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Data Parallelism

Data parallelism is one of the simplest techniques that exist to exploit
parallelism. The key idea is to execute the same operation over the
different components of the data:

The data is usually organized in multidimensional arrays or matrices.
Cycles are the main candidates to be parallelized.
Frequent in scientific and engineering problems.
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Rank Sort

Give an array A[N], we want to build a new array R[N] with the sorted
elements of A[N]:

For each element in A[k] we will determine its relative position
(rank) in the array R[N]. The position can be obtained by calculating
the number of elements in A[N] that are lower than A[k].
As the calculation of the relative position is an independent task, the
algorithm can the easily parallelizable.
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Rank Sort

int A[N], R[N];

main() {
...
for (k = 0; k < N; k++)

compute_rank(A[k]);
...

}

compute_rank(int elem) {
int i, rank = 0;
for (i = 0; i < N; i++)

if (elem > A[i])
rank++;

R[rank] = elem;
}

Question: how can we parallelize the rank sort algorithm?

M.Areias (DCC-FCUP) Programming with Processes Parallel Computing 18/19 4 / 60



Rank Sort

int A[N], R[N];

main() {
...
for (k = 0; k < N; k++)

compute_rank(A[k]);
...

}

compute_rank(int elem) {
int i, rank = 0;
for (i = 0; i < N; i++)

if (elem > A[i])
rank++;

R[rank] = elem;
}

Question: how can we parallelize the rank sort algorithm?

M.Areias (DCC-FCUP) Programming with Processes Parallel Computing 18/19 4 / 60



Processes

One process is an abstraction of a program in execution, which allows
for a program to have multiple instances in execution.

In uni-processor machines, in each instant of execution, only one process is
in execution. However, as the processor time is sliced, several processes
can be executed in a given fraction of time (higher than an instant). This
gives to the user an illusion of parallelism.
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Creating Processes

pid_t fork(void)

The system call fork() allows the creation of new processes. It returns
the PID of the newly created process (child process) to the process that
has made the call (parent process) and returns 0 to the child process.

How can we distinguish the execution of both processes (parent and child)?

pid = fork()

pid > 0 pid = 0

parent child

pid_t pid;
...
pid = fork();
if (pid == 0) {

... // child code after fork
} else {

... // parent code after fork
}
// common code after fork
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Creating Processes

Heap

Data

Text

Stack

Resources

Identity

...

...

...
pid= fork()
...
...

Files
Sockets
...

PID= 1000
UID
GID
...

...Registers

SP
PC
...

Heap

Data

Text

Stack

Resources

Identity

...

...

...
pid= fork()
...
...

Files
Sockets
...

PID= 1001
UID
GID
...

...Registers

SP
PC
...

Parent Process Child Process

var1
var2
pid= 0

var1
var2
pid= 1001

fork()

M.Areias (DCC-FCUP) Programming with Processes Parallel Computing 18/19 7 / 60



Parallel Rank Sort (proc-ranksort.c)

main() {
...
// each child executes one task
for (k = 0; k < N; k++)

if (fork() == 0) {
compute_rank(A[k]);
exit(0);

}
// parent waits for all children to complete
for (k = 0; k < N; k++)

wait(NULL);
// parent shows result
for (k = 0; k < N; k++)

printf("%d ", R[k]);
printf("\n");
...

}

Question: what is the output of the program?
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Parallel Rank Sort

Launch N child processes, in which, each process executes
compute_rank() on the different element in A[k]:

Each child process inherits one copy of the variables of the parent
process. However, the changes made to those variables are not visible
to the parent process.
As the changes made in R[] are not visible, the parent process writes
a sequence of zeros!

Solution: the array R[] must be shared!
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Shared Memory Segments

One of the simplest methods of Inter-Process Communication (IPC) is
the usage of shared memory segments:

The segment is known by both processes and when one of processes
writes in the segment, the other also sees the change.
The access to shared memory segments is as efficient as the access to
non-shared segments and their manipulation is similar.

Process A Process B

x x

Memory
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Shared Memory Segments

How to create and use a shared memory segment:

The processes begin by allocating the segment.
Then, each process must map the segment in a memory address, so
that, it can use the segment.
After its usage, each process must release the mapping done in the
previous step.
Finally, one of the processes must remove the segment.
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Allocating a Shared Memory Segment

int shmget(key_t key, int size, int flags)

shmget() allocates a new shared memory segment and returns its id. If it
is not possible to allocate the segment then it returns -1.

key is the identifier of the requested segment. Other processes can
access the same segment if they present the same key (IPC_PRIVATE
ensures that a new segment is created).
size defines the amount of memory of the request, rounded to a
multiple of the operating system’s page size (usually 4KB –
getpagesize() to obtain the exact value).
flags specifies the type of allocation: IPC_CREAT indicates that the
new segment must be create (if it does not exist); IPC_EXCL
indicates that segment must be exclusive (fails otherwise); S_IRUSR,
S_IWUSR, S_IROTH and S_IWOTH indicate the read/write permissions.
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Mapping a Shared Memory Segment

void *shmat(int shmid, void *addr, int flags)

shmat() allows the mapping of a shared memory segment from a memory
address within the address space of the process. Returns the address of
memory in which the segment was mapped, or return -1 if it is not
possible to map the segment.

shmid is the integer that identifies the segment (obtained with
shmget())
addr is the desired memory address (multiple of the operating
system’s page size), or NULL if we allow the operating system to
choose the address.
flags specifies the options of the mapping: for example,
SHM_RDONLY forces the segment to be read-only.
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Freeing a Shared Memory Segment

int shmdt(void *addr)

shmdt() frees the mapping, thus that the correspondent shared memory
segment is no longer associated with a memory address (the operating
system decrements in one unit the number of mappings associated with
the segment). Returns 0 if it succeeds, or -1 otherwise.

addr is the initial memory address associated with the segment to be
freed.
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Removing a Shared Memory Segment

int shmctl(int shmid, int cmd, struct shmid_ds *buf)

shmctl() removes the shared memory segment and does not allow any
further mappings (the segment is only really removed when the number of
mappings is zero). Returns 0 if it succeeds, or -1 otherwise.

shmid is the integer that identifies the segment.
cmd should be IPC_RMID (remove an IPC identifier).
buf should be NULL.

The number of shared memory segments allowed is limited. When a
process ends its execution, it frees automatically the mapping. However, it
does not remove the segment. shmctl() must be explicitly called by one
of the processes.

Command ipcs allows to check which segments are in use.
Command ipcrm allows the removal of a segment.
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Basic Step Sequence

int shmid, shmsize;
char *shared_memory;
...
shmsize = getpagesize();
shmid = shmget(IPC_PRIVATE, shmsize, S_IRUSR | S_IWUSR);
shared_memory = (char *) shmat(shmid, NULL, 0);
...
sprintf(shared_memory, "Hello World!");
...
shmdt(shared_memory);
shmctl(shmid, IPC_RMID, NULL);
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Parallel Rank Sort (proc-rankshm.c)

int A[N], *R;

main() {
...
// allocate and map a shared segment for R[]
shmid = shmget(IPC_PRIVATE, N * sizeof(int), S_IRUSR | S_IWUSR);
R = (int *) shmat(shmid, NULL, 0);

// each child executes one task
for (k = 0; k < N; k++)

if (fork() == 0) {
compute_rank(A[k]);
exit(0);

}
for (k = 0; k < N; k++) wait(NULL);
for (k = 0; k < N; k++) printf("%d ", R[k]); printf("\n");
// free and remove shared segment
shmdt(R);
shmctl(shmid, IPC_RMID, NULL);

}
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Mapping of Files in Memory

The communication between processes using shared memory, can also be
obtained through shared files.

The access to files is usually done using specific functions, such as
open(), read(), write(), lseek() e close().
The atomicity in reading and in writing a file is granted by the
operations of read() and write(), which synchronize the data
structure vnode associated with the file.

Process A Process B

MemoryDisc file descriptorKernel

file table (flags & offset)

vnode table (inode & size)

memory page
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Mapping of Files in Memory

Allows a process to map regions of a file directly within its address space,
such that, the read and the write operations are completely transparent.

Process A Process B

MemoryDisc
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Mapping of Files in Memory

How to map a file in to an address space:
Initially, the processes must obtain the descriptor of the file to be
mapped.
Next, each process, must map the file in to an address space.
And finally, after using the mapping, each process must free it.
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Mapping a Region of a File in Memory

void *mmap(void *start, size_t length, int prot, int flags,
int fd, off_t offset)

mmap() allows the mapping of a region of a file from a memory address
within a process address space. Returns the memory address in which the
region was mapped, or -1 if it is not possible to do the mapping.

start is the initial memory address, where we want to map the file
region (multiple of the operating system’s page size) or NULL if we
allow the operating system to choose the address.
length is the size of the mapping (in bytes).
prot specifies the read and write permissions of the mapping:
PROT_READ and PROT_WRITE.
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Mapping a Region of a File in Memory

void *mmap(void *start, size_t length, int prot, int flags,
int fd, off_t offset)

flags specifies the attributes of the mapping: MAP_FIXED forces the
usage of start to map the region; MAP_SHARED indicates that the
write operation changes the file; MAP_PRIVATE indicates that the write
operations are not propagated to the file (usually used for debugging).

fd is the descriptor of the file to mapped.
offset is displacement within the region of the file to be mapped
(multiple of the operating system’s page size).
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Mapping a Region of a File in Memory

void *mmap(void *start, size_t length, int prot, int flags,
int fd, off_t offset)

offset length

start

length

Memory File

M.Areias (DCC-FCUP) Programming with Processes Parallel Computing 18/19 23 / 60



Freeing a Region from Mapped Memory

int munmap(void *start, size_t length)

munmap() frees the mapping made and the correspondent region of
memory is no longer associated with a memory address. Returns 0 if OK
or (-1) otherwise.

start is the initial address of the memory region to be freed.
length is the amount of memory to freed.
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Basic Step Sequence

int fd, mapsize;
void *mapped_memory;
...
mapsize = getpagesize();
fd = open("mapfile", O_RDWR | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR);
lseek(fd, mapsize, SEEK_SET);
write(fd, "", 1);
mapped_memory = mmap(NULL, mapsize, PROT_READ | PROT_WRITE,

MAP_SHARED, fd, 0);
...
sprintf(mapped_memory, "Hello World!");
...
munmap(mapped_memory, mapsize);
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Parallel Rank Sort (proc-rankmmap.c)

int A[N], *R;

main() {
...
// map a file into a shared memory region for R[]
fd = open("mapfile", O_RDWR | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR);
lseek(fd, N * sizeof(int), SEEK_SET);
write(fd, "", 1);
R = (int *) mmap(NULL, N * sizeof(int), PROT_READ | PROT_WRITE,

MAP_SHARED, fd, 0);

// each child executes one task
for (k = 0; k < N; k++)

if (fork() == 0) {
compute_rank(A[k]);
exit(0);

}
for (k = 0; k < N; k++) wait(NULL);
for (k = 0; k < N; k++) printf("%d\n", R[k]); printf("\n");
// unmap shared memory region
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Advanced Techniques in Memory Mapping

Consider the mapping of a shared memory seg-
ment according with the figure:

Each process has a local area and all
processes shared the same global area.
The sharing of tasks is obtained through
the synchronization of the states of the
processes in the different parts of the
computation.
This synchronization corresponds in
practice to the copy of segments of
memory from one process to another
process.

Process 0

Process N

Global
Area

Process i

... 

... 
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Advanced Techniques in Memory Mapping

Problem: the copy of segments of memory be-
tween the processes requires the reallocation of
addresses, so that they can make sense in the
new address space.

Solution: map the memory in such a way that
all processes can see their own areas in the same
address. In other words, the address space
of each process, from the individual point of
view, begins in the same address.
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Advanced Techniques in Memory Mapping

Process 0
Address Space

Addr 0

Addr 2

Process 0

Process 1

Process 2

Addr 1

Forking
+

Remapping

Forking
+

Remapping

Process 2
Address Space

Addr 0

Addr 2

Process 2

Process 0

Process 1

Addr 1

Process 1
Address Space

Addr 0

Addr 2

Process 1

Process 2

Process 0

Addr 1

This technique allows the copying operations to be very efficient, since it
avoids the reallocation of addresses. Suppose that, for example, the
process 2 wants to copy to process 1, a memory segment that begins in
the address Addr (for the point of view of the process 2). Then, the
destination address should be Addr + (Addr2 - Addr0).
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Advanced Techniques in Memory Mapping

map_addr = mmap(NULL, global_size + n_procs * local_size,
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

for (i = 0; i < n_procs; i++)
proc(i) = map_addr + global_size + local_size * i;

for (p = 1; p < n_procs; p++)
if (fork() == 0) {

// unmap local regions
remap_addr = map_addr + global_size;
munmap(remap_addr, local_size * n_procs);
// remap local regions
for (i = 0; i < n_procs; i++) {

proc(i) = remap_addr + local_size * ((n_procs + i - p) % n_procs);
mmap(proc(i), local_size, PROT_READ | PROT_WRITE,

MAP_SHARED | MAP_FIXED, fd, global_size + local_size * i);
}
break;

}

The memory copy of process 2 to process 1 from Addr would have the
destination address Addr + (proc(1) - proc(2)).
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Synchronization in Shared Memory

In Parallel Rank Sort the processes are independent and do not need to
synchronize in the shared memory access. However, when processes
update shared data structures (critical region), it is necessary to use
mechanisms that guarantee mutual exclusion, i.e., guarantee that two
processes are never simultaneously within the same critical region.

Besides granting mutual exclusion, a good and correct solution to the
critical region problem should also verify the following conditions:

Processes outside the critical region cannot block other processes.
No process should wait indefinitely to enter in the critical region.
The CPU frequency or the number of CPU’s available should not be
relevant.

Next, we will see two synchronization mechanisms:
Spinlocks – busy waiting
Semaphores – no busy waiting
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Atomic Instructions

One way to grant an efficient mutual exclusion is to protect the critical
regions through the usage of atomic instructions:

Test and Set Lock (TSL) – modifies the content of a memory
position to a pre-determined value and returns the previous value.
Compare And Swap (CAS) – tests and swaps the content of a
memory position according with an expected value.

The implementation of this type of atomic instructions requires the
support of the hardware. Nowadays, modern hardware architectures
support atomic instructions TSL/CAS or its variants.
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Atomic Instructions

// test and set lock
boolean TSL(boolean *target) {

boolean aux = *target;
*target = TRUE;
return aux;

}

// compare and swap
boolean CAS(int *target, int expected, int new) {

if (*target != expected)
return FALSE;

*target = new;
return TRUE;

}

The execution of the TSL() and CAS() instructions must be indivisible,
i.e., no other process can access the memory position which is being
refereed by target before the instruction completes it execution.
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Mutual Exclusion with TSL

Question: how to use the TSL instruction to ensure mutual exclusion
when accessing a critical region?

Solution: associate a shared variable (mutex lock) to the critical region
and repeatedly execute the TSL instruction on that variable until it returns
the value FALSE. A process accesses only the critical region when the
instruction returns FALSE, which guarantees the mutual exclusion.

#define INIT_LOCK(M) M = FALSE
#define ACQUIRE_LOCK(M) while (TSL(&M))
#define RELEASE_LOCK(M) M = FALSE

INIT_LOCK(mutex);
... // non-critical section
ACQUIRE_LOCK(mutex);
... // critical section
RELEASE_LOCK(mutex);
... // non-critical section
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Mutual Exclusion with CAS

#define INIT_LOCK(M) M = 0
#define ACQUIRE_LOCK(M) while (!CAS(&M, 0, 1))
#define RELEASE_LOCK(M) M = 0

INIT_LOCK(mutex);
... // non-critical section
ACQUIRE_LOCK(mutex);
... // critical section
RELEASE_LOCK(mutex);
... // non-critical section
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Spinlocks

When a solution to implement mutual exclusion requires busy waiting,
the mutex lock is called spinlock.

Busy waiting can be a problem because:
Wastes CPU time that another process could be using to do useful
work.
If the process holding the lock is interrupted (change of context) then
no other process can access the lock and so it will be useless to give
CPU time to another process.
Does not satisfy the condition that no process should wait indefinitely
to enter in a critical region.

On the other hand, when the time holding the lock is too short it is
expected to be more advantageous than doing a context switch:

Usual in multiprocessor/multicore systems, where a process holds a
lock and the remaining processes remain in busy waiting.
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Spinlocks in Linux (include/linux/spinlock.h)

Initialize the spinlock:

spin_lock_init(spinlock_t *spinlock)

Busy waiting until obtaining the spinlock:

spin_lock(spinlock_t *spinlock)

Tries to obtained the spinlock, but does not wait if it is not possible:

spin_trylock(spinlock_t *spinlock)

Free the spinlock:

spin_unlock(spinlock_t *spinlock)
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Read-Write Spinlocks

Sometimes, the necessity of granting mutual exclusion in the access to a
critical region is only (or mostly) associated with reading operations.

Non-exclusive read operations never lead to inconsistency of data, only
write operations cause this problem.

Read-write spinlocks provide an alternative solution, since they allow
multiple simultaneous reading operations and one single write
operation to occur in the same critical region.
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Read-Write Spinlocks in Linux
(include/linux/rwlock.h)

Initialize the spinlock:

rwlock_init(rwlock_t *rwlock)

Busy waiting until all writing operations are complete:

read_lock(rwlock_t *rwlock)

Busy waiting until all read and write operations are complete:

write_lock(rwlock_t *rwlock)
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Read-Write Spinlocks in Linux
(include/linux/rwlock.h)

Try to obtain a spinlock, but does not wait if it is not possible:

read_trylock(rwlock_t *rwlock)
write_trylock(rwlock_t *rwlock)

Free a spinlock:

read_unlock(rwlock_t *rwlock)
write_unlock(rwlock_t *rwlock)
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Spinlocks

Advantages and disadvantages:
(+) Simple and easy to verify
(+) Can be used by an arbitrary number of processes
(+) Supports multiple critical regions
(–) With a high number of processes, busy waiting can be a problem
(–) When we have multiple critical regions, it is possible to have
deadlocks between processes.
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Semaphores

They were introduced by Dijkstra in 1965 and they allow a synchronized
access to shared resources that can be defined by a finite number of
instances.

A semaphore can be seen as a non-negative integer that represents the
number of instances available on the respective resource:

It is not possible to read or write the value of a semaphore directly,
except to set its initial value
It cannot be negative, because when it reaches the value of 0 (which
means that all instances are in use), the processes which want to use
the resource remain blocked until the semaphore gets back to a value
which is higher than 0

There are two types of semaphores:
Counting Semaphores – can have any value
Binary Semaphores – can only have the value of 0 or 1

M.Areias (DCC-FCUP) Programming with Processes Parallel Computing 18/19 42 / 60



Semaphores

They were introduced by Dijkstra in 1965 and they allow a synchronized
access to shared resources that can be defined by a finite number of
instances.
A semaphore can be seen as a non-negative integer that represents the
number of instances available on the respective resource:

It is not possible to read or write the value of a semaphore directly,
except to set its initial value
It cannot be negative, because when it reaches the value of 0 (which
means that all instances are in use), the processes which want to use
the resource remain blocked until the semaphore gets back to a value
which is higher than 0

There are two types of semaphores:
Counting Semaphores – can have any value
Binary Semaphores – can only have the value of 0 or 1

M.Areias (DCC-FCUP) Programming with Processes Parallel Computing 18/19 42 / 60



Semaphores

They were introduced by Dijkstra in 1965 and they allow a synchronized
access to shared resources that can be defined by a finite number of
instances.
A semaphore can be seen as a non-negative integer that represents the
number of instances available on the respective resource:

It is not possible to read or write the value of a semaphore directly,
except to set its initial value
It cannot be negative, because when it reaches the value of 0 (which
means that all instances are in use), the processes which want to use
the resource remain blocked until the semaphore gets back to a value
which is higher than 0

There are two types of semaphores:
Counting Semaphores – can have any value
Binary Semaphores – can only have the value of 0 or 1

M.Areias (DCC-FCUP) Programming with Processes Parallel Computing 18/19 42 / 60



Operations over Semaphores

The semaphores can be accessed through two atomic operations:

DOWN (or SLEEP or WAIT) – waits for the semaphore to be
positive and then decrements it in one unit
UP (or WAKEUP or POST or SIGNAL) – increments the
semaphore in one unit

down(semaphore S) {
if (S == 0)

suspend(); // suspend current process
S--;

}

up(semaphore S) {
S++;
if (S == 1)

wakeup(); // wakeup one waiting process
}
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Implementation of Semaphores

The implementation must ensure that two operations DOWN and/or UP
are never performed simultaneously on the same semaphore:

Simultaneous operations of DOWN cannot decrement the semaphore
below zero.
One cannot loose one increment UP if another DOWN occurs
simultaneously.

The implementation of semaphores is based in synchronization
mechanisms that try to minimize the time spent in busy waiting.
There are two approaches to minimize the time spent in busy waiting:

In uniprocessores, by deactivating the interrupts.
In multiprocessors/multicores, by combining deactivation interrupts
with atomic instructions.
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Implementation of Semaphores in Uniprocessors

typedef struct { // semaphore data structure
int value; // semaphore value
PCB *queue; // associated queue of waiting processes

} semaphore;

init_semaphore(semaphore S) {
S.value = 1;
S.queue = EMPTY;

}

down(semaphore S) {
disable_interrupts();
if (S.value == 0) { // avoid busy waiting

add_to_queue(current_PCB, S.queue);
suspend();
// kernel reenables interrupts just before restarting here

} else {
S.value--;
enable_interrupts();

}
}
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Implementation of Semaphores in Uniprocessors

up(semaphore S) {
disable_interrupts();
if (S.queue != EMPTY) {

// keep semaphore value and wakeup one waiting process
waiting_PCB = remove_from_queue(S.queue);
add_to_queue(waiting_PCB, OS_ready_queue);

} else {
S.value++;

}
enable_interrupts();

}
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Implementation of Semaphores in Multiprocessors

typedef struct { // semaphore data structure
boolean mutex; // to guarantee atomicity
int value; // semaphore value
PCB *queue; // associated queue of waiting processes

} semaphore;

init_semaphore(semaphore S) {
INIT_LOCK(S.mutex);
S.value = 1;
S.queue = EMPTY;

}
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Implementation of Semaphores in Multiprocessors

down(semaphore S) {
disable_interrupts();
ACQUIRE_LOCK(S.mutex); // short busy waiting time
if (S.value == 0) {

add_to_queue(current_PCB, S.queue);
RELEASE_LOCK(S.mutex);
suspend();
// kernel reenables interrupts just before restarting here

} else {
S.value--;
RELEASE_LOCK(S.mutex);
enable_interrupts();

}
}
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Implementation of Semaphores in Multiprocessors

up(semaphore S) {
disable_interrupts();
ACQUIRE_LOCK(S.mutex); // short busy waiting time
if (S.queue != EMPTY) {

// keep semaphore value and wakeup one waiting process
waiting_PCB = remove_from_queue(S.queue);
add_to_queue(waiting_PCB, OS_ready_queue);

} else {
S.value++;

}
RELEASE_LOCK(S.mutex);
enable_interrupts();

}
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POSIX Semaphores

The POSIX semaphores are available in two versions:

Named Semaphores – they are accessed by their name and they can
be used by all processes that know that name
Unnamed Semaphores – exist only in memory and therefore can
only be used by the processes that share the same address space.

Both versions work in the same way, they differ only on the way that they
are initialized and freed.
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Creating a Named Semaphore

sem_t *sem_open(char *name, int oflag)
sem_t *sem_open(char *name, int oflag, mode_t mode, int value)

sem_open() creates a new semaphore or opens one that already exists and
returns the address of the semaphore. In case of error, it returns
SEM_FAILED.

name is the name that identifies the semaphore (by convention, the
first character of the name is ’/’ and does not have any further ’/’)
oflag specifies the create/open options: O_CREAT creates a new
semaphore; O_EXCL if the semaphore is exclusive; 0 to open a
semaphore that already exists.
mode specifies the access options (important only when we create one
new semaphore with option O_CREAT).
value specifies the initial value of the semaphore (important when we
create one new semaphore with option O_CREAT).

M.Areias (DCC-FCUP) Programming with Processes Parallel Computing 18/19 51 / 60



Creating a Named Semaphore

sem_t *sem_open(char *name, int oflag)
sem_t *sem_open(char *name, int oflag, mode_t mode, int value)

sem_open() creates a new semaphore or opens one that already exists and
returns the address of the semaphore. In case of error, it returns
SEM_FAILED.

name is the name that identifies the semaphore (by convention, the
first character of the name is ’/’ and does not have any further ’/’)

oflag specifies the create/open options: O_CREAT creates a new
semaphore; O_EXCL if the semaphore is exclusive; 0 to open a
semaphore that already exists.
mode specifies the access options (important only when we create one
new semaphore with option O_CREAT).
value specifies the initial value of the semaphore (important when we
create one new semaphore with option O_CREAT).

M.Areias (DCC-FCUP) Programming with Processes Parallel Computing 18/19 51 / 60



Creating a Named Semaphore

sem_t *sem_open(char *name, int oflag)
sem_t *sem_open(char *name, int oflag, mode_t mode, int value)

sem_open() creates a new semaphore or opens one that already exists and
returns the address of the semaphore. In case of error, it returns
SEM_FAILED.

name is the name that identifies the semaphore (by convention, the
first character of the name is ’/’ and does not have any further ’/’)
oflag specifies the create/open options: O_CREAT creates a new
semaphore; O_EXCL if the semaphore is exclusive; 0 to open a
semaphore that already exists.

mode specifies the access options (important only when we create one
new semaphore with option O_CREAT).
value specifies the initial value of the semaphore (important when we
create one new semaphore with option O_CREAT).

M.Areias (DCC-FCUP) Programming with Processes Parallel Computing 18/19 51 / 60



Creating a Named Semaphore

sem_t *sem_open(char *name, int oflag)
sem_t *sem_open(char *name, int oflag, mode_t mode, int value)

sem_open() creates a new semaphore or opens one that already exists and
returns the address of the semaphore. In case of error, it returns
SEM_FAILED.

name is the name that identifies the semaphore (by convention, the
first character of the name is ’/’ and does not have any further ’/’)
oflag specifies the create/open options: O_CREAT creates a new
semaphore; O_EXCL if the semaphore is exclusive; 0 to open a
semaphore that already exists.
mode specifies the access options (important only when we create one
new semaphore with option O_CREAT).
value specifies the initial value of the semaphore (important when we
create one new semaphore with option O_CREAT).

M.Areias (DCC-FCUP) Programming with Processes Parallel Computing 18/19 51 / 60



Closing a Named Semaphore

int *sem_close(sem_t *sem)

sem_close() closes the access to the semaphore and frees all of the
resources of the process associated with the semaphore (the value of the
semaphore is not affected). Returns 0 if OK, -1 otherwise.

sem is the address that identifies the semaphore to be closed

By default, the resources associated with a semaphore, which was opened
by a process, are released when the process ends (similar to what happens
with the files opened in the context of a process).
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Removing a Semaphore with Name

int *sem_unlink(char *name)

sem_unlink() removes the semaphore’s name from the system (i.e., it is
no longer possible to open the semaphore with sem_open()) and, if there
are no references to close to the semaphore, the semaphore is also
destroyed. Otherwise, the semaphore is only destroyed when there are no
references to close. Returns 0 if OK, -1 otherwise.

name is the name that identifies the semaphore to be removed
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Creating a Unnamed Semaphore

int sem_init(sem_t *sem, int pshared, int value)

sem_init() creates an unnamed semaphore to be shared between
processes. Returns 0 if OK, -1 otherwise.

sem is the address that identifies the unnamed semaphore.
pshared states if the semaphore is to be shared between threads (0)
or between processes (1).
value states the initial value of the semaphore.

To share a semaphore between processes, it must be located in a memory
region which is shared among all processes.
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Freeing a Unnamed Semaphore

int sem_destroy(sem_t *sem)

sem_destroy() destroys the unnamed semaphore. Returns 0 if OK, -1
otherwise.

sem is the address that identifies the semaphore to be destroyed

Destroying a semaphore that other processes can still be using leads to an
unknown behavior, unless that, in the meantime the semaphore is again
created by another call to the function sem_init().
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Operations over Semaphores with/without Name

int sem_post(sem_t *sem)
int sem_wait(sem_t *sem)
int sem_trywait(sem_t *sem)

sem_post() increments the value of the semaphore, while the
sem_wait() and sem_trywait() decrement the value of the semaphore.
sem_wait() blocks while the semaphore has the value 0, while the
sem_trywait() avoids the blocking by returning the value of error instead
of blocking. All operations return 0 if OK, -1 otherwise.

sem is the address that identifies the semaphore to be incremented or
decremented.
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Basic Steps to Use a Named Semaphore

#define SEM_NAME "/mysem"

int main() {
sem_t *sem;
sem = sem_open(SEM_NAME, O_CREAT | O_EXCL, S_IRUSR | S_IWUSR, 1);
... // use sem_wait()/sem_post() to increment/decrement semaphore
sem_close(sem); // close semaphore
sem_unlink(SEM_NAME); // destroy semaphore name

}
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Basic Steps to Use an Unnamed Semaphore

sem_t sem; // unnamed semaphore to be used with threads

int main() {
sem_init(&sem, 0, 1); // create semaphore
... // use sem_wait()/sem_post() to increment/decrement semaphore
sem_destroy(&sem); // destroy semaphore

}

sem_t *sem; // unnamed semaphore to use with processes

int main() {
sem = (sem_t *) shmget(...); // allocate shared memory for semaphore
sem_init(sem, 1, 1); // create semaphore
... // use sem_wait()/sem_post() to increment/decrement semaphore
sem_destroy(sem); // destroy semaphore

}
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Sleeping Barber Problem

The Sleeping Barber problem is a classic IPC problem:

A barber shop has a number of barbers and a number (NCHAIRS) for
clients waiting to be attended.
Whenever a barber does not have clients to attend, he takes a little
sleep.
When a customer arrives at the barber shop, he has to wake up a
barber to attend him.
If a client arrives and all barbers are occupied, then he should wait to
be attended (if there are free chairs) or should leave the barber shop
without having a haircut (if all the chairs are occupied).
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Sleeping Barber Problem

int waiting = 0; semaphore clients = 0, barbers = 0, mutex = 1;
client() {

down(mutex); // get access to the Chair’s Waiting Room (CWR)
if (waiting >= NCHAIRS) // check for empty chairs

{ up(mutex); exit(1); } // leave without a haircut
waiting++; // get one of the chairs
up(clients); // wakeup (or notify) a barber if necessary
up(mutex); // release access to the CWR
down(barbers); // wait if there are no barbers available
get_hair_cut();

}

barber() {
while(1) { // infinite loop to receive multiple clients

down(clients); // sleep if there are no clients
down(mutex); // awake - get access to the CWR
waiting--; // free one of the chairs
up(barbers); // ready to cut hair
up(mutex); // release access to the CWR
cut_hair();

}
}
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