sub-
graphs that can be larger than a single subgraph but at the same time smaller
than all possible subgraphs of a certain size.

Here we are mainly concerned with the network-centric approach. In partic-
ular, we focus on the FaSE algorithm which is one of the most efficient sequen-
tial alternatives for this conceptual approach to subgraph census [7]. The main
contribution of this paper is a scalable parallel version of FaSE geared towards
multicore architectures, which are nowadays ubiquitous, even on personal com-
puters, making them an ideal target for end users. Using an efficient dynamic
load balancing scheme our parallel algorithm is able to redistribute the work
contained in the highly unbalanced search tree produced by FaSE. We tested
our approach on a series of representative networks, obtaining very promising
results, with an almost linear speedup up to 32 cores and high efficiency for 64
cores. Sequential FaSE was already one or two orders of magnitude faster than
state-of-the-art algorithms and so our parallel version constitutes, to the best of
our knowledge, the fastest multicore network-centric algorithm.

The remainder of this paper is organized as follows. Section 2 formalizes the
problem and describes related work. Section 3 gives an overview of the sequential
FaSE algorithm. Section 4 details our parallel approach, while section 5 shows
our experimental results. Finally, section 6 sums up the presented work and gives
some possible directions for future research.

2 The Subgraph Census Problem

This section details more formally the problem tackled in this paper.

Definition 1 (Subgraph Census Problem) Given an integer k and a graph

G, determine the frequency of all connected induced subgraphs of size k in G.

Two occurrences of a subgraph are considered different if they have at least one

node that they do not share.

As previously stated, this metric plays a central role in several graph mining
methodologies. For instance, a network motif is defined as a statistically overrep-

resented subgraph, that is, a subgraph that appears more times than what would
be expected [6]. In practice, this means that the census must be computed both
on the original network and on an ensemble of randomized networks [10].

2.1 Related Work

There are several existing sequential algorithms for the subgraph and classical
examples are ESU [16] and Kavosh [4]. They are conceptually similar, both be-
ing network-centric and enumerating all possible subsets of k connected nodes,
relying on a third-party algorithm (nauty1) to identify the associated subgraph

1
http://cs.anu.edu.au/~bdm/nauty/

type. This means that each subgraph occurrence implies an individual isomor-
phism test. NetMODE augments this approach by considering very small subgraph
sizes and either caching isomorphism tests or building fast specialized heuristics
for a particular subgraph size. QuateXelero [5] and our own work with FaSE [7]
are two very recent algorithms which offer a different improvement by avoiding
the need to do one isomorphism test per occurrence. To that end, they both
encapsulate the topology of the subgraphs being enumerated on an auxiliary
data-structure (a quaternary tree in the case of QuateXelero, and a g-trie in
the case of FaSE). Other algorithms are either subgraph-centric, such as the
work by Grochow and Kellis [3] or set-centric, such as gtrieScanner [9]. Here
we concentrate on the network-centric approach and use FaSE as the basis for
our parallel algorithm.

Regarding parallel approaches, there are less alternatives. We provided a dis-
tributed memory approach for both ESU [12] and g-tries [11], using MPI. This
work stands out because it is aimed at shared memory environments with multi-
ple cores. A shared memory parallelization of the set-centric g-trie methodology
was also presented in [2]. This work diverges in its base sequential algorithm
and uses a different conceptual approach. Another parallel algorithm is given by
Wang et al [15]; however, they employ a static pre-division of work and provide
very limited experimental results while our approach dynamically balances load
by redistributing work during the computation and perform a more detailed scal-
ability analysis. Afrati et al. [1] provide a parallel map-reduce subgraph-centric
approach, from which we differ in both the target platform and the algorithmic
methodology. For more specific subgraph types there are other parallel alterna-
tives such as Fascia [14] (a multicore subgraph-centric method for approximate
count of non-induced tree-like subgraphs) or Sahad [17] (a Hadoop subgraph-
centric method for tree subgraphs), but here we aim towards generality and all
possible subgraph types.

3 Sequential FaSE Algorithm

As previously said, FaSE follows a network-centric paradigm. However, contrar-
ily to what previous approaches did, FaSE does not withhold the isomorphism
tests until the end of the enumeration. Instead, it partitions the subgraphs into
intermediate classes during the enumeration process. The only requisite is that
if two subgraphs pertain to the same intermediate class they are isomorphic.
Thus, a single isomorphism test per intermediate class is needed, contrasting to
previous methods that required one per enumerated subgraph. This results in a
major speedup when comparing with past approaches, since the number of inter-
mediate classes will be much smaller than the number of subgraph occurrences,
which is corroborated by the experimental results.

In practice the algorithm uses two main concepts: an enumeration process
and a tree that stores the information of both the intermediate classes and the
subgraphs being enumerated. The enumeration process simply iterates through
each subgraph occurrence and can be performed using any existing methods,

provided it works by incrementally growing a set of connected vertices that par-
tially represents the current subgraph. Furthermore, a tree is used to encapsulate
the topological features of the enumerating subgraphs. It does so by generating
a new label, using a generic operation called LS-Labeling, which represents the
information introduced by each newly added vertex and uses it to describe an
edge in a tree. This effectively partitions the set of subgraphs into the mentioned
intermediate classes. This entire process is summarized in Algorithm 1.

Algorithm 1 The FaSE Algorithm

Input: A graph G, a g-trie T and a subgraph size k

Result: Frequencies of all k-subgraphs of G

1: procedure FaSE(G, T, k)
2: T ← ∅
3: for all vertex v of G do

4: enumerate({v}, {u ∈ N(v) : u > v}, T.root)

5: for all l in T.leaves() do
6: frequency[canonicalLabel(l.Graph)] += l.count

7: procedure enumerate(Vs, Vext, current)
8: if |Vs| = k then

9: current.count++

10: else

11: for all vertex v in Vext do

12: V ′
ext ← Vext ∪ {u ∈ Nexc(v, Vs) : u > Vs[0]}

13: V ′
s ← Vs ∪ {v}

14: current′ ← current.Child(LSLabel(Vs))
15: enumerate(V ′

s , V
′
ext, current

′)

3.1 Enumeration

As mentioned above, the enumeration process can be done by any algorithm
that grows a set of connected vertices. The reason to enforce so is to allow the
creation of a label describing the addition of the vertex and hence partition the
subgraphs set. The previously mentioned ESU [16] and Kavosh [4] algorithms fit
this constraint and since they present similar execution time, both would be a
good choice to integrate into FaSE. In our implementation we opted to use ESU,
which we will now describe in more detail.

It essentially works by enumerating all size k subgraphs only once. It does
so by keeping two ordered sets of vertices: Vs and Vext. The former represents
the partial subgraph that is currently being enumerated as a set of connected
vertices. The latter represents the set of vertices that can be added to Vs as a
valid extension. To begin, it takes each vertex v in the network sets Vs = {v}
and Vext = N(v), where N(v) are the neighbors of v (lines 3 and 4). Then, one
element u of Vext is removed at a time, and a recursive call is made adding u to
Vs and each element in Nexc(u, Vs) with label greater than Vs[0] to Vext (lines 12
and 13). Nexc(u, Vs) are the exclusive neighbors, that is they are the neighbors of
u that are not neighbors of Vs. This, along with the condition u > Vs[0], ensure

that there is no subgraph enumerated twice. When the size of Vs reaches k it
means that Vs constitutes a new occurrence of a size k subgraph (line 8).

3.2 Using a Tree to Encapsulate Isomorphism Information

The enumeration step is wrapped by a data structure that stores information
of the subgraphs being enumerated in order to divide them into intermediate
classes. The conditions set on the behavior of the enumeration algorithm allow
for the use of a tree, as previously described. This tree, which is called a g-trie,
represents a different intermediate class in each node. When adding a new vertex
to the current subgraph, a new label is generated describing its relation to the
previously added vertices. This label will govern the edges in the tree, that is,
each edge is represented by a label generated by a vertex addition.

Label generation in each step is done by using a generic process called
LS-Labeling which deterministically partitions the different subgraphs into iso-
morphic classes. Additionally, it is required that it runs in polynomial time, as
otherwise it would be pointless to use the actual tree since we could simply use
the labeling as the isomorphism test. Thus there is a trade off between time spent
in creating the label and time spent enumerating and running isomorphism tests
on subgraphs. In this paper we use an adjacency list labeling, which generates a
label corresponding to an ordered list of at most k− 1 integers where each value
i (0 < i < k) is present if there is a connection from the new vertex to the i-th
added vertex. More details on this can be found in the original FaSE paper [7].

Figure 1 summarizes the FaSE algorithm. The tree on the left represents the
implicit recursion tree ESU creates. Note that it is naturally skewed towards the
left. This is an important fact that justifies why, as we will see later, we need to
redistribute work in the parallel version of the algorithm. The induced g-trie on
the right is a visual representation of the actual g-trie that FaSE creates.

Fig. 1: Summary of the enumeration and encapsulation steps of FaSE.

4 Parallel FaSE Algorithm

A main characteristic of our sequential algorithm is that it generates indepen-
dent branches. Each Vs and Vext pair can thus be regarded as a work unit and,
along with the position in the g-trie, are sufficient to resume computation. At
the start, Vs corresponds to each single node in the network and Vext to its
neighbors with higher index. As we have seen before, this distribution is intrin-
sically unbalanced since it places bigger restrictions on higher indexed nodes.
Furthermore, in the subgraph census problem, a few vertices, such as hubs, may
have most of the computing time while others are much lighter in comparison.
In our work we developed a strategy to efficiently distribute these work units
among the computing resources.

We decided to use one central g-trie, as opposed to one g-trie per thread.
While this option leads to contention when accessing the g-trie, it saves memory
and removes the redundant work caused by multiple threads creating their own
g-trie, with most connections being common for every thread. A major factor
for the efficiency of the sequential algorithm is that it does not create a queue of
work units, and instead implicitly stores them in the recursive stack. To achieve
the best efficiency we kept this characteristic in our parallel approach.

Our target platforms are multicore architectures, given their ubiquity and
ease of access for end users. Our implementation was done using Pthreads, which
are supported by all major operating systems.

4.1 Overall View

The algorithm starts by dividing the vertices evenly between the threads, with
one thread per core. All threads do the enumeration process separately, using
their respective Vs and Vext. If a thread arrives at a new type of node it updates
the g-trie. All threads see this change and do not need to update the g-trie if the
node is found again. When a thread P finishes its initially assigned work units
it sends a work request to an active thread Q. Thread Q stops its computation,
builds a work tree corresponding to its current state, gives half of the work to
P and informs it that it can resume work. Both threads execute their respective
portion starting at the bottom of the work tree so that only one Vs is needed for
a given point of sharing, exploiting graph sub-topology between g-trie’s ancestor
and descendant nodes. After the enumeration phase is completed, the resulting
leafs are split between the threads and isomorphism tests are performed to as-
sert to which subgraph type each leaf corresponds to. In the end, the subgraph
frequencies computed by all threads are aggregated.

4.2 Parallel Subgraph Frequency Counting

Algorithm 2 details our parallel FaSE algorithm. The graph G, the g-trie T and
the subgraph size k are global variables, while current is a pointer to the g-
trie location and is local for each thread. Computation starts with an initially
empty g-trie (line 2) and work queues (line 3) for every thread. The condition in

Algorithm 2 The Parallel FaSE Algorithm

Input: A graph G, a G-Trie T and a subgraph size k

Result: Frequencies of all k-subgraphs of G

1: procedure ParallelFaSE(G, T, k)
2: T ← ∅
3: W ← ∅
4: i, j ← threadid
5: while i ≤ |V (G)| do
6: v ← V (G)i
7: if workRequest(P) then
8: W.addWork()
9: (WQ,WP)← splitWork(W)
10: giveWork(WP , P)
11: resumeWork(WQ)

12: enumerate({v}, {u ∈ N(v) : u > v}, T.root)
13: i← i+ numthreads

14: while j ≤ |T.leaves()| do
15: l← T.leaves()j
16: frequency[canonicalLabel(l.Graph)] += l.count

17: j ← j + numthreads

line 12 of Algorithm 1, u > Vs[0], makes vertices with a smaller index probably
computationally heavier than higher indexed vertices. For that reason, network
vertices are split in a round-robin fashion, giving all threads |V (G)|/numthreads

top vertices to initially explore (lines 4 to 6 and 13). This division is not nec-
essarily balanced but finding the best possible division is as computationally
heavy as the census itself. If a thread does not receive a work request it does
the enumeration process starting at each of its assigned vertices (line 12). The
enumerate() procedure is very similar to the sequential version but with Vs and
Vext now being thread local and the count variable becoming an array indexing
threads, i.e. count[threadid], in each leaf. Another relevant difference is that,
when a new node in the g-trie needs to be created, its parent node has to be
locked before creation. This is done to ensure that the same node is not created
by multiple threads. Regarding work distribution, when a thread Q receives a
work request from P , it needs to stop its computation, add the remaining work
to W (line 8), split the work (line 9), give half of it to P (line 10) and resume its
computation (line 11). After the enumeration phase is finished, the leafs are also
distributed among the threads and isomorphism tests are performed to verify
the appropriate canonical type of each occurrence in parallel (lines 14 to 17).

4.3 Work Request

When a thread P has completed its assigned work it asks a random thread Q for
work. Random polling has been established as an efficient heuristic for dynamic
load balancing [13] and, furthermore, in our case predicting exactly how much
computation each active thread still has in its work tree can not be done without

a serious overhead. If Q sends some unprocessed work, then P computes the work
it was given. If Q did not have work to share, P tries asking another random
thread. When all threads are trying to get work and no more work units are left
to be computed, the enumeration phase ends.

4.4 Work Sharing

When a thread is computing and receives a work request, the execution is halted
and work sharing is performed. In Figure 2 we show a work tree of a thread Q
and its division with thread P . The work tree is built by the recursive calls to
addWork(). The squares represent Vused and the current position in the g-trie.
We only need the Vs of the deepest level since the parent g-trie nodes share the
same vertices. The dotted nodes are work-units still to be explored. Note that
these nodes are not stored in the g-trie, and they will be explored by the threads
after sharing is performed and are presented only to give a more accurate view
of the complete work tree generated by FaSE.

Fig. 2: The constructed work tree of a thread Q and its division when a work
request is received from thread P .

During work division, each thread is given a g-trie level, constituted by Vs,
Vused and the current g-trie position. In the given example, Q gets level 3 and 1
while P receives 2 and 4. The topmost level is fully split since that corresponds
to the initial division from lines 4 to 6 of Algorithm 2.

4.5 Work Resuming

When work is shared the threads need a mechanism to resume their computation
and that process is illustrates in Algorithm 3. The work levels are ordered from
top to bottom (lines 2 and 3) so that only one Vs is necessary. If a work request
is received, the general process of work sharing is performed (lines 4 to 8). No

Algorithm 3 Algorithm for resuming work after sharing is performed.

1: procedure resumeWork(W)
2: OrderByLowest(W)
3: for all level L of W do

4: if WorkRequest(P) then
5: (WQ,WP)← splitWork(W)
6: giveWork(WP , P)
7: resumeWork(WQ)
8: return

9: if L.depth = 0 then

10: for all vertex v of L.Vext do

11: enumerate({v}, {u ∈ N(v) : u > v}, T.root)

12: else

13: enumerate(L.Vs, L.Vext, L.current)

14: askForWork()

call to addWork() is necessary since the work was either added previously to W
before the current resumeWork() call or was added by the recursive addWork()
calls from enumerate(). If the level being computed is the root of the g-trie,
the top vertices are individually computed (lines 9 to 11), in the same manner
as line 12 of Algorithm 2. Otherwise, the stored values of Vs, Vused and current
are used to continue the previously halted computation (lines 12 and 13). If the
thread finishes its alloted work it asks for more work (line 14).

5 Experimental Results

Experimental results were gathered on a 64-core machine; its architecture con-
sists of four 16-core AMD Opteron 6376 processors at 2.3GHz with a total of
252GB of memory installed. Each 16-core processor is split in two banks of eight
cores, each with its own 6MB L3 cache. Each bank consists of sets of two cores
sharing a 2MB L2 and a 64KB L1 instruction cache. Every single core has a ded-
icated 16KB L1 data cache. The turbo boost functionality was disabled because
that would lead to inconsistent results by having executions with less cores run-
ning at an increased clock rate. All code was developed in C++11 and compiled
using gcc 4.8.2.

We used over a dozen real-world networks and present here the results for
a representative subset of them. In Table 1 a general view of the content and
dimension of the chosen seven networks is shown. To showcase the general scal-
ability of our algorithm, networks that vary in their field of application, their
use of edge direction and their dimension were chosen. To decide what k to use,
we simply opted for choosing one that gave a sufficiently large sequential time
for parallelism to be meaningful but not so large that it would take more than
a few hours to complete the computation.

Table 1: The set of seven different representative real networks used for our
parallel performance testing.

Network |V (G)| |E(G)| |E(G)|
|V (G)|

Directed Description Source

jazz 198 2,742 13.85 No Collaborations of jazz musicians [1]

polblogs 1,491 19,022 12.76 Yes Hyperlinks of politics weblogs [2]

netsc 1,589 2,742 1.73 No Network experiments co-authorship [2]

facebook 4,039 88,234 21.85 No Facebook friend circles [3]

company 8,497 6,724 0.79 Yes Media companies ownership [4]

astroph 18,772 198,050 10.55 No Astrophysics papers collaborations [3]

enron 36,692 367,662 10.02 Yes Email network [3]

Table 2: General execution information and results.

Network
Subgraph #Leafs #Subgraph Sequential #Threads: speedup

size found types found time (s) 8 16 32 64

jazz 6 3,113 112 295.95 6.75 14.86 29.92 49.74

polblogs 6 409,845 9,360 1,722.55 7.85 15.56 30.04 47.48

netsc 9 445,410 14,151 295.12 7.83 15.05 23.82 26.54

facebook 5 125 19 3,598.41 7.67 15.34 31.00 51.81

company 6 1,379 310 739.12 7.94 15.81 31.02 48.53

astroph 4 17 6 179.47 6.62 13.60 24.69 30.42

enron 4 17 6 1,370.46 7.70 13.32 25.44 35.85

To have the parallel version with one thread performing similarly to the
sequential algorithm, work queues were not artificially created. This choice lead
to a very small overhead (less than 5% for all tested cases) and, henceforth,
parallel execution with one thread will be referred to as the sequential time.

Our algorithm’s performance was evaluated up to 64 cores and results are
presented in Table 2. In that table, the size of the subgraphs being queried, along
with the number of g-trie leafs (the intermediate classes) and the actual number
of different subgraph types are shown. The sequential time and the obtained
speedups for 8, 16, 32 and 64 cores are also shown.

The results are promising and close to linear speedup up to 32 cores for ev-
ery case. Due to the machine’s architecture we did not achieve linear speedups
for 64 cores but still managed to obtain a high efficiency for 4 of the 7 cases.
Note that our algorithm performs worse in networks where many leafs need to
be created. This problems arises because an unique g-trie is used and must be
protected when a new node, leaf or label is inserted. Cases were found where
speedups were severely limited by this factor. On the other hand, using one g-
trie per thread would lead to much redundant work that would deteriorate our

1
Arenas: http://deim.urv.cat/~aarenas/data/welcome.htm

2
Mark Newman: http://www-personal.umich.edu/~mejn/netdata/

3
SNAP: http://snap.stanford.edu/data/

4
Pajek: http://vlado.fmf.uni-lj.si/pub/networks/data/

algorithm’s performance. Memory also becomes a concern when many threads
are used because each leaf has an array to store the frequencies. This limits the
size of the subgraphs and networks that can be run. Another problem related to
storing the frequencies in the g-trie is that it can sometimes lead to false shar-
ing since many threads could be updating the array at the same time. A better
option would be to instead have each thread keep an array of the frequencies
for each leaf but, since the g-trie is created during runtime, the total number of
leafs is not known and setting a unique id for each one would require resorting
to locks. Finally, it was observed that memory allocations became heavier when
more threads were used. Something that could be further explored is an efficient
pre-alocation of memory, where the threads would retrieve it when needed. Fur-
thermore, an adjacency matrix was used to represent the input network that,
while giving the best possible algorithmic complexity for verifying node connec-
tions, imposes a quadratic memory representation. Different memory allocators,
like jemalloc and tcmalloc, were tried but found no significant performance
improvement.

By comparison, we have previous work parallelizing a set-centric approach
with g-tries for multicore architectures [2] and obtained almost linear speedup for
every case we tested. Besides using a conceptually different base algorithm (here
we follow a network-centric algorithm). The main difference between the two
approaches is that, in [2], the g-trie was pre-created before subgraph counting,
removing the need to have locks when modifying the g-trie and making it possible
to have subgraph frequencies outside of the g-trie, thus eliminating false sharing.

6 Conclusion

In this paper we presented a scalable parallel algorithm for the subgraph cen-
sus problem. At the core or our method lies the FaSE algorithm, an efficient
network-centric sequential approach which is able to drastically reduce the num-
ber of isomorphism tests needed when comparing to previous approaches such
as ESU or Kavosh. FaSE induces a highly unbalanced search tree with indepen-
dent branches and we devised a dynamic load balancing scheme capable of an
efficient redistribution of work during execution time. We tested our algorithm
on a set of representative networks and we achieved an almost linear speedup
up to 32 cores and a high efficiency for the total 64 cores of our machine. To
the best of our knowledge, this constitutes the fastest available method for a
network-centric approach, allowing users to expand the limits of subgraph cen-
sus applicability, not only on more dedicated computing resources, but also on
their personal multicore machines.

In the near future it is our intention to explore a hybrid methodology capable
of mixing both shared and distributed memory approaches. We also intend to
carefully examine the possibility of using GPUs for computing a subgraph census.
Finally, on a more practical angle, we will use our method to analyze several data
sets, searching for new subgraph patterns that can lead to novel insight into the
structure of these real-life networks.

Acknowledgments
David Aparicio is funded by an FCT Scolarship Grant from the project Sibila
(NORTE-07-0124-FEDER-000059) financed by Fundo Europeu do Desenvolvi-
mento Regional (FEDER). Pedro Ribeiro is funded by an FCT Research Grant
(SFRH/BPD/81695/2011).

References

1. Afrati, F.N., Fotakis, D., Ullman, J.D.: Enumerating subgraph instances using
map-reduce. In: IEEE 29th International Conference on Data Engineering (ICDE).
pp. 62–73. IEEE CS, Los Alamitos, CA, USA (2013)

2. Aparicio, D., Ribeiro, P., Silva, F.: Parallel subgraph counting for multicore archi-
tectures. In: IEEE International Symposium on Parallel and Distributed Processing
with Applications. IEEE CS (August 2014)

3. Grochow, J., Kellis, M.: Network motif discovery using subgraph enumeration
and symmetry-breaking. Research in Computational Molecular Biology pp. 92–
106 (2007)

4. Kashani, Z., Ahrabian, H., Elahi, E., Nowzari-Dalini, A., Ansari, E., Asadi, S.,
Mohammadi, S., Schreiber, F., Masoudi-Nejad, A.: Kavosh: a new algorithm for
finding network motifs. BMC bioinformatics 10(1), 318 (2009)

5. Khakabimamaghani, S., Sharafuddin, I., Dichter, N.t., Koch, I., Masoudi-Nejad,
A.: Quatexelero: An accelerated exact network motif detection algorithm. PLoS
ONE 8(7), e68073 (07 2013)

6. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
Motifs: Simple Building Blocks of Complex Networks. Science 298(5594) (2002)

7. Paredes, P., Ribeiro, P.: Towards a faster network-centric subgraph census. In: Pro-
ceedings of the 2013 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining. pp. 264–271. ACM, NY, USA (2013)

8. Pržulj, N.: Biological network comparison using graphlet degree distribution. Bioin-
formatics 26(6), 853–854 (2010)

9. Ribeiro, P., Silva, F.: G-tries: a data structure for storing and finding subgraphs.
Data Mining and Knowledge Discovery 28, 337–377 (March 2014)

10. Ribeiro, P., Silva, F., Kaiser, M.: Strategies for network motifs discovery. In: IEEE
International Conference on e-Science. pp. 80–87. e-Science (2009)

11. Ribeiro, P., Silva, F., Lopes, L.: Efficient parallel subgraph counting using g-tries.
In: IEEE International Conference on Cluster Computing (Cluster). pp. 1559–1566.
IEEE CS (September 2010)

12. Ribeiro, P., Silva, F., Lopes, L.: Parallel discovery of network motifs. Journal of
Parallel and Distributed Computing 72, 144–154 (2012)

13. Sanders, P.: Asynchronous random polling dynamic load balancing. In: Algorithms
and Computation, pp. 37–48. Springer (1999)

14. Slota, G.M., Madduri, K.: Fast approximate subgraph counting and enumeration.
In: 42nd International Conference on Parallel Processing. pp. 210–219 (2013)

15. Wang, T., Touchman, J.W., Zhang, W., Suh, E.B., Xue, G.: A parallel algorithm for
extracting transcription regulatory network motifs. IEEE International Symposium
on Bioinformatics and Bioengineering pp. 193–200 (2005)

16. Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Transactions on
Computational Biology and Bioinformatics pp. 347–359 (2006)

17. Zhao, Z., Wang, G., Butt, A.R., Khan, M., Kumar, V.A., Marathe, M.V.: Sahad:
Subgraph analysis in massive networks using hadoop. Parallel and Distributed
Processing Symposium, International 0, 390–401 (2012)

