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Testing approaches
Two related questions :

What are meaningul inputs?
What (coverage) criteria should be used to derive them?

In the last class we talked about line/instruction/branch coverage
Easy to understand, easy to measure through program instrumentation, and the 
most common metrics for coverage assessment in practice. 
But we will also discussed how fragile they can be in transmitting a false notion 
regarding the quality of inputs/tests and their ability to expose bugs!
Test inputs should be derived with wits, beyond the sole purpose of maximizing 
line/instruction/branch coverage.

We will briefly look at a few standard approaches
Graph-based coverage
Input space partitioning
Mutation testing
Property-based testing
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Graph-based 
coverage



Graph-based coverage
Basic approach

Model the SUT as a graph. 
The execution of a test case corresponds to a path in the graph.
Coverage criteria specify requirements as sets of paths that  must be 
covered by test paths.

Graphs as models for:
individual procedures — control flow graphs (discussed next)
interacting units — call graphs
 finite-state machine abstractions of software

Structural vs. data-flow based coverage
Structural: takes into account only structure of the graph (example 
application next)
Data-flow based: also account for data usage in association to nodes/edges 
(we won’t cover this)
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Node and edge coverage (NC, EC)

Node coverage (NC)
Test requirements: cover every node (all graph paths up of length 0)

TR(NC) = set of nodes in the graph

Edge coverage (EC): cover every edge.
Test requirements: cover every edge (all paths up to length 1)

TR(EC) = set of edges in the graph

EC subsumes NC. Why?
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TR(NC) = { [1], [2], [3], [4], [5] } 

TR(EC) = { [1,2], [1,3], [1,4], [2,4], [4,2], [4,5] } 

T1 = { [1,3], [1,2,4,5] } satisfies NC, but not EC 

T2 = { [1,3], [1,2,4,5],[1,4,2,4,5] }  
satisfies both NC and EC



Control flow graph (CFG)

A control flow graph (CFG) can be used to represent the 
control flow of a piece of (imperative) source code.

Nodes represent basic blocks - sequences of instructions that 
always execute together in sequence. 
Edges represent control flow between basic blocks.
The entry node corresponds to a method’s entry point.
Final nodes correspond to exit points, e.g. in Java: return or 
throw instructions.
Decision nodes represent choices in control flow - e.g. in Java: 
due to if, switch-case blocks or condition tests for loops.
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Example

➡ Basic blocks (nodes)
➡ 1:  if  (v  == 

null) 

➡ 2: throw ...; 

➡ 3: n=0; i=0; 

➡ 4: i < v.length; 

➡ 5: v[i] == c; 

➡ 6: n++;

➡ 7: i++; 7

  public static int occurrences(char[] v, char c) {
    if (v == null) {
      throw new IllegalArgumentException();
    }
    int n = 0;
    for (int i=0; i < v.length; i++) {
      if (v[i] == c) {
        n++;
      }
    }
    return n;
  }

➡ Control flow (edges) 

➡ 1 ! 2,   1 ! 3
➡ 3 ! 4 
➡ 4 ! 5,   4 ! 8
➡ 5 ! 6,   5 ! 7
➡ 6 ! 7
➡ 7 ! 4

➡ Entry node 

➡ 1

➡ Decision nodes 

➡ 1, 4, 5

➡ Exit nodes 

➡ 2, 8



CFG for occurrences()
1

32

7

8

v == null ¬ v == null

n = 0
i = 0

¬ i < v.length
    return n;

5i++

4

6

i < v.length

throw ...

v[i] == c

¬ v[i] == c

n++

➡ Basic blocks (nodes) 

➡ 1:  if  (v  == 
null) 

➡ 2: throw ...; 

➡ 3: n=0; i=0; 

➡ 4: i < v.length; 

➡ 5: v[i] == c; 
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➡ Control flow (edges) 

➡ 1 ! 2,   1 ! 3
➡ 3 ! 4 
➡ 4 ! 5,   4 ! 8
➡ 5 ! 6,   5 ! 7
➡ 6 ! 7
➡ 7 ! 4
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t test case values 
(v,c)

exp.
values test path covered 

nodes
covered
edges

t1 (null, ‘a’) IAE [1,2] 1 2 [1,2]

t2 ({‘a’}, ‘a’) 1 [1,3,4,5,6,7,4,8] 1 3 4 
5 6 7 8

[1,3][3,4][4,5][5,6]
[6,7][7,4][4,8]

t3 ({‘x’,’a’}, ‘a’) 1 [1,3,4,5,7,4,5,6,7,8] 1 3 4 
5 6 7 8

[1,3][3,4][4,5][5,6]
[6,7][7,4][5,7][4,8]

1

32

7

8

v == null ¬ v == null

n = 0
i = 0

¬ i < v.length
    return n;

5i++

4

6

i < v.length

throw ...

v[i] == c

¬ v[i] == c

n++

Node coverage 

TR(NC) =  {  [1], [2],[3],[4], [5],[6],[7],[8] } 

NC satisfied by { t1, t2 } or {t1, t3}

Edge coverage 

TR(EC) =  TR(NC) ∪ {  
  [1,2],[1,3],[3,4],[4,5],[4,8], [5,6],[5,7][6,7],[7,4] 
} 

EC satisfied by { t1, t3 } but not by {t1,t2}.



Beyond node/edge coverage
Edge-pair coverage (EPC) - cover all paths up to length 2

EPC subsumes NC and EPC

NC, EC, EPC are instances of the general criterion: cover 
all paths up to length k  

NC for k=0; EC for k=1; EPC for k=2;

As we increase k we approximate ... Complete-Path-
Coverage (CPC)

CPC: Cover all possible paths.
The number of paths may be infinite or very large e.g., code with 
loops (CFGs with cycles) - CPC generally not applicable.
In practice, instead of “increasing k”, we should try to pick a 
subset of “relevant” paths in the graph, e.g., criteria like Prime 
Path Coverage [Amman & Offutt].
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Input space 
partitioning 



Input space partitioning (ISP)

Base idea: identify relevant classes of input values and 
derive test cases from it.
Step 1. Identify the input parameters for the SUT.
Step 2. Model the input domain by defining one or more 
characteristics in the input domain. Each characteristic 
defines blocks that partition the input space. 
Step 3. Apply some criterion over characteristic of the 
input domain, defining a set of test requirements.
Step 4. Derive test inputs (test cases).
Also known as equivalence partitioning.
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Input domain (D): the set of possible values for the input 
parameters.  
A characteristic q for D is a partition of D. It defines  blocks b1 ,
… , bn such that :

∀ i,j : i≠j  bi ∩ bj = ∅       (blocks are disjoint)
D = b1 ∪ ... ∪ bn             (blocks cover the entire input domain)

Q : the set of characteristics we consider to derive test 
requirements.

ISP - definitions

D b1
b2

b3
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ISP - guidelines

Meaningful characteristics: Each characteristic should 
represent a meaningful feature for the input domain. 
Distinctive blocks: blocks of a characteristic should be 
reasonably aligned with distinctive values for it, e.g., consider:

“common use” values
boundary values
“invalid use” values
relevant relations between input parameters

Subdomains: if necessary break down domain into sub-domains 
E.g. first partition into “valid” and “invalid” values, then define 
characteristics for each of these domains, or sub-partition them further 
if convenient.
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isPasswordOK example
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  /**
   * Test if password is OK.
   * @param password The password
   * @return  <code>true</code> is password is OK.
   */
  boolean isPasswordOK(String password);



isPasswordOK example (2)

Null vs non-null characteristic
Breaks domain into “null” sub-domain and “non-null” subdomain 

For the “non-null” subdomain we may consider:
L = Length of password 
U = # upper-case characters
L = # lower-case characters
D = # digits
P = # punctuation characters
I = # invalid symbols

Other meaningful characteristics ? Other relevant sub-
domain characterizations?
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isPasswordOK example (3)

Possible blocks for the length characteristic (L)
L < 10,  10 <= L <= 20, L  > 20 (3 blocks)
The blocks must define a partition. Thus, the block values do 
not intersect and we cannot rule out any possible value of L.
A more fine-grained choice could consider l=10 and l=20 blocks 
to force testing of boundary values for length.

A possible choice of blocks for the X = U, L, D, and I 
characteristics

X=0, X > 0 (2 blocks each)

Finally, for P (the punctuation characters)
P = 0, P = 1, P > 1 
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isPasswordOK example (4)

Input “Ab1234567890” fits in the following blocks:
10 <= l <= 20 (the length is 12)
U > 0

L > 0

D > 0

P = 0

I = 0

What are the blocks for “ABxy12!$?” ? 
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ISP coverage criteria
t-wise coverage (TWC)

Cover t blocks of different characteristics by at least one test 
case.  

Each Choice Coverage (ECC) [t=1]
Cover each block of each characteristic at least once.

Pair-wise Coverage (ECC)  [t=2]
Cover each block pair of two different characteristic at least 
once.

All-Combinations Coverage (ECC) [t = number of 
characteristics]

Cover each combinations of blocks of different characteristic at 
least once.
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ECC coverage for isPasswordOK

A few tests are enough, for instance:
“Ab1234567890” covers blocks 10 <= l <= 20, U > 0, 
L > 0, D > 0, P = 0, I = 0

“!@” covers blocks l < 10, U = 0, L = 0, D = 0, P 
= 1, I > 0

“!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!” 
covers blocks l > 20, U = 0, L = 0, D = 0, P > 1, 
I = 0
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PWC coverage for isPasswordOK

“Ab1234567890” will cover 15 block pairs (5 + 4 + 3 + 2 
+ 1)

(10 <= l <= 20, U > 0), (10 <= l <= 20, L > 0), 
(10 <= l <= 20, D > 0) (10 <= l <= 20, P = 0), 
(10 <= l <= 20, I = 0)

(U > 0, L > 0), (U > 0, D > 0), (U > 0, P = 0), 
(U > 0, I = 0)

(L > 0, D > 0), (L > 0, P = 0), (L > 0, I = 0), 

(D > 0, P = 0), (D > 0, I = 0)

(P =0, I = 0)

Covering all block pairs will require more test cases. 
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ISP - test effort vs coverage

ECC
∑i=1, ..., |Q|  | Bi |  test requirements, at least maxi=1, ..., |Q| |Bi| tests. 
isPasswordOK:   >= 3 tests

PWC
∑i,j=1, ..., |Q|, i != j | Bi | . |Bj| requirements, at least  M2  tests for M = 
maxi=1, ..., |Q| |Bi |
isPasswordOK:   ~ 3 x 3 = 9 tests

ACoC
∏i=1, ..., |Q|  | Bi |  test requirements and as many tests required 
isPasswordOK: 3 x 2 x 2 x 2 x 2 x 3 = 144 tests

 22



Mutation testing 



Mutation testing 
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  public static int numZero(int[] x) {
    int count = 0;
    for (int i = 0; i < x.length; i++) 
      if (x[i] == 0) 
        count++;
    return count;
  }

  public static int numZero(int[] x) {
    int count = 0;
    for (int i = 1; i < x.length; i++) 
      if (x[i] == 0) 
        count++;
    return count;
  }

Introduce “faults” 
by mutating the code. 

What’s the point?



The premise for mutation testing 

Fundamental premise of mutation testing

 “if the software contains a fault, there will usually 
be a set of mutants that can only be killed by a 
test case that also detects the fault” [provided we 
consider a rich set of mutation operators], Ammann and 
Offutt

sensitivity to mutations (killing mutants)

≃
sensitivity to faults (exposing failures) 
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“Testing the tests”
Suppose you have a test set T for program P (maybe 
derived applying some coverage criteria C, manually or 
automatically). 
Program-based mutation testing helps answering the 
following key question: 

How “good” is T (and C)? 
For m ∈ M  (the set of all mutants), if  T is “good”  then a 
test in T should kill m.
If no test in T kills a mutant m, then T should be 
reformulated (one may also question the choice of C )... 
Program-based mutation is many times taken as the 
“golden standard” of coverage criteria, given its 
potential to subsume other testing criteria.
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Killing the mutants …

i =1  is a mutation of i = 0 ; the code obtained by changing i=0 to i=1 is 
called a mutant of numZero.
We say a test kills the mutant if the mutant yields different outputs from 
the original code.

Considering x={1,0,0} the mutant is not killed; 2 is the return 
value of the method for both the original code and the mutant. 
Considering x={0,1,0}  the mutant is killed; the result is 1 
rather than 2. 27

  public static int numZero(int[] x) {
    int count = 0;
    for (int i = 1; i < x.length; i++) 
      if (x[i] == 0) 
        count++;
    return count;
  }



  public static 
  int min(int x, int y) {
    int v;
    if (x < y)
      v = x;
    else
      v = y;
    return v;
  }

  public static 
  int min(int x, int y) {
    int v;

    if (x >= y)
      v = x;
    else
      v = y;
    return v;
  }

  public static 
  int min(int x, int y) {
    int v;

    if (x <= y)
      v = x;
    else
      v = y;
    return v;
  }

  public static 
  int min(int x, int y) {
    int v;
    if (x < y)
      v = x;
    else

      v = -y;
    return v;
  }

Example 2

Which mutants will be  
killed by tests: 
(t1) (x,y) = (0,0)  
(t2) (x,y) = (0,1)  
(t3) (x,y) = (2,1)  

Observe that m2 can not 
be killed. Why not?

m1

m2

m3

original
code

mutants
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x y min m1 m2 m3

t1 0 0 0 0 0 0

t2 0 1 0 1 0 0

t3 2 1 1 2 1 -1

t1 kills none of the mutants.
t2 kills m1.
t3 kills m1 and m3.

Observe that m2 will always yield 
the same result as the original 
code. Thus it cannot be killed.  It is 
a func t iona l ly equ iva len t 
mutant.
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  public static 
  int min(int x, int y) {
    int v;

    if (x >= y)
      v = x;
    else
      v = y;
    return v;
  }

  public static 
  int min(int x, int y) {
    int v;

    if (x <= y)
      v = x;
    else
      v = y;
    return v;
  }

  public static 
  int min(int x, int y) {
    int v;
    if (x < y)
      v = x;
    else

      v = -y;
    return v;
  }

m1

m2

m3

mutants



Mutation operators from PIT
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http://pitest.org

http://pitest.org


Mutation operators from PIT (2)
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http://pitest.org

http://pitest.org


Mutation operators and effectiveness

Mutants to avoid … 
stillborn mutant (i.e., dead at birth): mutant is not syntactically valid 
functionally-equivalent mutant: no test can kill it
trivial mutant: almost every test can kill it

For effectiveness, a mutation operator should:
always define a syntactically valid transformation (generate no 
stillborn mutants)
generate functionally-equivalent and trivial mutants with low 
probability 
mimic typical programmer mistakes
not be subsumed by another operator i.e., tests that kill mutants 
created by the other operator also kill the ones generated by this 
one (or a large fraction of them) 
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Mutation testing - coverage

Mutation operator o: takes a program P and yields a set of 
mutants of p, o(p).
Let O be the set of mutation operators and M be the set of all 
mutants generated using O i.e., M =  { m | m ∈ o(p), o  ∈ O } 
Killing mutants

We say a test t kills m ∈ M iff the output of t for m differs 
from the output of t for P.

Mutation coverage = percentage of mutants in M  killed by 
at least one test. 
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Mutation testing tools - basics

A MT tool has a built-in set of mutation operators. The set 
of mutants for the SUT is generated in automated manner 
according to the mutation operators.
A test set in context is ran against the mutants. As soon as 
a mutant from the set is killed, it is typically not exercised 
by further tests. 
If the mutation coverage is not satisfactory, the test set is 
typically revised and/or increased with further test cases.

Obs: The strategies for both mutant generation and test 
selection/execution can be quite elaborate in technical terms.
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Property-based 
testing



Property-based testing

Approach
Specify properties to check instead of inputs !
Let inputs be generated automatically through randomisation and customised generators.
If a property fails, try to find minimal input that violates the property, a process designated 
as shrinking.

Original formulation 
“QuickCheck: a lightweight tool for random testing of Haskell programs”, Koen Claessen 
and John Hughes, Proc. ICFP, 2000. Adopted thereafter  for other languages such as Scala 
or Java.  36

Image source:  “Better than unit tests”, M. Nygard

https://dl.acm.org/citation.cfm?id=1988046
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 @Test 
  public void testTEAWithFixedKey() {
    TEA obj = new TEA("0123456789ABCDEF".getBytes());
    qt()
    .forAll(byteArrays(integers().between(1,256), 
            bytes(Byte.MIN_VALUE, Byte.MAX_VALUE, (byte) 0)))
    .describedAs(data -> Arrays.toString(data))
    .check( data -> Arrays.equals(data, obj.decrypt(obj.encrypt(data))));
  }

 @Test
  public void testForAnyKey() {   
    Gen<Byte> anyByte = bytes(Byte.MIN_VALUE, Byte.MAX_VALUE, (byte) 0);
    Gen<byte[]> keyGen = byteArrays(constant(16), anyValue)
                        .describedAs(Arrays::toString);
    Gen<byte[]> dataGen = byteArrays(integers().between(1, 100), 
anyValue).describedAs(Arrays::toString);
    
    qt()
    .forAll(keyGen,dataGen)
    .check( (key,data) ->  {
      TEA tea = new TEA(key);
      return Arrays.equals( tea.decrypt(tea.encrypt(data)), data);
    });
  }

fixed encryption key, but generator 
used for data (random byte array 
with length between 1 and 256)

Property: ∀data, decrypt(encrypt(data)) = data

variable key also

Validation of a Tiny Encryption Algorithm (TEA) implementation using 
QuickTheories (for Java 8)

http://www.winterwell.com/software/TEA.php
https://github.com/ncredinburgh/QuickTheories


QuickTheories (example 2)
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 @Test 
  public void testValidPasswordNoPunct() {

  Gen<Byte> lo = bytes( (byte)'a',  (byte)'z', (byte)'a');
  Gen<Byte> up = bytes( (byte)'A',  (byte) 'Z', (byte)'A');
  Gen<Byte> digit = bytes( (byte) '0', (byte) '9', (byte)'0');

     Gen<Byte> combined = lo.mix(up,50).mix(digit,25); 
     Gen<byte[]> arrGen = byteArrays(integers().between(10, 20), combined);
     Gen<String> strGen = arrGen.map(ba -> new String(ba));

  qt()
    .withFixedSeed(0)
    .forAll(strGen)
    .assuming(s -> s.chars().anyMatch(Character::isLowerCase))
    .assuming(s -> s.chars().anyMatch(Character::isUpperCase))
    .assuming(s -> s.chars().anyMatch(Character::isDigit))
    .check(CHECKER::isPasswordOK);

  }


