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Extending the Applicability of
Graphlets to Directed Networks

David Aparício, Pedro Ribeiro and Fernando Silva

Abstract—With recent advances in high-throughput cell biology the amount of cellular biological data has grown drastically. Such data is
often modeled as graphs (also called networks) and studying them can lead to new insights into molecule-level organization. A possible
way to understand their structure is by analysing the smaller components that constitute them, namely network motifs and graphlets.
Graphlets are particularly well suited to compare networks and to assess their level of similarity due to the rich topological information
that they offer but are almost always used as small undirected graphs of up to five nodes, thus limiting their applicability in directed
networks. However, a large set of interesting biological networks such as metabolic, cell signaling or transcriptional regulatory networks
are intrinsically directional, and using metrics that ignore edge direction may gravely hinder information extraction. Our main purpose in
this work is to extend the applicability of graphlets to directed networks by considering their edge direction, thus providing a powerful
basis for the analysis of directed biological networks. We tested our approach on two network sets, one composed of synthetic graphs
and another of real directed biological networks, and verified that they were more accurately grouped using directed graphlets than
undirected graphlets. It is also evident that directed graphlets offer substantially more topological information than simple graph metrics
such as degree distribution or reciprocity. However, enumerating graphlets in large networks is a computationally demanding task. Our
implementation addresses this concern by using a state-of-the-art data structure, the g-trie, which is able to greatly reduce the necessary
computation. We compared our tool to other state-of-the art methods and verified that it is the fastest general tool for graphlet counting.

Index Terms—Pattern matching, Network topology, Graph Algorithms, Graphs and Networks.
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1 INTRODUCTION

The advent of high-throughput cell biology technologies
such as DNA microarrays [1] increased the amount of data
pertaining to molecular interactions exponentially. While
this recent flood of information has greatly contributed to
a more accurate understanding of molecule-level organi-
zation, it has also created the need to find ways to filter
and model this data so that it is rendered intelligible to the
practitioner. In the field of computational biology different
types of cellular networks are modeled as graphs with
nodes representing specific biological components such as
proteins or genes, and the physical, chemical or functional
interactions between them modeled as edges.

Inspecting the graph’s topological features can yield
valuable information about the network. If a network has
topological features that are not expected to occur in neither
purely random nor purely regular graphs it is considered
to be a complex network, and most real-world networks
are found to be complex. Singular characteristics commonly
associated with complex networks include having a small-
world structure [2] or a degree distribution that follows
a power-law (scale-free networks) [3]. Brain networks, for
instance, have been identified as small-world networks [4],
meaning that each node (representing either a brain region
in mesoscale conectomes or a neuron in microscale connec-
tomes) is only a few connections away from any other node.
Furthermore, the distance of the average path length in the
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brain has been negatively correlated with a person’s IQ [5],
which seems to indicate the importance of a small-world
organization to networks’ efficiency. Other statistics such as
the number of connected components and the clustering co-
efficient are also frequently used to characterize a network.

Another approach to uncover the underlying structure of
complex networks is to decompose them into their smaller
components or subgraphs. Obtaining the frequency of each
type of subgraph offers detailed topological information
which can be used to summarize and compare networks.
Frequent subgraph mining (FSM) algorithms can identify
biological pathways prevalent in many species or common
fragments shared by distinct molecules [6]. The aim of FSM
is to find subgraphs that appear frequently in an ensemble
of networks; however, depending on the researcher’s goal,
it might be more insightful to discover subgraphs that are
overrepresented just on a single network. Network motifs are
small overrepresented subgraphs described by Milo et al. [7]
as the building blocks of large complex networks. Studies
such as the one by Prill et al. [8] support this view for bio-
logical networks and network motifs have since been used
to analyze a wide range of cellular biological networks such
as protein-protein interaction networks [9], transcriptional
regulatory networks [10], metabolism networks [11] or cell
signaling networks [12].

It is often useful to compare networks against each
other, particularly because if a given network’s properties
are known it allows for knowledge transfer based on the
similarity or difference between two networks. One way to
perform this comparison is to evaluate the similarity be-
tween the subgraphs that each network contains. Network
motif fingerprints [13] and graphlet-based metrics [14] are
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possible choices for this task. Both approaches compute the
frequency of a set of small non-isomorphic subgraphs (also
called subgraph census) but, in addition to that, graphlets
also evaluate the contribution of each individual node from
the network, producing a graphlet degree distribution that
can be seen as an extension of the node degree concept.
Furthermore, enumerating graphlets is computationally less
expensive than calculating network motifs since the sub-
graphs are only enumerated in the original network, as
opposed to also having to compute their occurrences in
a large set of random networks in order to assess motif
significance [15]. Graphlet-based metrics have been used
to analyze networks from various biological areas such
as protein-protein interaction [16], disease genes [17], age-
related genes [18] or brain networks [19] due to the great
amount of topological information that they provide [20].

Graphlet usage is often restricted to analyzing only the
set of 30 undirected graphs of up to five nodes originally
presented by [14] due to computational limitations. How-
ever, a substantial gain in topological information might
be attained by examining different sets of graphlets. One
possibility is to enumerate larger graphlets since, by defini-
tion, they capture more topological information about the
network’s structure than smaller graphlets, and this added
information might be valuable. For instance, Hulovatyy et
al. [21] observed that larger graphlets of 6 or 7 nodes led
to an higher accuracy for node classification in dynamic
networks than smaller ones. Additionally, in directed net-
works, edge direction should be taken into account since
it can potentially reveal information about the network’s
structure that undirected graphlets are not able to capture.
In this work we propose a novel extension of the graphlet
methodology to directed networks and show how this may
retrieve relevant information from biological networks. De-
spite the fact that graphlets are a general model, to the best
of the authors’ knowledge the only extensions to the original
concept are relative to ordered [22] and dynamic graphlets
[21]. The latter work by Hulovatty also goes beyond the
usual 5-node graphlets (up to size 7).

There are many cellular biological networks that are
intrinsically directed such as metabolic, cell signaling and
gene transcriptional regulation networks. Methods and met-
rics that ignore the edge direction of these networks might
be losing important information. Garlaschelli and Lofredo
[23] proposed a new measure (ρ) to calculate the link reci-
procity of a network that can be used to assess if its edge
direction is important or not. Their measure is an absolute
quantity ranging from −1 (no reciprocity) to 1 (completely
reciprocal). Networks with a ρ-value of ≈ −1 are purely
directional networks meaning that edge direction is an intrin-
sic aspect of these networks and removing it makes them
meaningless. On the other hand, networks with ρ ≈ 1 can be
safely transformed into topologically equivalent undirected
networks without losing much information since their edges
are always reciprocally connected. Garlaschelli and Loffredo
calculated that celular and food web networks rank closer to
the middle of the scale (ρ ≈ 0) meaning that edge direction
in these networks is significant. Additionally, some specific
small directed graphs, such as feed-forward loops, have
been shown to play a fundamental role in the organization
of distinct networks [24].

Network motifs have been extensively used to study
directed biological networks such as neural, transcriptional
and signal networks [25]. Graphlets on the other hand are
mostly restricted to undirected networks since, as men-
tioned previously, they consist of a set of undirected graphs.
Park et al. [26] examined numerous directed biological net-
works using both directed motifs and undirected graphlets.
Such a study could possibly benefit if a tool for enumerating
directed graphlets was available.

In this article we present an efficient general-purpose
tool to enumerate and compare both directed and undi-
rected graphlet degree distributions. Furthermore, our tool
can be used to enumerate arbitrarily large subgraphs (as
long as they fit into memory) since it is not targeted for
specific graphlets. Previous approaches either restricted the
application of graphlets to undirected networks or had
to ignore edge direction in directed networks, in practice
reducing them to undirected networks. To achieve these
objective we extend both i) the original concept of graphlets
to directed graphlets and ii) upgrade a tree data-structure spe-
cialized in efficiently storing graphs, the g-trie, to a graphlet-
trie. Our tool, GT-Scanner, can thus be used to enumerate
directed and undirected graphlets as well as network motifs.

2 MATERIALS AND METHODS

2.1 Graph and graphlet terminology

A network or graph G is comprised of a set V (G) of vertices
or nodes and a set E(G) of edges or connections. Nodes
represent entities and edges correspond to the relationships
between them. Edges are represented as pairs of vertices of
the form (a, b), where a, b ∈ V (G). In directed graphs, edges
(i, j) are ordered pairs (translated to "i goes to j") whereas
in undirected graphs there is no order since the nodes are
always reciprocally connected.

A subgraph Gk of G is a graph of size k where V (Gk) ⊆
V (G) and E(Gk) ⊆ E(G). A subgraph is induced if ∀u, v ∈
V (Gk) : (u, v) ∈ E(Gk) iff (u, v) ∈ E(G). A match or
occurrence of Gk happens when G has a set of nodes that
induce Gk. Two matches are considered distinct if they have
at least one different vertex. The frequency of Gk in G is
the number of occurrences of Gk in G.

Two graphs are said to be isomorphic if it is possible to
obtain one from the other just by changing the node labels
without affecting their topology. All occurrences of a set G
of non-isomorphic subgraphs must be enumerated in the
original network before graphlet or network motif metrics
can be calculated. We call this task the general subgraph
census problem [27] and state it in Definition 2.1.
Definition 2.1 (Subgraph Census Problem). Given a set G of

non-isomorphic subgraphs and a graphG, determine the
frequency of all induced occurrences of the subgraphs
Gs ∈ G in G. Two occurrences are considered different
if they have at least one node or edge that they do not
share. Other nodes and edges can overlap.

Graphlets [14] are small induced non-isomorphic sub-
graphs structurally equivalent to network motifs [7] but that
also include information about the position or orbit that
nodes occupy in the graphlet. For instance, a node in the
center of a star is different from the nodes on its periphery



1545-5963 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2586046, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE ACM TRANS. ON COMP. BIOL. AND BIOINFORMATICS 3

G
cb

orbit

a

c dba

vGDV  ( ) 2 1 0 2

d

v

A B C c dba

1 0 2w

x

y

z

2
w

Fr x

v

y
z

G
= 

3 1 2 1
3 1 2 1
1
1

2
2

0
0

0
0

c
d

b
a
1 2 3

GDD 
G
= 

2 1 2
3 0 0

40 0
2 1 0

Fig. 1: GDV (v) obtained by enumerating the induced occurrences of all undirected graphlet orbits of sizes 2 and 3 (A, B and C) touching v, and
resulting FrG and GDDG matrices for the complete subgraph census (GDV (v) is highlighted in gray in FrG).

(see G11 from Figure 4). The set of all orbits of G is referred
to asO. Another difference between graphlets and networks
motifs is that the latter require a null model to verify if the
subgraphs are overrepresented. Usually the null model is
an artificial random network that maintains the original net-
work’s node degree sequence. On the other hand, graphlets
do not require a null model and use the information of all
subgraphs to perform a full-scale network comparison. The
following graphlet definitions were first introduced in [14].
To compute the graphlet degree distribution it is neces-
sary to count ∀u ∈ V (G) how many times u appears in
some orbit j ∈ O and repeat this process for the total
m orbits, resulting in a graphlet degree vector GDV (u)
with m positions. A matrix FrG of n × m is obtained by
joining the GDV s of all n nodes where each row of FrG is
GDV (v), v ∈ V (G) and each position fru,j is the number
of times that node u appears in orbit j. This task is more
formally defined in Definition 2.2.

FrG =


fr0,0 fr0,1 · · · fr0,m
fr1,0 fr1,1 · · · fr1,m

...
...

. . .
...

frn,0 frn,1 · · · frn,m


Definition 2.2 (Orbit Frequency Computation). Given a set
Gs of non-isomorphic subgraphs of size s ∈ {2, ..., k}
and a graph G, determine the number of times fri,j that
each node i ∈ V (G) appears in all the orbits j ∈ Os. All
occurrences are induced. Two occurrences are considered
different if they have at least one node or edge that they
do not share. Other nodes and edges can overlap.

Both directed and undirected graphlets are considered
in this work; dGk and dOk denote the set of all directed
graphlets and directed orbits of size s ∈ {2, ..., k}, respec-
tively, while uGk and uOk are used for the undirected coun-
terparts. Therefore, a full graphlet enumeration of size k not
only counts all graphlets of size k but also the graphlets of
size < k. Partial occurrences are not counted since graphlets
are induced subgraphs. For instance, triangle B partially
matches three chains C which are not considered since they
do not constitute a full match. Sometimes network motifs
are used as partial occurrences [28] however, like graphlets,
researchers use them more commonly to account only for

induced occurrences [7], [29]. Contrarily to partial occur-
rences, induced occurrences are not ambiguous because
existing and non-existing edges are given equal importance,
leading to more revealing and less convoluted results.

Matrix FrG is transformed into a graphlet degree dis-
tribution GDDG where djG(k) denotes how many nodes
appear k times in orbit j. GDDG offers detailed topological
information of G and it is the output of our approach when
performing a census on a single network. An illustration
of how the GDV of a vertex v is computed for uO3 is
presented in Figure 1, as well as the resulting FrG and
GDDG matrices for the small network.

GDDG =


d0G(1) d0G(2) · · · d0G(+∞)
d1G(1) d1G(2) · · · d1G(+∞)

...
...

. . .
...

dmG (1) dmG (2) · · · dmG (+∞)


Two networks G and H can then be compared by com-

puting the differences between their respective GDD ma-
trices after their distributions are normalized - represented
below as njG(k). In our experiments the arithmetic mean
GDD-agreement (GDA) introduced by [14] is used, defined
as follows.

GDA(G,H)j = 1− 1√
2

(
+∞∑
k=1

[njG(k)− njH(k)]2
) 1

2

(1)

GDA(G,H) =
1

m

m∑
j=0

GDA(G,H)j (2)

When two (or more) networks are compared our method
outputs GDA(G,H) as well as GDDG and GDDH . A
high GDA(G,H) means that G and H are topologically
similar. Since both directed and undirected GDAs can be
calculated, uGDAk and dGDAk represent the GDAs when
comparing undirected and directed graphlets, respectively,
of size k. We adjusted the metric to only consider orbits
that appear in at least one of the networks; the original
metric is henceforth referred to as GDA′ and our own
as GDA. Modifying the metric was necessary since non-
appearing orbits would contribute to unreasonably high
GDA′s when enumerating a large number of orbits or when
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Fig. 2: Comparison of different GDA metrics. The original metric GDA′

was found to produce unreasonably high values for small networks (in
the example) or when many graphlets are enumerated. This makes the
metric inappropriate to compare directed graphlets since the number of
orbits is very high. In our modified GDA metric only orbits appearing
in either G, H or both are considered, discarding non-present orbits.

small networks were used. This happens because the GDA′

of two networks is increased even if the orbit frequency is
zero in both networks. Hulovatty et al. [21] also considered
graphlets with more than the usual 5 nodes and suggested
a similar explanation. This is not very problematic when a
small number of orbits is enumerated, such as the original
73 undirected ones; however, as can be seen from Table 1,
bigger undirected graphlets and directed graphlets may
require thousands or millions of orbits to be enumerated.
For these cases it is likely that many of the possible orbits
do not appear in either network, which may result in higher
GDA′s than expected. Tests performed on small food webs
produced an average GDA′ of ≈ 0.5 when enumerating
dG4, and it increased to ≈ 0.85 for dG5. This does not
translate to those food webs being much more alike when
looking at their larger graphlets but rather that there were
many orbits that did not appear in either network. Figure 2
illustrates the difference in agreement values given by the
original GDA′ metric and our own. Another problem lies
in the huge number of possible orbits (|Ok|) that directed
graphlets with more than 5 nodes have (k > 5). For instance,
when k = 6 there are more than 1 million potential orbits.
Assuming that the frequency of each one is stored in an 4-
byte integer, computing Ok would require |V (G)| × 4 · |Ok|
bytes of memory. Therefore, enumerating dG5 on a network
with 105 nodes would take ≈ 4GB of RAM, which is still
feasible in most modern PCs; however, dG6 would only
be possible for networks with a few hundred nodes and
if k ≥ 6 the enumeration would simply not be viable. A
possible way to reduce the memory footprint is to deal
with orbit redundancies [30]. Nonetheless, larger values of
k still produce too many non-redundant orbits that make
the computation infeasible in terms of memory. Another
option is to avoid generating all possible graphlets and
orbits before the enumeration and instead build their rep-
resentation during the enumeration phase as they occur in
the network [31] since it is reasonable to expect that only a
fraction of all possible graphlets/orbits actually appear in a
given network. This strategy may introduce an overhead in
computational time but makes it attainable to analyse larger
graphlets.

2.2 The G-Trie Data-structure
A g-trie [32] is a tree-like data-structure created initially
to calculate network motifs but it can be efficiently used
to solve the general subgraph census problem. Ribeiro and
Silva [29] presented a g-trie algorithm that was one or two
orders of magnitude faster than previous approaches, and

Fig. 3: Common topology of three graphs. G-Tries use common struc-
tures between the graphs of Gs to heavily constrain the search space.

g-tries are still state-of-the-art for network motif discovery
efficiency-wise.

The efficiency of the g-trie data-structure is mostly due to
two main algorithmic ideas. First, the search space is heavily
constrained by identifying common subtopologies between
the set of subgraphs Gs before enumerating them. Figure 3
illustrates this base concept by showing three small graphs
that share a common subtopology. In practice this means
that instead of enumerating each subgraph, GS1, GS2 and
GS3, individually, a g-trie starts by looking for occurrences
of the smaller common subgraphGS0 and then performs the
necessary expansions for each larger subgraph. Secondly,
symmetry breaking conditions are automatically generated
to eliminate automorphisms, thus avoiding redundancies
and guaranteeing that each occurrence is found only once.
For instance, without these conditions an n-clique (n nodes
fully connected to each other) would be found n! times (once
for each possible permutation of the n nodes) since all these
permutations would be a match to a g-trie path from the
root to the node representing that n-clique.

A g-trie receives as input the list of graphs that the user
wants to enumerate, which can be all undirected graphlets
with up to five nodes, a set of directed graphs, specific
interesting patterns (such as cliques or stars), or any other
desired graphs. However, due to the nature of the g-trie,
which relies on common subtopologies between graphs to
construct a compact search tree, g-tries are better suited for
tasks where one wants to count the occurrences of many
small graphs inside a large network. G-Tries can be fully
constructed before the enumeration and stored in a file or
built on-the-fly to avoid having to store all possible graphs.

Graphlet-tries are an extension of g-tries that also consider
the nodes’ orbit. The broader term g-trie is used when-
ever a concept applies to both g-tries and graphlet-tries.
A graphlet-trie containing all the original 30 graphlets is
shown in Figure 4. Notice that this representation is not
unique since there exist many possible ways to represent
the same graph by modifying the vertex labels. Therefore,
before creating a g-trie it is necessary to establish a canonical
form that efficiently compresses the search space by finding
as many common subtopologies in Gs as possible. G-Tries
also need mechanisms to avoid counting isomorphic graphs
more than once that are not discussed here. The original
orbit numbers from [14] are kept only for convenience since
they are generated automatically in our implementation. All
2 and 3-node directed graphlets are illustrated in Figure 5 as
well as the non-bidirectional 4-node directed graphlets (the
bidirectional graphlets were removed for space concerns).
An additional graphlet-trie containing them is is presented
in the Supplementary Material.
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uGk dGk
k |Gk| |Ok| |Gk| |Ok|
2 1 1 2 3 (1.5 × |Gk|)
3 3 4 15 33 (2.3 × |Gk|)
4 9 15 214 730 (3.5 × |Gk|)
5 30 73 9,578 45,637 (4.8 × |Gk|)
6 142 480 1,540,421 9,121,657 (5.9 × |Gk|)
7 965 4,786 882,011,563 ≈ 7 × |Gk|
8 12,082 77,275 1,793,355,966,869 ≈ 8 × |Gk|
9 273,162 2,188,288 13,027,955,038,433,121 ≈ 9 × |Gk|

TABLE 1: Number of undirected and directed graphlets, as well as their respective orbits, depending on the size of the graphlets. For each case,
all graphlets of sizes 2..k are counted. It is impractical to enumerate all possible orbits for dGk when k is larger than 6 due to the size of |Ok|.

Fig. 4: A graphlet-trie containing all 2, 3, 4 and 5-node undirected graphlets G0, ..., G29 as they were presented in [14]. In a g-trie the common
topologies between graph(let)s of different sizes become evident.
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2.2.1 G-Trie Creation

Algorithm 1 Populate a g-trie T with subgraphs G ∈ G
1: procedure CREATEGTRIE(G)
2: T ← EMPTYGTRIE()
3: for all G ∈ G do
4: INSERT(T.root,G, 1)

5: procedure INSERT(N,G, depth)
6: for all C ∈ N.children do
7: if SHARECOMMONTOPOLOGY(C,G, depth) then
8: INSERT(C,G, depth+ 1)
9: return

10: NewChild← N.ADDCHILD(G, depth)
11: INSERT(NewChild,G, depth+ 1)

Figure 6 shows how a g-trie is built by iterative inser-
tion and Algorithm 1 presents the respective pseudo-code
for the task. When graph G15 is inserted into an initially
empty g-trie (lines 2-4) no common subtopologies are found
(lines 6-7) and four new g-trie nodes need to be created
(lines 10-11), A, B, C and D, each containing a subgraph

of size equal to the depth level of the g-trie (A has 1 node,
B has 2 nodes, and so forth). A graphlet-trie also evaluates
the subgraph orbits and stores them alongside the graphlet.
When G16 is inserted to the tree, only node E needs to be
added to it since G15, which was previously inserted, and
G16 share the common path A ⇒ B ⇒ C in the graphlet-
trie (lines 6-9). Finally, G17 requires two nodes to be created,
F and G, because it only shares the path A ⇒ B with the
other two graphlets.

In this very short example, the compression rate
achieved by the g-trie is 1 − 7

12 ≈ 42% since each 4-
node graphlet would require 4 different subgraphs to be
queried (one for each k ∈ {1, 2, 3, 4}, giving a total of 12
for the 3 subgraphs) but, by using the common topology
of the subgraphs, only 7 are actually needed by the g-trie.
Inserting all 4-node graphlets gives a higher compression
ratio of ≈ 80% since there are more opportunities for the
g-trie to find common topologies between the subgraphs
[33]. Usually graphlet enumeration requires a census of not
only size k but also all s < k. This can be achieved by first
creating a g-trie of size k and then marking all other non-
isomorphic subgraphs of sizes smaller than k that appear on
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the g-trie. The set of subgraphs that the user wants to query
on the network is fully customizable and given as input,
making g-tries a very flexible approach.

2.2.2 Subgraph Census with a G-Trie

Algorithm 2 Count all orbits from g-trie T in network G

1: procedure COUNTALL(T,G)
2: for all vertex v of G do
3: for all children c of T.root do
4: COUNT(c, {v})
5: procedure COUNT(T, Vused)
6: T.ORBITS(Vused)++
7: V ← GETVALIDCANDIDATES(T, Vused)
8: for all vertex v of V do
9: for all children c of T do

10: COUNT(c, Vused ∪ {v})
11: function GETVALIDCANDIDATES(T, Vused)
12: Vconn← vertices connected to the vertex being added
13: m ← vertex of Vconn with smallest neighborhood
14: Vcand← neighbors of m that respect both
15: connections to ancestors and
16: symmetry breaking conditions
17: return Vcand

Figure 7 illustrates how the previously created g-trie
from Figure 6 is used to perform subgraph census. The
g-trie search algorithm is essentially a depth-first search
mapping the input network to the g-trie. The notation
(N, {v1, v2, ..., vk}) represents vertices v1, v2, ..., vk from the
input network which are mapped to node N on the g-trie.
For simplicity, N can refer to either the g-trie node or its
respective subgraph.

The network from Figure 7 has seven vertices which are
all mapped one at a time to A, the initial node of the g-
trie (lines 2-4 of Algorithm 2). Starting from (A, {a}) the
search descends on the g-trie and looks for valid candidates
(line 7). For an efficient graph traversal, our algorithm picks
the vertex from Vused that is connected to the newly added
node in g-trie T (line 12) that has the smallest neighborhood
(line 13). At the beginning A is the only possible choice.
The candidate vertices c ∈ Vcand are the neighbors of A
that respect both the g-trie connections (in this case, candi-
date c only needs to have an incoming edge from A) and
symmetry breaking conditions, which are needed to avoid
isomorphic cases (lines 14-17). The first viable candidate is
vertex B, and the algorithm finds the mapping (B, {a, b}),
incrementing the frequency of orbits a and b (line 6). The
search continues in depth-first fashion (lines 8-10) but no
valid mapping exists between C and {a, b, vi} since no vi
can be joined to {a, b} so that the resulting subgraph forms
C. Therefore, the algorithm backtracks to (B, {a, b}) and
instead looks for a valid mapping of F , finding (F, {a, b, d}).
No valid mapping is found for (G, {a, b, d, vi}) and when
the search backtracks no further alternatives for (F, {a, b})
are discovered. Since no other valid mapping are found for
(B, a, vi), the algorithm moves on to vertex b. The census
finds (A, {b}), (B, {b, d}), (C, {b, d, c}) and (D, {b, d, c, e})
until it has to backtrack since there are no more alter-
natives for (D, {b, d, c, vi}). There are also no occurrences

of (E, {b, d, c, vi}) so the algorithm proceeds and finds
(C, {b, d, e}). When the algorithm reachesD, (D, {b, d, e, c})
is a valid mapping topologically, however it would be the
same occurrences as the previously found (D, {b, d, c, e}). In
practice, g-tries do not find repeated occurrences thanks to
symmetry breaking mechanisms embedded in the g-trie nodes
(line 16): vertices that appear later in the same orbit are only
valid if they have a bigger index than the previous vertices
of the same orbit. After failing to find a valid mapping
for (D, {b, d, e, vi}) the search also fails for (E, {b, d, e, vi})
and keeps backtracking until it proceeds to (A, {c}). For
more specific details on how a g-trie is created and used
for subgraph enumeration the reader is referred to [32].
Additionally, g-tries have already been extended to also
support weighted [34] and colored [35] networks. A tool
for motif discovery making use of the g-trie datastructure
has already been released1. Our tool extends the previous
one by also allowing for graphlet enumeration and network
comparison.

3 RESULTS AND DISCUSSION

To assess the applicability and performance of our tool,
we organise the set of experiments into two parts: i) clas-
sification accuracy on synthetic data and ii) performance
evaluation on real biological data. The first measures how
well directed graphlets can group a set of directed networks
and compares it with undirected graphlets, while the latter
analyses the performance of our tool on a set of directed
biological networks of different types (biological function)
by comparing its execution time with state-of-the-art ap-
proaches.

3.1 Classification Accuracy on Synthetic Networks
In order to evaluate the advantages of using directed
graphlets we measure how well they group networks of
different types and compare their results with those pro-
duced by undirected graphlets. These tests were performed
on synthetic networks pertaining to different graph types:
Erdős-Rényi random graphs (ER) [36], scale-free networks
(SF) [37] and Forest Fire graphs (FF) [38]. The ER networks
are generated as regular ER graphs but, since they are
directed, it is also necessary to choose the direction of each
edge. Two groups of ER networks, ERρ=0.2 and ERρ=0.8,
were created with different probabilities ρ for nodes to be
reciprocally connected: ρ = 20% and ρ = 80%. The non-
reciprocal edges of v (for either group) have an equal chance
of being an in edge (u, v) or an out edge (v, u). While the net-
works of these two groups are very similar if one disregards
their edge direction they vary greatly when the direction of
the edges is considered, and an appropriate metric should
be able to distinguish them. We proceed by generating
undirected scale-free networks with the same exponent γ
and divide them into two directed groups: SFORD, where
the undirected edges (u, v) are transformed into a similar
directed edge u → v where u < v, and SFRAND where
the direction is randomly assigned. In this way we obtain
networks that have a very similar node degree distribution
but very different in and out node degree distributions. All

1. http://www.dcc.fc.up.pt/gtries/
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a

(a) uG4 (b) dG4

Fig. 8: MDS representation applied to the GDA matrices obtained for undirected graphlets uG4 and directed graphlets dG4. (a) Undirected
graphlets can not appropriately cluster the different networks whereas (b) directed graphlets clearly group the networks correctly.

ER and SF graphs have ≈ 1% edge density, mimicking real
world networks. Finally, the FF networks have p = 0.37 and
pb = 0.32, as suggested by [38] in order to build the most
realistic networks. For each of the aforementioned types we
generated 20 networks with 500, 1000 or 2000 nodes, giving
a total number of 5×20×3 = 300 networks. The GDA was
computed for all pairs of networks for three distinct sets of
graphlets: uG4, dG4 and dG5. The clustering capabilities of
both directed and undirected graphlets are illustrated using
multidimensional scaling (MDS) [39] in a 3-dimensional
space. The performance of each set of graphlets is eval-
uated by comparing their obtained precision-recall when
classifying the networks. This methodology was previously
adopted by [40] to demonstrate how well their metric (GCD)
could group different undirected networks using undirected
graphlets.

Figure 8 shows the MDS embeddings of the 300 net-
works using (a) uG4 and (b) dG4. Undirected graphlets
successfully distinguish between different directed graph
models (ER vs SF vs FF ) despite ignoring their edge
direction. This is possible since the topology of the different
models is so distinct that edge direction can be disregarded.
However, as expected, when the undirected topology of the
networks is similar it is necessary to take the edge direc-
tion into account. Directed graphlets successfully separated
networks of different models (ER vs SF vs FF ) and also
accurately grouped networks of different types; they sepa-
rated networks with different levels of reciprocity (ERρ=0.2

vs ERρ=0.8) and with distinct in/out-degree distributions
(SFORD vs SFRAND). Furthermore, undirected graphlets in-
adequately separated the FF networks by size while di-
rected graphlets clustered them together. The precision-
recall curves for undirected (uG4) and directed graphlets
(dG4 and dG5) shown in Figure 9 were obtained by com-
puting the GDA distance between each pair of networks
and calculating if that distance is smaller than a threshold ε
and, if it was, the networks were grouped together. Since the

Fig. 9: Precision-recall curves for undirected graphlets (uG4) and di-
rected graphlets (dG4, dG5 and dG′5). Undirected graphlets can not
correctly group the networks (AUPR = 0.385). Directed graphlets (dG4
and dG5) correctly cluster the networks (AUPR≈ 0.75). Non-appearing
orbits undermine larger graphlets’ (dG′5) capability to cluster the net-
works (AUPR = 0.601).

GDA varies from 0 to 1, initially ε is set as 0 (meaning that
the networks are exactly the same according to the metric)
and is incremented by s = 0.001 at each step. Precision
is the fraction of correctly grouped pairs while recall is
the fraction of the correctly grouped pairs over all correct
ones. The Area Under the Precision-Recall curve (AUPR)
evaluates how well the metric groups the networks, and its
value is approximated as shown in Equation 3. Pr(k) is the
precision at step k, ∆Rec(k) is the change in recall from
steps k − 1 to k and N is the number of steps.
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AUPR =
N=1000∑
k=1

Pr(k)∆Rec(k) (3)

The AUPR for uG4 is 0.385, which is clearly lower than
the one obtained by dG4 (0.749). Two sample Welch t-
tests were performed to verify that the results for directed
graphlets were statistically significant (p-values ≤ 0.01).
The effect of removing non-appearing orbits from the GDA
computation was also measured; when non-appearing or-
bits were not removed from the GDA computation (dG′5)
the AUPR was relatively low (0.601). This negative effect
is more severe when larger graphlets are enumerated be-
cause, as discussed in Section 2, the resulting GDAs are
always very high since there are many non-appearing orbits,
contributing to a false similarity. Removing non-appearing
orbits from the GDA computation greatly increases the
clustering capabilities of larger directed graphlets; dG5 ob-
tained the highest AUPR value at 0.758 among all graphlet
sets. These experiments show that directed graphlets can
be successfully used to group directed networks pertaining
to the same type and likewise distinguish between directed
networks of different types.

It could be argued that directed graphlets are not neces-
sary to correctly cluster these types of networks since one
could simply analyse their reciprocity and/or the degree
distribution to be able to separate them. In these exper-
iments our main concern was to show that undirected
graphlets are not suitable to study directed networks since,
by definition, they can not even differentiate networks
that differ on simple directed metrics. However, directed
graphlets offer much richer topological information than
reciprocity or degree distributions, in the same way that
undirected graphlets give much more details on the net-
work’s structure than just the node-degree. In fact, reci-
procity and degree-distribution are embedded in the two
2-node directed graphlets in the same way that the undi-
rected node degree is represented by the 2-node undirected
graphlet. Enumerating directed graphlets of more than 2-
nodes captures not only these two basic metrics but also the
more intricate connections between the nodes.

Consider Figure 10: networks G and G’ have the same
level of reciprocity ( 13 ) but they represent different sub-
graphs since they are not isomorphic, while networks G and
G” have the same in and out-degree distributions but they
are completely different nevertheless. Therefore, reciprocity
would not be sufficient to distinguish G from G’ and the
degree distribution could not separate G from G”. Undi-
rected graphlets could not distinguish G from G′ but they
could differentiate between G and G” since their undirected
topology is not the same. On the other hand, directed
graphlets are perfectly capable of distinguishing all three
cases since they are more general than both a) undirected
graphlets, b) reciprocity and c) degree distribution. In fact,
directed graphlets combine all three metrics, providing a
powerful way to analyse directed networks’ topology and
overcoming the limitations of undirected graphlets for such
networks.

3.1.1 Computational Complexity
Taking the edge consideration into account augments the
complexity of the already computationally demanding ex-
haustive subgraph enumeration. Furthermore, it might be
interesting to enumerate graphlets (both directed and undi-
rected) that have more than 5-nodes. However, searching for
larger graphlets increases the execution time exponentially.
Therefore, a very efficient tool is required for this task to be
feasible. In the following section we compare our tool with
other tools that perform exhaustive subgraph enumeration.

3.2 Performance on Real Biological Networks
3.2.1 Experimental Setting
Our experimental results were gathered on a 8-core ma-
chine consisting of two quad-core IntelÂő XeonÂő Proces-
sor E5620 processors at 2.4GHz with a total of 12GB of
memory. Code for GT-Scanner was developed in C++11 and
compiled using gcc 4.8.2. As noted previously, the version
of GT-Scanner that only performed network motif discovery
was released prior to this work. The other tools used for
comparison were also developed in C++ and are available
as open-source. The execution times of each tool are relative
only to the graphlet enumeration phase, not taking into
account the time taken to load the graph into memory nor
perform other initialization and finalization tasks.

3.2.2 Directed Biological Networks
There are numerous kinds of intra-cellular networks, such
as metabolic, transcriptional regulatory and cell signaling
networks, where edge direction is intrinsically related to
its function. Metabolic networks represent the set of bio-
chemical reactions occurring within a cell that allow the
organism to grow, reproduce, respond to the environment,
and other biological functions essential for the organism’s
survival. These reactions are catalyzed by enzymes that act
upon substrates. Therefore, in metabolic networks a node
can be an enzyme or a substrate and the connections are
directed edges going from enzymes to substrates. Transcrip-
tional regulatory networks model the process by which the
information in the genes is transcribed into proteins or RNA,
also called gene expression. In these networks nodes are
either transcription factors or proteins that are connected by
directed edges representing how the transcription factors in-
fluence the gene by stimulating or repressing its expression.
A cellular signaling network is comprised of a sequence of
biochemical reactions between cells of the same organism. A
great number of tasks such as the development, repair and
immunity of cells depend on the proper functioning of cell
signaling networks. Nodes in these networks are proteins
and edges exist between activator and receptor proteins that
communicate through signals from the first to the latter.

G G''G'

Fig. 10: Reciprocity or degree distribution information are not sufficient
to distinguish two graphs. Directed graphlets incorporate both metrics
and offer more detailed topological information.
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G SIG_NCI SIG_NH SIG_SH SIG_SM MET_BS MET_DR MET_TY TR_EC TR_YST

|V (G)| 15,533 1,634 529 477 453 2,280 2,361 99 688
|E(G)| 23,682 4,665 1,223 1,056 2,025 5,588 5,822 212 1,078
Type Signaling Metabolic Transcriptional

Source [41] [42] [43] [3] [24] [7]

TABLE 2: Set of biological networks used for experimental evaluation: cell signaling, metabolic and transcriptional regulatory networks.

100 95 94 61 68 64 71 66 67

95 100 95 61 68 63 70 66 67

94 95 100 61 69 64 70 66 67

61 61 61 100 66 72 78 81 80

68 68 69 66 100 75 79 78 78

64 63 64 72 75 100 82 79 80

71 70 70 78 79 82 100 88 88

66 66 66 81 78 79 88 100 93

67 67 67 80 78 80 88 93 100

100 85 86 51 57 53 57 50 52

85 100 88 50 56 53 57 49 51

86 88 100 51 57 53 57 50 51

51 50 51 100 59 52 52 52 54

57 56 57 59 100 52 52 52 54

53 53 53 52 52 100 59 56 55

57 57 57 52 52 59 100 57 56

50 49 50 52 52 56 57 100 78

52 51 51 54 54 55 56 78 100

(a) uGDA5 (b) dGDA4

Fig. 11: Heatmaps and dendrograms of the uGDA5 (a) and dGDA4 (b) obtained for the tested networks. Undirected graphlets accurately clustered
the metabolic networks (blue) but incorrectly grouped cell signaling (purple) with transcriptional regulatory networks (red). Directed graphlets
were able to cluster all networks by type without error.

3.2.3 Methodology

The computational networks used in these experiments, de-
tailed in Table 2, are evidently a translation of real biological
networks, thus potentially making the process of finding
their similarities harder since their real structure may not be
fully represented. Nevertheless, it is usually assumed that
network structural similarity of computational networks
may also indicate functional similarity [44]. Thus, one can
expect that networks belonging to the same type to be more
topologically similar than networks of different types.

In order to verify if that is the case for these specific
networks we to assess their topological similarity in terms
of their relative graphlet distributions. This comparison is
performed for each pair of networks (G,H) from Table 2
by first enumerating all graphlet orbits of both G and
H and then comparing their GDDs by computing the
dGDA4(G,H) and uGDA5(G,H). The results are shown
for dG4 since 4-node directed graphlets were already suc-
cessful in correctly clustering the networks by type, remov-
ing the need to look for larger subgraphs, and also for uG5
because they are the set of graphlets most often used in the
literature.

The matrices obtained after computing uGDA5(G,H)
and dGDA4(G,H), respectively, for each pair of networks
are displayed in Figure 11 along with their corresponding
dendrogram and heatmap. It can be observed that networks
of the same type are correctly grouped by their GDA
using directed graphlets. This is an indicator that directed
graphlets can detect topological similarities between real di-
rected biological networks of the same type and can likewise
find structural differences between networks of different
types. Undirected graphlets did not correctly separate cell
signaling from transcriptional regulatory networks. Again,
since the networks come from distinct sources and noise
is embedded in the data, it is not guaranteed that these

networks are actually being separated by function and not
by bias in their representation. Nevertheless, graphlets are
a powerful tool to assess functional similarity and directed
graphlets, by definition, capture more functional similarity
in directed networks than undirected ones.

3.2.4 Performance Comparison
Currently, the most popular tool for graphlet discovery is
GraphCrunch [45]. Observing its source code one notices
that the possible 30 subgraphs are enumerated manually,
therefore it is not possible to enumerate a different set of
graphlets. Until recently it performed a full enumeration
of all graphlets of up to size 5 in order to calculate their
orbit frequency. A more recent tool, Orca [46], was shown
to perform one or two orders of magnitude faster than
the original GraphCrunch and has since been integrated
into it. Henceforth, when GraphCrunch is referenced we
are alluding to its version before adopting Orca’s algorithm
to perform the enumeration. Orca achieves its performance
by observing that, given a limited set of graphs of size k,
it is possible to build a system of equations to calculate
their frequencies by using the frequencies of the size k − 1
graphs and the frequency of a single graph of size k. This
greatly reduces execution time since the size k graphlet
enumeration is much more computationally expensive than
the size k−1 enumeration followed by solving the system of
equations. While this approach is substantially faster than a
full enumeration it is quite limited in scope because a new
set of equations needs to be manually derived in order to
find the k + 1 graphlets, k + 2, and so on. Similarly to
GraphCrunch, Orca manually counts each subgraph, dis-
allowing for different sets of subgraphs to be enumerated.
These two tools also do not support edge direction, being
only applicable for undirected graphlets.

Network motifs are similar in concept to graphlets and
numerous tools for network motif discovery exist. Only the
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census on the original network is performed because we are
only concerned with the subgraph enumeration itself and
not with assessing motif significance on a large set of ran-
domized networks. Since tools for network motif discovery
do not have to the calculate orbit frequencies specific to each
node they perform less computational work than graphlet
tools. Two well-known methods for the task are Kavosh [47]
and Fanmod [48], the latter being an implementation of the
ESU algorithm; in our work a more efficient implementation
of ESU [33] is used.

Frequent Subgraph Mining (FSM) shares some common
aspects with subgraph census: like motif/graphlet algo-
rithms, FSM methods also have to enumerate subgraph
occurrences in order to assess which patterns are recurrent;
however, FSM algorithms take as input an ensemble of
networks instead of a single network. In order to be effi-
cient, FSM tools use pruning strategies to reduce the search
space and, therefore, usually do not perform a complete
subgraph census. Those strategies make the FSM tools hard
to compare with motif discovery algorithms since the latter
cannot employ the same optimizations. Since our focus is to
evaluate the efficiency of the tools’ subgraph enumeration,
FSM algorithms are not used for comparison. Nevertheless,
the most well-known tools for FSM are gSpan [49], MoFa [6],
FFSM [50], gaston [51] and [52].

Because i) GraphCrunch, ii) Orca and iii) ESU/Kavosh
methodologies are not directly comparable, three distinct
versions of GT-Scanner were used accordingly: i) a version
that enumerates all graphlets and orbits of up to size k, ii)
a version that enumerates up to size k − 1 graphlets and
orbits and then computes a set of equations to calculate the
frequencies of the size k graphlets and iii) a version that
only enumerates the subgraphs (and not the orbits) of size
k.

Table 3 presents a detailed comparison between the
different tools. In Table 3 (a) it can be observed that,
although the networks from Table 2 are relatively small,
sometimes more than a 1 billion occurrences are found,
showcasing the computational complexity of an exhaustive
enumeration and the necessity of an efficient tool. The num-
ber of occurrences of uG5 and dG5 for the same networks
is necessarily the same, however there will probably be
many more different directed than undirected graphlets
types. Again, this shows the gain in topological information
brought by using directed graphlets that is disregarded by
undirected graphlets. Additionally, uG5 takes significantly
longer to enumerate than dG4 since increasing the size
of the graphlets greatly increases the computational time.
Using GT-Scanner, the time necessary to compute directed
graphlets and undirected graphlets of the same size is not
substantially different.

Tables 3 (b), (c) and (d) show the results for each different
version of GT-Scanner and competing tools. Results show-
ing the average (mean) speedup obtained in all 10 networks
for different sets of graphlets, uG5, uG6, dG4 and dG5, are
presented in Table 4. Neither GraphCrunch nor Orca are ca-
pable of enumerating either directed graphlets or undirected
graphlets with more than 5 nodes. GT-Scanner performs
the census faster than the two aforementioned tools and, in
addition to that, can enumerate directed graphlets as well as
undirected graphlets with more than 5 nodes. Kavosh and

ESU can also perform the census for the cases presented
here but they are much slower. For instance, for some
networks GT-Scanner takes little over a minute to enumerate
uG6 while both Kavosh and ESU need more than a day to
complete the same task. On average, GT-Scanner is almost
100 times faster for undirected graphs and about 20 times
faster for directed graphs than tools that perform simple
subgraph enumeration (Kavosh and ESU). The speedups are
lower for directed graphs because the search space is harder
to constrain due to the higher number of graphlets sharing
less common subtopologies between them. It is noticeable
that the speedups of GT-Scanner relative to motif tools are
much higher than those relative to graphlet tools. This is
due to tools for motif discovery being general, since they
can be used to count any set of subgraphs of a given size,
while tools to find graphlets can only enumerate undirected
graphlets of up to 5 nodes. This allows graphlet tools to have
specialized optimizations that motif tools can not match.

From these experiments we can conclude that G-MaGE
can both perform faster than state-of-the-art graphlet tools
and also provide a more general approach which supports
any directed or undirected motif/graphlet size, as long as
the set of graphlets fits into memory.

3.2.5 Parallel Subgraph Census
Increasing the size of the graphlets from k to k+1 makes the
enumeration process much more computationally expen-
sive, as can be observed from Table 3. Even a very efficient
tool such as GT-Scanner takes a considerable amount of time
to compute uG6 for the metabolic networks, for instance. To
deal with this problem we have developed previous work
on parallel strategies for subgraph census, applied to both
computer clusters [53], [54] and single multicore machines
[55], [56]. Past strategies relied on a static division of the
work that could not guarantee a balanced division due to
highly unbalanced topology of the networks. Additionally,
it is impossible to produce a good estimation pre-execution
of how the computation should be divided without per-
forming some kind of enumeration beforehand.

A dynamic load-balancing was developed in order to
obtain a scalable parallel implementation. The main idea
is to divide the work among computers during runtime.
The initial work is split evenly by the computing resources
and whenever one of them has finished its alloted work it
requests more from the other ones (work-stealing). Our algo-
rithms perform random polling which has been established
as an adequate heuristic for dynamic load balancing [57]. By
implementing these ideas, together with an efficient sharing
mechanism, we obtained algorithms that scale linearly with
the number of processors. This allows for graphlet enumer-
ation to be performed on larger networks or to enumerate
bigger graphlets, possibly leading to new insights into the
networks. Biologists may have access to computer clusters
where they can perform large-scale experiments. Our tool
developed for cluster-environments obtained near-linear
speedup up to 128 processors, meaning that experiments
that took one week to compute would be feasible in less
than one hour. On the other hand, our tool for multicore
architectures takes advantage of the multiple processors that
current PCs have, removing the need to gain access to a
specialized cluster.
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G G Occurrences
Types

(millions)

SIG_NCI

uG5 1754 17
uG6 7883 74
dG4 24.1 89
dG5 1754 842

SIC_NH

uG5 4.0 21
uG6 1078 112
dG4 1.55 191
dG5 3.96 5219

SIG_SH

uG5 2.55 20
uG6 41.3 103
dG4 0.16 79
dG5 2.55 789

SIG_SM

uG5 1.78 20
uG6 26.6 102
dG4 0.12 70
dG5 1.78 677

MET_BS

uG5 1455 5
uG6 1510 15
dG4 17.1 36
dG5 1455 271

MET_DR

uG5 1782 5
uG6 2799 16
dG4 19.5 37
dG5 1.782 271

MET_TY

uG5 1953 5
uG6 960 16
dG4 21.3 37
dG5 1953 217

TR_EC

uG5 0.01 21
uG6 0.04 98
dG4 0.002 24
dG5 0.01 217

TR_YST

uG5 2.5 20
uG6 32.0 81
dG4 0.3 34
dG5 2.5 174

GT-Scanner GraphCrunch

60.73 481.45
4,233.55 n/a

1.70 n/a
112.09 n/a
1.70 6.08
44.29 n/a
0.13 n/a
3.71 n/a
0.11 0.45
2.94 n/a
0.01 n/a
0.22 n/a
0.08 0.34
1.30 n/a
0.01 n/a
0.15 n/a
42.2 409.04

3,592.02 n/a
1.03 n/a
96.99 n/a
51.12 504.06

4,768.99 n/a
1.18 n/a

117.64 n/a
56.9 551.73

5,177.37 n/a
1.26 n/a

132.26 n/a
< 0.01 0.03

0.01 n/a
< 0.01 n/a
< 0.01 n/a

0.09 0.73
1.39 n/a
0.01 n/a
0.18 n/a

GT-Scanner ORCA

3.07 3.08
n/a n/a
n/a n/a
n/a n/a
0.23 0.26
n/a n/a
n/a n/a
n/a n/a
0.02 0.08
n/a n/a
n/a n/a
n/a n/a
0.02 0.07
n/a n/a
n/a n/a
n/a n/a
1.69 1.83
n/a n/a
n/a n/a
n/a n/a
1.93 2.06
n/a n/a
n/a n/a
n/a n/a
2.09 2.21
n/a n/a
n/a n/a
n/a n/a

< 0.01 < 0.01
n/a n/a
n/a n/a
n/a n/a
0.02 0.07
n/a n/a
n/a n/a
n/a n/a

GT-Scanner Kavosh ESU

34.08 3,524.57 2,894.99
2,051.04 > 1 day > 1 day

1.13 27.20 26.16
70.26 3,669.29 3,103.47
0.96 56.51 45.86
24.28 1,887.67 1,557.45
0.10 1.57 1.40
2.61 56.16 53.79
0.06 3.74 3.06
1.10 76.13 62.38
0.01 0.18 0.16
0.17 4.18 3.78
0.05 2.66 2.15
0.72 50.00 40.38
0.01 0.14 0.12
0.12 3.02 2.66
22.11 2,500.87 2,436.82

1,695.38 > 1 day > 1 day
0.75 17.43 15.66
62.93 2,555.38 2,334.01
27.79 3,725.94 3,002.90

2,317.72 > 1 day > 1 day
0.86 19.89 18.81
79.9 3,076.25 2,852.23
30.47 4,113.44 3,506.87

2,473.07 > 1 day > 1 day
0.93 22.06 19.45
82.26 3,352.5 3,141.3
< 0.01 0.02 0.01

0.01 0.09 0.06
< 0.01 < 0.01 < 0.01
< 0.01 0.02 0.01

0.05 5.00 4.04
0.71 90.28 74.05
0.01 0.23 0.21
0.14 5.13 4.74

(a) General Information (b) Graphlet Enumeration:
{1, 2, ..., k} census

(c) Graphlet Enumeration:
{1, 2, ..., k - 1} census

(d) Subgraph Enumeration:
k census

TABLE 3: Time comparison (in seconds) of multiple algorithms for graphlet and motif discovery. The three versions of GT-Scanner are compared
to algorithms that perform the same tasks: (a) full {1, 2, ..., k} enumeration, (b) {1, 2, ..., k − 1} enumeration followed by solving a system of
equations to obtain the frequencies of the k-size graphlets and (c) only enumerate the subgraphs of size k without computing the orbits.

G |G| |O|

uG5 30 73
uG6 142 480
dG4 214 730
dG5 9,578 45,637

(a)

GraphCrunch

7.15± 2.56
n/a
n/a
n/a
(b)

Orca

2.04± 1.27
n/a
n/a
n/a
(c)

Kavosh ESU

95.00± 30.97 80.11± 27.85
85.89± 24.07 70.31± 19.88
20.61± 3.80 18.73± 3.86
35.00± 9.77 31.75± 8.30

(d)

TABLE 4: Performance comparison between GT-Scanner and other algorithms. (a) shows a description of the set of subgraphs being enumerated,
as well as the total number of graphlets (|G|) and orbits (|O|). The speedups between our methods and other algorithms are shown in (b),
(c) and (d).
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4 CONCLUSIONS

Recent advances in high-throughput cell biology caused
enormous amounts of cellular biological data to be continu-
ously produced. Studying the large computational networks
resulting from this information can lead to new insight into
cellular organization. Due to the size of these networks it
is necessary to resort to studying their smaller components
such as graphlets network motifs.

Graphlets in particular have been extensively applied to
PPIs and other undirected networks but their applicability
in directed biological networks, such as cell signaling, tran-
scriptional regulatory and metabolic networks, is limited
since they do not consider edge direction. In this paper we
have highlighted the importance of adapting graphlets to
take into account edge direction by showing that networks
of different types (both synthetic and real) can be accurately
grouped using directed graphlets.

We have presented an efficient tool, GT-Scanner, that
is able to compute directed and undirected graphlets of
arbitrary size, as well as network motifs, as long as they fit
into memory. GT-Scanner also allows the user to customize
the set of graphs that he/she wants to query in the network,
further demonstrating the flexibility of our tool. We assess
GT-Scanner’s performance on a set of directed biological
networks and compare it to other tools for graphlet and
network motif discovery. We observe that it is the fastest
available tool for either task while also being a very general
approach. Therefore, we believe that we have broadened
the applicability of graphlets by extending them to directed
graphlets and by providing an efficient tool for that task.
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identification of key players in aging via network de-noising,” in
Proceedings of the 5th ACM Conference on Bioinformatics, Computa-
tional Biology, and Health Informatics. ACM, 2014, pp. 164–173.

[19] O. Kuchaiev, P. T. Wang, Z. Nenadic, and N. Pržulj, “Structure of
brain functional networks,” in Engineering in Medicine and Biology
Society, 2009. EMBC 2009. Annual International Conference of the
IEEE. IEEE, 2009, pp. 4166–4170.
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