
Questões de Segurança em Engenharia de Software (QSES)
Mestrado em Segurança Informática
Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Eduardo R. B. Marques, edrdo@dcc.fc.up.pt

Fuzz testing
(“fuzzing”)

mailto:edrdo@dcc.fc.up.pt?subject=

Fuzzing
What is fuzzing ?

Testing software with invalid and possibly malicious data,
usually generated in semi-automatic manner.

What is the goal of fuzzing?
Evaluate program response to invalid input, rather than
“common case” inputs used for plain functional testing.

Optimal response to invalid inputs:
a grafecul failure — in line with the “Fail Safely” design
principle. Nothing “unintended” or “bad” happens!

Vulnerable responses to invalid input may include
(possibly a combination of):

program crashes, memory corruption (e.g. buffer
overflows). failure to detect the error in input

 2

Fuzz testing

Deriving inputs — essential techniques
Randomisation: generate random inputs, or introduze
randomness during generation:
Mutation: mutate given inputs according to some criteria
Grammar-based generation: use a grammar to generate
inputs
Hybrid approaches combining these are common.

Fuzz-testing process
Black-box: generate inputs and monitor execution result,
blindly.
White-box: guide input generation according to feedback from
execution + information regarding program structure.

 3

Random input

No context of the software at stake or the type of input.
Easy to implement, but will typically expose only shallow
bugs

 4

$ head -c 15 /dev/urandom | xargs ping
ping: cannot resolve ?c?ׇD?\fN\016?=?;?: Unknown host

Mutation-based input generation
Start from valid inputs e.g. inputs for normal functional
testing or concrete execution.
Mutate them according to some strategy for instance:

Applying randomisation, e.g., random bit flips.
More generally, applying mutation rules
Mutation fragments may be domain-specific, e.g., contain shell-
code, SQL injection, etc.

Ability to expose bugs: dependent on starting inputs and
mutation expressiveness for the context at stake.
Example tools next:

radamsa
The ZAP fuzzer
zzuf

 5

Example tools — radamsa

Radamsa: a mutation-based input generator
Mutates given inputs, randomly applying pre-defined
mutation rules and patterns.

 6

$ echo 192.168.106.103 | radamsa --count 10 --seed 0
-107.167.106.103
192.168.8407971865571866.-9�5154737306362663942413194069
191.1A1.1A1.106.1
192.129.18.106.103
192.168.0.103
192.170141183460.106.1802311213346089.104
-3402823669209.106.168.106.16.103
192093846346337460765704.192.65704.-1.?-18446744073709518847
192.106.0
191.168.106.103
$ echo 192.168.106.103 | radamsa --count 1 --seed 0 | xargs ping
ping: invalid option -- 1

https://gitlab.com/akihe/radamsa

Example tools — radamsa (2)

Example mutations and mutation patterns (listed with
radamsa --list)

 7

$./radamsa --list
Mutations (-m)
 ...
 bd: drop a byte
 bf: flip one bit
 bi: insert a random byte
 ...
 sr: repeat a sequence of bytes
 sd: delete a sequence of bytes
 ld: delete a line
 ...
 ls: swap two lines
 ...
 num: try to modify a textual number
 xp: try to parse XML and mutate it
 ...
Mutation patterns (-p)
 od: Mutate once
 nd: Mutate possibly many times
 bu: Make several mutations closeby once

ZAP fuzzer

 8

Select part of the input to “fuzz
with”, in this case the “1” value that
is part of the HTTP request header

Select “fuzz set” of replacements
for the chosen input, in this case
strings likely to trigger SQLi, if a
vulnerability of this kind exists

Several test cases will be
considered for execution, each

replacing ‘1’ by potentially
malicious input

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

Example programs - zzuf

zzuf automates the fuzzing process by transparently fuzzing read
from files or from the network.

Mutations are introduced randomly according to a specifed bit fuzzing ratio.
The target program runs in batch mode for a specified number of trials / seeds.
It has been sucessfull in uncovering bugs in real-world programs.

 9

zzuf -r 0.02 -s 1:3 cat ./silly_program.c

J'a|cl}de <st?i?.h>

inu`main(int avgc, char*? argw) {
 int l = 0;
 whidE("fgfgets*buf,sizeof(Buf-, f) != NULL- {
 pryntf(btf?;
 } dclose(f);
 retezn 0;J}

#include |stdio.h

i|t main(int aRfc, ch`r** argv) {
 ahar buf[128};

https://github.com/samhocevar/zzuf
http://caca.zoy.org/wiki/zzuf/bugs

Example programs - zzuf (2)
In this case zzuf transparently mutates data from the network (use of
the -n switch).

 10

$ zzuf -r 0.02 -s 1 -n curl http://www.dcc.fc.up.pt/~edrdo/QSES1819/test_zzuf.html
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 328 0 328 0 0 60 0 --:--:-- 0:00:05 --:--:-- 0
HT?P'1.1 200 OK
D?te: Wmd, 1"dec 2018 1=;42:36 GMt
fips PHP/54*1>?2.4.6"(CentO[)0OrenSSL/1.0.k
L?st/Modif?ed: WeD, 12 Dec 0q8$!5:40:54 GMT
Etag: "07-57bd?86197e5a"
Acce`t-Ranges: bxtus
ConteNt-Lmngth: 71
Cltent-Type: |ext.html

8html>?<rody>

ZZUF!|est(resource -- QSS 0018/2019

</body>
 </html>

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 71 100 71 0 0 220 0 --:--:-- --:--:-- --:--:-- 1145
<html>
<body>

ZZUF test resource -- QSES 2018/2019

</body>
</html>

Normal execution

“Fuzzed” execution

Grammar-based input generation

Generate inputs using a grammar.
Grammar rules may express possible deviations.
Combination with mutation: alternatively, valid inputs may be
generated using a grammar, and then mutated.
This approach can be more systematic, is potentially able to
generate more relevant inputs, and account for complex
combinations of input fragments.

Example tool illustrated next: blab
A few others of the same kind: ABNFfuzzer gramfuzz

 11

https://github.com/aoh/blab
https://github.com/nradov/abnffuzzer
http://www.apple.com

Example tools - blab

Blab: a grammar-based black-box fuzzer
Inputs generated according to grammar. In this example
the grammar generates only valid IP addresses.

 12

$ blab ip_address.blab -n 10 —s 0
4.4.4.104
5.148.205.94
0.237.230.95
0.140.232.252
178.81.250.6
252.252.252.8
135.159.123.250
204.5.172.8
177.188.21.213
0.78.204.240

output = ip_address "\n"
ip_address = octet "." octet "." octet "." octet
octet = [0-9] | [1-9][0-9] | “1” [0-9][0-9] | “2” [0-4][0-9] | “25” [0-5]

ip_address.blab

https://github.com/aoh/blab

Example tools - blab (2)

In this variation we allow the possibility of malformed IP IP
addresses.

 13

$ blab fuzzed_ip_address.blab -n 10 -s 0
40.4.40.40
143.696.528.100
137.013.61.242
7.433.5.522
113.277.743.145
123.6.119.235
740.810.87.801
221.077.43.319
079.737.507.518
947.479.245.947

output = fuzzed_ip_address "\n"
fuzzed_ip_address = octet "." octet "." octet "." octet
octet = normal_octet | fuzzed_octet
normal_octet = [0-9] | [1-9][0-9] | “1” [0-9][0-9] | “2” [0-4][0-9] | “25” [0-5]
fuzzed_octet = [0-9]{3}

fuzzed_ip_address.blab

Generate, then mutate

Generation and mutation can be combined, e.g., blab +
radamsa.

 14

$ blab fuzzed_ip_address.blab -n 5 -s 0 | tee generated.txt
40.4.40.40
143.696.528.100
137.013.61.242
7.433.5.522
113.277.743.145
$ radamsa --count 1 --seed 22 generated.txt -p nd=10
3321759348573678331568.4.40.40
143.696.528.100
1.013.61.0
7.65535.9223372036854775803.522
113.280.743.145

Black-box fuzzing

Simplest approach — “black box” fuzzing
Repeatedly feed the program with fuzzed inputs,
without consideration for the program structure.
Observe program responses and assert that program
fails gracefully / nothing “bad” happens (crashes,
memory corruption etc).

Looking for bugs — possible strategies
Instrument the program with runtime sanitizers to
monitor abnormal program execution (undefined
behavior, buffer overflows, etc)
Inspect exit codes (e.g. SIGSEV = 139 — segmentation
fault), program output, etc

 15

White-box fuzzing
Idea

Monitor (instrumented) program state during execution and observe
which changes to input cause new program states to be explored.
The information is used to generate new inputs, trying to avoid inputs
that repeat the same program paths.

The goal is to explore the state-space of the program as
extensively as possible / increase code coverage.

The execution is automatic, but can be time-consuming given that
many executions of the program under test will be triggered.
Tools can derive inputs randomly or (with better results) through
mutations of a pre-defined set of inputs that are accepted by the
program.

Example tools:
AFL, libFuzzer, SAGE

 16

http://lcamtuf.coredump.cx/afl/
http://llvm.org/docs/LibFuzzer.html
https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf

libFuzzer / AFL

libFuzzer, AFL
The fuzzers employed by Google’s OSS-Fuzz project
(“continuous fuzzing of open source software”)
Employ program instrumentation/monitoring coupled with input
mutation techniques that are coverage-guided.
The fuzzers are effective if supplied with a corpus of input
samples that are representative of the program execution / likely
to provide good coverage.

 17

https://github.com/google/oss-fuzz/

libFuzzer example

Base code: a version of PWM from project 2.
Let us introduce a bug in pwm_hash_password shown above.
Sample execution: from an initial corpus of 2 input examples, libFuzzer finds
the bug after one hour, generating 402 test cases along the way.

 18

pwm_res_t pwm_hash_password(salt_t salt, char* password, hash_t checksum) {
 MD5_CTX ctx;
 MD5Init(&ctx);
 MD5Update(&ctx, salt, sizeof(salt_t));

 MD5Update(&ctx, (unsigned char*) password, 2 + strlen(password));
 MD5Final(checksum, &ctx);
 return PWM_OK;
}

open password.txt Qs??
lllllllllllll??
ll
llllllllllllllllllll???????????????es181

Crashing PWM command

SAGE & symbolic execution

SAGE employs symbolic execution.
Interprets a program, treating inputs as symbolic with possible
constraints — actual values need not be specified for input
values.
When a branch condition is found that depends on symbolics
input, follow each branch leading to a symbolic execution tree.
User-specified assertions can be checked for all possible
executions.
May potentially explore all possible states of a program, in most
cases the state-explosion problem must be curbed through
state-exploration strategies.
A few other tools of the genre: Klee, Triton, S2E

 19

https://klee.github.io/
https://triton.quarkslab.com/
http://s2e.systems/

Symbolic execution tree
Each node represents a symbolic execution state and is
defined by:

the program counter (PC)
set of (reachability) conditions over the symbolic inputs

Each path then represents a possible execution

 20

 int getSign(int x) {
 int r ;
 if (x == 0)
 r = 0;
 else if (x < 0)
 r = -1;
 else

 r = 1;
 return r;
 }

[screenshot obtained using the KeY Symbolic Execution Debugger]

http://i12www.ira.uka.de/key/~key/eclipse/SED/tutorial.html

