Injection vulnerabilities

Questoes de Seguranca em Engenharia de Software (QSES)
Mestrado em Seguranca Informatica y -
Departamento de Ciéncia de Computadores e

Faculdade de Ciéncias da Universidade do Porto l 0 \ C
O

[WPrORTO
Eduardo R. B. Marques, edrdo@dcc.fc.up.pt

mailto:edrdo@dcc.fc.up.pt?subject=

Injection

m Vulnerability class — CWE-74

@)

O

Improper Neutralization of Special Elements in Output Used by a
Downstream Component

Short name: ’Injection’

m Description

@)

“The software constructs [...] a command, data structure, or
record using externally-influenced input [...] but it does
not neutralize or incorrectly neutralizes special elements that
could modify how it is parsed or interpreted [...]”

‘l...] the execution of the process may be altered by sending
code in through legitimate data channels, using no other
mechanism. While buffer overflows, and many other flaws,
involve the use of some further issue to gain execution, injection
problems need only for the data to be parsed.

https://cwe.mitre.org/data/definitions/74.html

Injection examples

OS command injection CWE-78

// PHP fragment

$userName = $_POST["user"];

$command = 'ls -1 /home/' . $userName;
system($command);

SQL injection CWE-89

int 1d = 1nput(Q);
String query = "SELECT NAME FROM USERS WHERE ID=" + 1id
Statement conn = db.createStatement();

ResultSet rs = conn.executeQuery(query);
// ...

m What is wrong with both fragments?

m SQL injection and OS command injection are the top two entries in the CWE/
SANS Top 25 Most Dangerous Software Errors

m We will look at these two types of injection vulnerabilities in more detail today.

http://cwe.mitre.org/top25/
http://cwe.mitre.org/top25/

CWE TOP 25 - http://cwe.mitre.org/top25/

Rank|/Score|| ID Name
[1] [93.8 CWE- ||[Improper Neutralization of Special Elements used in an SQL Command
' 89 ('SQL Injection')
[2] |83.3 CWE- |Improper Neutralization of Special Elements used in an OS Command
' 78 ('OS Command Injection')
[3] |79.0 %OE— Buffer Copy without Checking Size of Input ('Classic Buffer Overflow")
CWE- |[Improper Neutralization of Input During Web Page Generation ('Cross-
[4] [|77.7 : PR
79 site Scripting')
[5] ||76.9 % Missing Authentication for Critical Function

m #1 and #2 are SQL and Command injection

m #3 and #4 - Buffer overflows and cross-site scripting (discussed later in the

course

)

o require complementary mechanisms beyond plain data parsing

o but also relate to bad input handling and rely on a blurred distinction between code
and data

http://cwe.mitre.org/top25/

Injection — general attack pattern

m General attack pattern
o Malicious input is supplied to a software system.

o The input is used to build part of a command or executable code, that alters the
expected flow of execution.

m Basic problem
o Distinction between code and data is blurred !
o Data disguised as code/command !

m What must be do ?

o Ensure that (malicious) input cannot be construed as code or command.

o “All Input is Evil” / “Trust no input”: security mantras we should keep in
mind (for injection and various other types of vulnerabilities).

m Terminology — Prevention vs mitigation vs detection
o Detection: plain detection of a vulnerability
o Mitigation: limit possible damage
o Prevention: take measures to eliminate the vulnerability

Running example — DVWA

- Welcome to Damn Vulnerable Web App!

1w Trwc t loes Damn Vulnesaiis Weabh A0D (DVWA) B 2 PHEAYSOL WoaD 2000000 Tha! B amn wuinerabes. s mamn ooals

e 10 DS M X 104 8OO Ry DFInssOnNds 10 TSt e & N 10OE N 2 y_,.u SO OnmMment, el wed
“” GOVEOPETS DOar UNBSISLaNd THe Felessns Of SOOUring wab aDpCALONS aNd oM 1eaohera'stiuoants 1o
teaachleaarn wab appiication sescurfy In a cdass room anviraonmant

Brute Force , WARNINGI!

Command Exeoution Damn Vulherabie Wab App a dama vanerable! Do ol upiosd f 1o youwr hoasting provicler's puablc tmi fokder or
CRRF any ntermet Iacng webd server as § wil be comprominad e recommend downloading and naialing

’ | OO & 0O MBS NSE YOUr AN Wwiiom B usod SOty NOr 1091
4 > ¢

We 00 N0t 3aae raSDONSERTY 105 The Wiy M whadh ANy ONG USSS TN 000N ON . W Rave Made INo DUNDoOSes O
SQL Irgection (BLinad e JSDIORTON e aNd | SHows] NOL Be Used MABE>
t VA QN A0 Bt WAl BArvara. 1T your wall Marvel I COMPBIromiMa v an natalation

Upl g Prevant usaca fraom nataling D
Of DAVYA £ 8 N0t OUr resDONSDEy £ & the responsinilty of Ihe DSOS whHo upoaded and nstadsa i

XSS atored

Disclaimer

We Dave Oven warmings and 1a8enN Moasures o

Gonoral Instructions

Tha el button allcws you 1o view hitsMtps for anch vuinerabity and for esch securtty Bvel on thalr respecive

pose)@
DVWA Secufty
PHE o]
About -
- TR 4 |.'-b-_,~'v-|o O% »Omsm

Logout

Usaername. avim
Security Lavel: hiah
PHAMDS duabis)

m DVWA: Damn Vulnerable Web Application

o Homepage

o GitHub repository

o Docker image

http://dvwa.co.uk/
https://github.com/ethicalhack3r/DVWA
https://hub.docker.com/r/vulnerables/web-dvwa/

OS Command
Injection

OS commands

OS command injection CWE-78

// PHP fragment

$userName = $_POST["user"];

$command = 'ls -1 /home/' . $userName;
system($command);

m OS commands are often handy as “glue”, for example to
invoke third-party software / OS utilities.

m Example ways to execute OS commands:

o Traditional system call in C, Python, Perl, or equivalent support
In other languages.

o Within SQL in some database engines (!!!): xp cmdshell in
SQL Server

o exec directive in "server-side includes"

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/xp-cmdshell-transact-sql
http://httpd.apache.org/docs/2.2/mod/mod_include.html#element.exec

OS command injection attacks

OS command injection CWE-78 Example injection:
// PHP fragment userName = * john; rm -fr /'
$userName = $_POST["user"];
$command = 'ls -1 /home/' . $userName;
system($command);

m Special meta-characters are interpreted by the system shell.
m Above you have something like:
o system(”someBeautifulCommand Sinput”)
m Now consider
o $input = “someArqg; rm -fr /“
m [he executed commands are in fact

o someBeautifulCommand someArg

o rm -fr /

10

Handling OS command injection

o

o

O

o

O

o

#1 — Do not use OS command execution !

Not always practical !

#2 — Prevention by input validation

Blacklisting strategy — disallow commands with special shell characters
Sanitisation — Meta-character escaping for sanitisation
Whitelist — allow only (validated) commands that adhere to a strict format

Blacklisting / sanitisation are prone to loopholes: system shells can be very
heterogeneous and feature-rich; escaped characters may still be dangerous
due to sub-command invocation.

#3 — Run with least privilege (mitigation)

Make sure commands are not invoked by processes with more privileges than
necessary (e.g. process is not executed as root user!)

#4 — Environment-based attacks (prevention)

o Only use commands with full path specified and explicitly control PATH setting /

other dangerous variables

#5 — Detect statically or in live execution in “tainted mode” (detection)

11

Input validation examples — DVWA

Vulnerability: Command Injection

Ping a device

Enter an IP address: Submit |

m Have a look at the source code for command injection:

o low.php :inputis used directly to execute command
+ Exploiteasy: 127.0.0.1 ; cat /etc/passwd o0r127.0.0.1 && cat /etc/passwd

o medium.php: blacklisting of “;” and “&&”, that are erased from input
+ Stilleasy: 127.0.0.1 | cat /etc/passwd

o high.php: blacklisting of more characters, but a small typo breaks the
validation logic!

+ Check the source code to understand why the following exploit works: 127.0.0.1 Il cat /etc/
passwd

© impossible.php: whitelist strategy, validates that input is strictly an
IP address, reject all other input

12

OS command injection — other
techniques

Environment may determine what commands are
executed.

Suppose you have

o system(“someBeautifulCommand $input”)

This assumes someBeautifulCommand is in the PATH of
the running program ...

If attacker can “infect” the PATH, a malicious
myBeautifulCommand may be executed instead.

Variations

o The path for dynamically-linked code can also be controlled by
environment variables, e.g. LD_PRELOAD and
LD_LIBRARY_PATH in Unix

o IFS separator variable changes the interpretation of file names!

13

Shellshock @

ShellShock: A “family” of security bugs starting with
CVE-2014-6271

Base vulnerability:

o The UNIX bash shell unintentionally executed commands that
were concatenated to the end of function definitions stored in
environment variables (!).

Environment variables should also be considered as program inputs!
Example

o export X=‘() { }; maliciousCommand’
o runAnything # does not need to access X!!

O ...andmaliciousCommand would run!

Example exploits — HTTP request headers converted to
environment variables to CGl programs in many platforms! So ...

o Check more info here and here.

https://nvd.nist.gov/vuln/detail/CVE-2014-6271
https://en.wikipedia.org/wiki/Shellshock_(software_bug)#Specific_exploitation_vectors
https://www.fireeye.com/blog/threat-research/2014/09/shellshock-in-the-wild.html

14

Static analysis example — using WAP

File: /Users/edrdo/qgsesl19/tools/dvwa/DVWA/vulnerabilities/exec/
source/low.php

= = = = Vulnerability n.: 1 === =
Type: 0S Command Injection

Vulnerable code:
5: $target = $_REQUEST['ip'];
10: $cmd = shell_exec('ping ' . $target);

Corrected code:

5: $target = $_REQUEST['ip' 1;

10: if (san_osci($_REQUEST['ip']) == 0)

11: $cmd = shell_exec('ping ' . $target);

m WAP (Web Application Protection) tool
o Static analysis tool for PHP web applications
o Developed at University of Lisbon

http://awap.sourceforge.net

15

Perl’s “taint mode”

Input-based command
injection through command-line
argument.
#! /opt/local/bin/perl
$username = S$SARGV[0]; Environment-based command
Injection also possible. PATH

system("finger Susername"); oS
may be arbitrarily set.

-T switch

This will force us to
transform the program.
Let’s run it and see how!

v
#! /opt/local/bin/perl -T
Susername = SARGV[O0];
system("finger Susername");

m Small Perl program (similar to the Java example)
m Malicious use: unsafe.pl “someUserName; arbitraryCommand”

m -T switch activates “taint mode” which tries to keep track of “tainted” (unsecure)
data and their use in security-sensitive spots

m This is for Perl, but “tainted modes” are available for other languages like PHP and
Python

https://perldoc.perl.org/perlsec.html#Taint-mode
https://perldoc.perl.org/perlsec.html#Taint-mode
http://php.net/manual/en/intro.taint.php
https://github.com/felixgr/pytaint

16

Perl’s “taint mode” (2)

#! /opt/local/bin/perl -T
Susername = SARGV[O0];
system("finger Susername");

l Insecure $ENV{PATH}

#! /opt/local/bin/perl -T

SENV{PATH} = ‘/usr/bin’;

$username = $ARGV[0 1; Set PATH to a safe value.
system("finger Susername");

l Insecure dependency in system

#! /opt/local/bin/perl -T Regular expression match assumed
SENV{PATH}="'/usr/bin';

to yield untainted data. The
Susername = SARGV[O0];

_ reasoning is to force program to
if (Susername =~ /" ([\w_]1+)$/) { perform input validation. Regular
system("finger S1");

expression can still potentially be
} else { inadequate.
print "Invalid argument: '" . Susername . " Note: $1 in the call to system
}

denotes the regular expression
match result, assumed to be secure
by the “taint mode” module.

SQL injection

SQL injection — Context

SQL injection CWE-89

int id = input(Q);
String query = "SELECT NAME FROM USERS WHERE ID=" + id
Statement conn = db.createStatement();

ResultSet rs = conn.executeQuery(query);
// ...

m SQL (Structured Query Language): the standard query language for
interfacing with relational databases.

m SQL code is defined by arbitrary programs in interface to a database engine, in
conjunction with some language-specific API (e.g. JDBC for Java as above).

m SQL injection: malicious inputs affect SQL code to execute unintended
functionality.

18

SQLi — example attacks

SQL injection is possible
through the ‘id’ input!

int 1d = 1nput(Q);
String query = "SELECT NAME FROM USERS WHERE ID=" + 1id
Statement conn = db.createStatement();

ResultSet rs = conn.executeQuery(query);
// ...

m The id parameter, used for building the query, is a “front door” for
arbitrary command execution possible leading to

m Command sequences (also called piggy-backed queries)
o id = “1234 ; DELETE FROM USERS”

m UNION queries

o id = *“1234 UNION SELECT PASSWORD FROM USERS WHERE

ID=1234" . e
O Further reading: "A Classification

H Tautologies of SQL Injection Attacks and

Countermeasures”, Halfond et al.,

o 1d = “1234 OR 1=1" ISSSE'06

20

SQLi — threats

int id = inputQ);

String query = "SELECT NAME FROM USERS WHERE ID=" + 1id
Statement conn = db.createStatement();

ResultSet rs = conn.executeQuery(query);

/...

m The id parameter, used for building the query, is a front
door for arbitrary SQL injection possible leading to

o Data tampering - modifying the database

o Information disclosure - disclosing unauthorised data, e.g. the
even the entire database schema

o Denial of Service - by issuing a time-consuming query

21

Tales of ‘Bobby tables’

HI, THIS 1S

WE'RE HAVING SOME
COMPUTER TROUBLE.

\%m

YOUR SON'S SCHOOL.

m SQLi attacks are common and cause serious damage

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

%4

DID YOU REALLY
NAME YOR SON
Robert'); DROP
TABLE Studerts;-~ 7

!

~OH.YES. UTTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

!

AND I HOPE
- YOUVE LEARNED
¢ TOSANMIZE YOUR
DATARASE INPUTS.

Exploits of a mom https://xkcd.com/327/

o SQL injection hall of shame

o The History of SQL Injection, the Hack That Will Never Go

Away

m Some people just try to be funny (?) about it:
o Did Little Bobby Tables migrate to Sweden?

o ; DROP TABLE "COMPANIES";-- LTD

http://codecurmudgeon.com/wp/sql-injection-hall-of-shame/
https://motherboard.vice.com/en_us/article/aekzez/the-history-of-sql-injection-the-hack-that-will-never-go-away
https://motherboard.vice.com/en_us/article/aekzez/the-history-of-sql-injection-the-hack-that-will-never-go-away
https://alicebobandmallory.com/articles/2010/09/23/did-little-bobby-tables-migrate-to-sweden
https://beta.companieshouse.gov.uk/company/10542519
https://xkcd.com/327/

22

SQLi probes — malformed SQL

int 1d = 1nput(Q);
String query = "SELECT NAME FROM USERS WHERE ID=" + 1id
Statement conn = db.createStatement();

ResultSet rs = conn.executeQuery(query);
// ...

Searching for O'Neil

You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to
use near 'Neil' GROUP BY username ORDER BY username ASC'
at line 1

This is the Query you executed (injection string is underlined):

SELECT username FROM users WHERE username LIKE 'O'Neil’
GROUP BY username ORDER BY username ASC

m Use malformed SQL
o id = #1234 FOLLOWED BY INVALID SQL”

o Server may Yyield back detailed error messages providing
positive indication that SQLi is possible

SQLi probes — Blind SQL injection

int id = inputQ);

String query = "SELECT NAME FROM USERS WHERE ID=" + 1id
Statement conn = db.createStatement();

ResultSet rs = conn.executeQuery(query);

// ...

m Blind SQL injection works by issuing false / true
statements and comparing the responses

o id = “1234 AND 1=2": server may report no data, but we may
not be aware if the query was rejected / malformed

o id =“1234 AND 1=1": if output is different then SQLi should be
possible

23

24

Blind SQLi - DVWA example
User ID: 1" AND '1' ="1 Submitl

yields

User ID: Submit |

User ID exists in the database.

m Looks like a vulnerable answer ...

m SQLi may be possible, how can we be sure ? Perhaps
input was sanitised instead ?

25

Blind SQLi - DVWA example (2)
User ID: 1"AND'1'='0| | Submit |

yields

User ID: Submit |

User ID 1s MISSING from the database.

m Different answer!
m SQLi point identified!

SQLi probes — time-based blind SQL
Injection

int id = inputQ);

String query = "SELECT NAME FROM USERS WHERE ID=" + 1id
Statement conn = db.createStatement();

ResultSet rs = conn.executeQuery(query);

// ...

m Time-based SQL injection works by issuing functions that
may cause a delay in the query

o if a delay is noticeable, SQLi should be possible

o E.g. SLEEP function for MySQL - info here at sqlinjection.net
for different databases

o DVWAdemo:youmayuse 1’ AND SLEEP(5)-- X

20

http://www.sqlinjection.net/time-based/
http://sqlinjection.net

27

SQLi and stored procedures

CREATE OR REPLACE PROCEDURE
prodDescr (vhame IN VARCHAR2, vresult OUT VARCHAR2) AS

vsql VARCHAR2 (4000) ;
BEGIN
vsgl := 'SELECT description FROM products
WHERE name=''' || vname || '''"';
EXECUTE IMMEDIATE vsql INTO vresult;
END;

m Example taken from sqglinjection.net : we can attain SQL
injection through the vname parameter

m Stored procedures are not necessarily more secure than
embedded SQL.

http://www.sqlinjection.net/advanced/pl-sql/

28

Handling SQL|

m Applying general principles (mitigation)

o Fail safely: do not leak internal database schema details in error
messages.

o Run with least privilege: standard programs should not connect as
database administrator.

m Secure programming (prevention)

o Input sanitisation by escaping input arguments (fragile) — example
next.

o Parameterised queries (secure) — example next.
m Detection
o static analysis tools

o “tainted” execution

o pen-testing

29

Input sanitisation — DVWA example

vulnerabilities/sqli_blind/source/medium.php

$id = .. mysql_real_escape_string($id, ..)
$getid = “SELECT first_name, last_name FROM users WHERE user_id = $id;"

Medium Level

The medium level uses a form of SQL injection protection, with the function of "mysql_real _escape_string()".
However due to the SQL query not having quotes around the parameter, this will not fully protect the query from

being altered.

The text box has been replaced with a pre-defined dropdown list and uses POST to submit the form.

Spoiler: ?id=a UNION SELECT 1,2;-- -&Submit=Submit.

m Helpful, but prone to loopholes ...

30

Parameterised queries
PHP (example from DVWA)

vulnerabilities/sqli/source/impossible.php

$data = $db->prepare('SELECT first_name, last_name FROM users WHERE user_id =
C:id)’);

$data->bindParam(':id', $id, PDO::PARAM_INT);

$data->execute();

Java

String sql = "SELECT ID, NAME, PASSWORD, ROLE, CREATED FROM USERS WHERE LOGIN = ?";
PreparedStatement stmt = db.prepareStatement(sql);
stmt.setString(l, login);

m [he most secure prevention for SQL injection:

o SQL statement is constant and unaffected by input. Syntactic
placeholders define that the statement may have inputs parameters.

o Input values are bound after preparing (compiling) the
statement.

Static analysis example — wap

> > > > File: /Users/edrdo/qses/tools/dvwa/DVWA/vulnerabilities/sqli_blind/
source/high.php < < < <
> Information:
- Number of Lines of Code: 33
- It 1s a include file: no
Included files: none
Defined user function: none
Number of Vulnerabilities detected: 1
- Real Vulnerabilities: 1
- False positives: 0

= = = = Vulnerability n.: 1 === =

Vulnerable code:

5: $id = $_COOKIE['id'];

8: $getid = "SELECT first_name, last_name FROM users WHERE user_id =
"$id"' LIMIT 1;";

9: $result = mysqli_query($GLOBALS["___mysqgli_ston"], $getid); //
Removed 'or die' to suppress mysql errors

http://awap.sourceforge.net/

32

Static analysis example — FindSecBugs

&A1l

212 public User getUserUnsafe(String login) throws SQLException {

213 String sql = "SELECT ID, NAME, PASSWORD, ROLE, CREATED FROM USERS WHERE LOGIN = '" + login + "'";
$214 try (ResultSet rs = db.prepareStatement(sql).executeQuery()) {
2! Problems @ Javadoc |G\ Declaration - Search [Console Tg Diagrams & Bug Explorer %% BugInfo 53 B M v o

UserDAO.java: 214
+| Navigation

Bug: This use of java/sql/Connection.prepareStatement(Ljava/lang/String;)Ljava/sql/PreparedStatement; can be vulnerable to SQL

injection

The input values included in SQL queries need to be passed in safely. Bind variables in prepared statements can be used to easily
mitigate the risk of SQL injection.

Vulnerable Code:

Connection conn = [...];

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("update COFFEES set SALES = "+nbSales+" where COF NAME = '"+coffeeName+"'");
Solution:

Connection conn = [...];

conn.prepareStatement ("update COFFEES set SALES = ? where COF NAME = ?");
updateSales.setInt(1l, nbSales);
updateSales.setString(2, coffeeName);

http://find-sec-bugs.github.io/

Pen-testing DVWA with sglmap

python ./sqlmap.py \
-u "http://127.0.0.1:8080/vulnerabilities/sqli/1d=2&Submit=Submit#" \
--cook1e="PHPSESSID=89qopqq69jaddggmbgad4mmsis4; security=low” \
-b --current-db --current-user

GET parameter 'id' is vulnerable. Do you want to keep testing the others (if any)? [y/N] N
sgqlmap identified the following injection point(s) with a total of 211 HTTP(s) requests:
Parameter: id (GET)

Type: boolean-based blind

Title: OR boolean-based blind - WHERE or HAVING clause (MySQL comment) (NOT)

Payload: 1d=2"' OR NOT 1576=1576#&Submit=Submit

Type: error-based

Title: MySQL >= 5.0 AND error-based - WHERE, HAVING, ORDER BY or GROUP BY clause (FLOOR)

Payload: 1d=2"' AND (SELECT 2030 FROM(SELECT COUNT(*),CONCAT(@Ox716b707671,(SELECT
(ELT(2030=2030,1))),0x71767a7071,FLOORCRAND(@)*2))x FROM INFORMATION_SCHEMA.PLUGINS GROUP BY
x)a)-- avQj&Submit=Submit

33

http://sqlmap.org/

Other types of
Injection

35

Code injection

my $code = "config_file_$action_key(\$fname, \$key, \$val);";
eval($code);

m Code injection — CWE-94 (click link to see full example)
o Malicious input leads to unintended code execution

m [ypically present in programs written using scripting languages
(Python, PHP, Javascript, ...) that facilitate dynamic definition
of code, in particular through eval-like constructs.

m A general advice on eval:
o “Do not ever use eval” !l
m [s it widely used anyway? Yes. Are there ways around it? Yes.

o “The Eval that Men Do — A Large-scale Study of the Use of
Eval in JavaScript Applications”, Richards et al., ECOOP’11

o “Remedying the eval that men do”, Jensen et al., ISSTA12

https://cwe.mitre.org/data/definitions/94.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval#Do_not_ever_use_eval!%23Do_not_ever_use_eval!
https://link.springer.com/chapter/10.1007/978-3-642-22655-7_4
https://link.springer.com/chapter/10.1007/978-3-642-22655-7_4
https://link.springer.com/chapter/10.1007/978-3-642-22655-7_4
http://www.apple.com

36

A few other types of injection

CWE-117 — Log Injection
CWE-91 — XML injection
CWE-643 — XPATH injection
CWE-90 — LDAP injection

https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/91.html
https://cwe.mitre.org/data/definitions/643.html
https://cwe.mitre.org/data/definitions/90.html

