
The Internals of a Novel

Lock-Free Hash Map Design

Miguel Areias
joint work with Ricardo Rocha

CRACS & INESC-TEC LA
Faculty of Sciences, University of Porto, Portugal

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Talk Overview

ä In this talk we will:

© introduce key concepts about progress in concurrent systems and lock-free
progress.

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Talk Overview

ä In this talk we will:

© introduce key concepts about progress in concurrent systems and lock-free
progress.

© explain why lock-free is important in highly concurrent environments.

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Talk Overview

ä In this talk we will:

© introduce key concepts about progress in concurrent systems and lock-free
progress.

© explain why lock-free is important in highly concurrent environments.
© present the internals of a novel and lock-free hash map.

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Talk Overview

ä In this talk we will:

© introduce key concepts about progress in concurrent systems and lock-free
progress.

© explain why lock-free is important in highly concurrent environments.
© present the internals of a novel and lock-free hash map.
© present a performance analysis comparison between state-of-the-art con-

current hash map designs.

1 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Progress in Concurrent Systems

ä In 2011, Herlihy and Shavit presented a grand unified explanation for the
progress properties. Progress is seen as the number of steps that threads
take to complete methods within a concurrent object, i.e., the number of
steps that threads take to execute methods between their invocation and
their response.

Time

Thread 1

Thread 2

Method A Method C

Method B

Invocation Response

Invocation Response

2 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Progress in Concurrent Systems

ä Progress conditions are placed in a two-dimensional periodical table, where one
of the axis defines the assumptions of the operating system (OS) scheduler,
which might be scheduler independent or scheduler dependent, and the
other axis defines the maximal progress and minimal progress provided by a
method.

Non-Blocking
Independent

Non-Blocking
Dependent

Blocking
Dependent

Every thread
makes progress

Dependency on the operating system scheduler

Level
of

Progress

Dependent
vs

Independent

Blocking
vs

Non-Blocking

Maximal
vs

Minimal
Lock-FreeSome thread

make progress

Dependency
vs

Progress

Wait-Free Obstruction-Free Starvation-Free

? Deadlock-Free

3 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Progress in Concurrent Systems

Non-Blocking
Independent

Non-Blocking
Dependent

Blocking
Dependent

Every thread
makes progress

Dependency on the operating system scheduler

Level
of

Progress

Dependent
vs

Independent

Blocking
vs

Non-Blocking

Maximal
vs

Minimal
Lock-FreeSome thread

make progress

Dependency
vs

Progress

Wait-Free Obstruction-Free Starvation-Free

? Deadlock-Free

ä For the assumptions about the OS scheduler, a scheduler independent as-
sumption, guarantees progress as long as threads are scheduled and no matter
how they are scheduled. A scheduler dependent assumption, means that the
progress of threads relies on the OS scheduler to satisfy certain properties.

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Progress in Concurrent Systems

Non-Blocking
Independent

Non-Blocking
Dependent

Blocking
Dependent

Every thread
makes progress

Dependency on the operating system scheduler

Level
of

Progress

Dependent
vs

Independent

Blocking
vs

Non-Blocking

Maximal
vs

Minimal
Lock-FreeSome thread

make progress

Dependency
vs

Progress

Wait-Free Obstruction-Free Starvation-Free

? Deadlock-Free

ä For the assumptions about the OS scheduler, a scheduler independent as-
sumption, guarantees progress as long as threads are scheduled and no matter
how they are scheduled. A scheduler dependent assumption, means that the
progress of threads relies on the OS scheduler to satisfy certain properties.

ä For the level of progress, a method provides the minimal progress, if a thread
calling the method can take an infinite number of steps without returning. A
method provides the maximal progress, if a thread calling the method takes a
finite number of steps to return from the method.

4 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Progress in Concurrent Systems

Non-Blocking
Independent

Non-Blocking
Dependent

Blocking
Dependent

Every thread
makes progress

Dependency on the operating system scheduler

Level
of

Progress

Dependent
vs

Independent

Blocking
vs

Non-Blocking

Maximal
vs

Minimal
Lock-FreeSome thread

make progress

Dependency
vs

Progress

Wait-Free Obstruction-Free Starvation-Free

? Deadlock-Free

ä Deadlock-free (threads cannot delay each other perpetually) and starvation-
free (a critical region cannot be denied to a thread perpetually) properties
guarantee progress, however, they depend on the assumption that the OS
scheduler will allow each thread within a critical region to be able to run a
sufficient amount of time, so that it can leave the critical section (blocking
dependent).

5 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Progress in Concurrent Systems

Non-Blocking
Independent

Non-Blocking
Dependent

Blocking
Dependent

Every thread
makes progress

Dependency on the operating system scheduler

Level
of

Progress

Dependent
vs

Independent

Blocking
vs

Non-Blocking

Maximal
vs

Minimal
Lock-FreeSome thread

make progress

Dependency
vs

Progress

Wait-Free Obstruction-Free Starvation-Free

? Deadlock-Free

ä Obstruction-free (a thread runs within a critical region in a bounded number
of steps) requires the OS scheduler to allow each thread to run in isolation
for a sufficient amount of time (non-blocking dependent).

ä Wait-free (a thread is able to make progress in a finite number of steps)
provides maximal progress and has no requirements on the OS scheduler
(non-blocking independent).

6 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Progress in Concurrent Systems

Non-Blocking
Independent

Non-Blocking
Dependent

Blocking
Dependent

Every thread
makes progress

Dependency on the operating system scheduler

Level
of

Progress

Dependent
vs

Independent

Blocking
vs

Non-Blocking

Maximal
vs

Minimal
Lock-FreeSome thread

make progress

Dependency
vs

Progress

Wait-Free Obstruction-Free Starvation-Free

? Deadlock-Free

ä Lock-free provides minimal progress and has no requirements on the OS
scheduler (non-blocking independent).

ä Lock-free guarantees then that, on every instant of the execution of methods
(between their invocation and their response), at least one thread is doing
progress on its work.

7 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Lock-Free Progress

ä Lock-Free objects allow greater concurrency than lock-based objects since
semantically consistent (non-interfering) methods may execute in parallel.

ä Lock-Free techniques do not use traditional locking mechanisms.

© Avoid problems such as:
∗ deadlocks - threads delaying each other perpetually.
∗ convoying - a thread holding a lock is descheduled by an interrupt.
∗ kill-tolerant - a thread is not immune to the dead of other threads during

the execution.

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Lock-Free Progress

ä Lock-Free objects allow greater concurrency than lock-based objects since
semantically consistent (non-interfering) methods may execute in parallel.

ä Lock-Free techniques do not use traditional locking mechanisms.

© Avoid problems such as:
∗ deadlocks - threads delaying each other perpetually.
∗ convoying - a thread holding a lock is descheduled by an interrupt.
∗ kill-tolerant - a thread is not immune to the dead of other threads during

the execution.
∗ priority inversion - a thread with high priority is preempted by a thread

with lower priority.
∗ contention - a thread waiting for a lock that is being held by another

thread.

8 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Lock-Free Progress

ä Instead, they are based in placing simple atomic operations in key concurrency
spots, to improve performance and ensure correctness (formal proof of
linearization).

© Atomic operations cannot be interrupted (intrinsically thread safe).

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Lock-Free Progress

ä Instead, they are based in placing simple atomic operations in key concurrency
spots, to improve performance and ensure correctness (formal proof of
linearization).

© Atomic operations cannot be interrupted (intrinsically thread safe).

ä At the implementation level, they take advantage of the CAS (Compare-
and-Swap) atomic operation, that nowadays can be found in many common
hardware architectures.

© CAS(Memory Reference, Expected Value, New Value).

9 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Hash Maps

ä Hash maps are useful to store information that can be organized as pairs
(K, C), where K is an identifier (or a key) and C is the associated content.

A small phone book as a hash map [Wikipedia].

10 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Hash Maps

ä Some of the most usual methods are:

© User-level (externally activated by users) : search, insert and remove.
© Kernel-level (internally activated by thresholds): expansion (key collision)

(and compression, which will not be discussed in this talk).

Key collisions resolved using a separate chaining mechanism [Wikipedia].

11 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Concurrent Hash Maps

ä Multithreaded hash maps allow the concurrent execution of multiple me-
thods.

© Each operation runs independently, but at the engine level, all methods
share the underlying data structures that support the hash map.

Thread 1

Inserting
pair

(K1,C1)

Thread 2

Expanding
Buckets

Thread 3

Searching
Key
(K3)

Thread 4

Removing
pair

(K4,C4)

Concurrent
Hash Map

12 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Hash Trie Structure

ä Hash buckets refer to a chaining mechanism that supports key collisions.

ä Chain nodes store pairs (Key, Content, (Next On Chain, State)). For the
sake of simplicity we will present only (Key, (Next On Chain, State)). State
can be valid (V) or invalid (I).

.
.
.

S

.
.
.

S

.
.
.

S

.
.
.

S

2
entries

w

K1 V

K5 V

K3 V

K4 V

K2 V

Hi

Hi+1

Hi+1

Hi+2

13 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Searching for K3

Hash Level
HiHiHi

.
.
.

Hi

.
.
.

Prev

Bk

.
.
.

Hi+1

K3

Bm

Bk

K4 K2

Prev

V V VBn

K5 K1 VVBm

Hash

Function

Hash Value (64 bits)

164

......K3K3 V

K3K3 V

Bk
(Hi)

Bn
(Hi+1)

2
entries

3

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Searching for K3

Hash Level
HiHiHi

.
.
.

Hi

.
.
.

Prev

Bk

.
.
.

Hi+1

K3

Bm

Bk

K4 K2

Prev

V V VBn

K5 K1 VVBm

Hash

Function

Hash Value (64 bits)

164

......K3K3 V

K3K3 V

Bk
(Hi)

Bn
(Hi+1)

2
entries

3

Hash Level
HiHiHi

.
.
.

Hi

.
.
.

Prev

Bk

.
.
.

Hi+1

K3

Bm

K4 K2

Prev

V V VBn

K5 K1 VVBm

Hash

Function

Hash Value (64 bits)

164

......K3K3 V

K3K3 V

Bk
(Hi)

Bn
(Hi+1)

0 1 1

2
entries

3

BkBn

14 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Internals

ä To support multithreading, our design allows threads to:

© Recover from preemption, by using a Prev field to traverse the hash
buckets backwards.

© Identify chains, by using a back-reference on the end of each chain.
© Maintain consistency, by using CAS on write operations.

Hash Level

(a)

.
.
.

Prev

Bk

.
.
.

2
entries

w

Hi

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Internals

ä To support multithreading, our design allows threads to:

© Recover from preemption, by using a Prev field to traverse the hash
buckets backwards.

© Identify chains, by using a back-reference on the end of each chain.
© Maintain consistency, by using CAS on write operations.

Hash Level

(a)

.
.
.

Prev

Bk

.
.
.

2
entries

w

Hi

Hash Level

(a) (b)

.
.
.

Prev

K1Bk

.
.
.

.
.
.

Prev

Bk

.
.
.

2
entries

w

Hi Hi

V

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Internals

ä To support multithreading, our design allows threads to:

© Recover from preemption, by using a Prev field to traverse the hash
buckets backwards.

© Identify chains, by using a back-reference on the end of each chain.
© Maintain consistency, by using CAS on write operations.

Hash Level

(a)

.
.
.

Prev

Bk

.
.
.

2
entries

w

Hi

Hash Level

(a) (b)

.
.
.

Prev

K1Bk

.
.
.

.
.
.

Prev

Bk

.
.
.

2
entries

w

Hi Hi

V

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.
Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

15 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi

.
.
.

Prev

Bk

.
.
.

Hi+1

K3

Bm

Bk K1

K4 K2

Prev

V

V V VBn

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid Nodes Only)

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

Hash Level

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

V V V V

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi

.
.
.

Prev

Bk

.
.
.

Hi+1

K3

Bm

Bk K1

K4 K2

Prev

V

V V VBn

Hash Level

.
.
.

Prev

Bk

.
.
.

Hi

Hi

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1
Prev Prev

V V VBk

Bn

Bm

K3 V

.
.
.

Hi

.
.
.

Prev

Bk

.
.
.

Hi+1

K3

Bm

Bk

K4 K2

Prev

V V VBn

K5 K1 VVBm

16 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Remove

ä The remove operation has two steps:

© Invalidate node by changing its state from valid to invalid.
© Turn the node invisible to all threads. Find two valid data structures

(previous and next) and bypass the invalid node.

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Remove

ä The remove operation has two steps:

© Invalidate node by changing its state from valid to invalid.
© Turn the node invisible to all threads. Find two valid data structures

(previous and next) and bypass the invalid node.

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(b - invalidate node)

K2 I

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Remove

ä The remove operation has two steps:

© Invalidate node by changing its state from valid to invalid.
© Turn the node invisible to all threads. Find two valid data structures

(previous and next) and bypass the invalid node.

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(b - invalidate node)

K2 I

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(c1 - remove node complete)
(K3 is valid after bypass)

K2 I

Check if
K3 remains
valid after
the bypass

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Remove

ä The remove operation has two steps:

© Invalidate node by changing its state from valid to invalid.
© Turn the node invisible to all threads. Find two valid data structures

(previous and next) and bypass the invalid node.

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(b - invalidate node)

K2 I

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(c1 - remove node complete)
(K3 is valid after bypass)

K2 I

Check if
K3 remains
valid after
the bypass

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(c2.1 - remove node incomplete)
(K3 is invalid after bypass)

K2 I K3 VK3 I

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Remove

ä The remove operation has two steps:

© Invalidate node by changing its state from valid to invalid.
© Turn the node invisible to all threads. Find two valid data structures

(previous and next) and bypass the invalid node.

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(b - invalidate node)

K2 I

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(c1 - remove node complete)
(K3 is valid after bypass)

K2 I

Check if
K3 remains
valid after
the bypass

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(c2.1 - remove node incomplete)
(K3 is invalid after bypass)

K2 I K3 VK3 I

Hash Level

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(a)

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V

(c2.2 - remove node complete)
(Hi is always valid)

K2 I K3 VK3 I

17 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

ä The expand operation has two steps:

© Find and begin the expansion in the right-most (or deepest) valid node.
© Adjust only valid nodes on the new hash level. Leave the invalid nodes

unchanged (it allows threads to recover to valid data structures).

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V K4 VK3 VI

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

ä The expand operation has two steps:

© Find and begin the expansion in the right-most (or deepest) valid node.
© Adjust only valid nodes on the new hash level. Leave the invalid nodes

unchanged (it allows threads to recover to valid data structures).

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V K4 VK3 VI

Hash Level
.
.
.

Hi+1
Prev

Bn

Bm

K4 K2V V

K1 V

HiHiHi

Bk

.
.
.

Prev

.
.
.

HiHi

K3 VK3 VI

Adjust only
valid
nodes

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

ä The expand operation has two steps:

© Find and begin the expansion in the right-most (or deepest) valid node.
© Adjust only valid nodes on the new hash level. Leave the invalid nodes

unchanged (it allows threads to recover to valid data structures).

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V K4 VK3 VI

Hash Level
.
.
.

Hi+1
Prev

Bn

Bm

K4 K2V V

K1 V

HiHiHi

Bk

.
.
.

Prev

.
.
.

HiHi

K3 VK3 VI

Adjust only
valid
nodes

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V K3K3 V

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

ä The expand operation has two steps:

© Find and begin the expansion in the right-most (or deepest) valid node.
© Adjust only valid nodes on the new hash level. Leave the invalid nodes

unchanged (it allows threads to recover to valid data structures).

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V K4 VK3 VI

Hash Level
.
.
.

Hi+1
Prev

Bn

Bm

K4 K2V V

K1 V

HiHiHi

Bk

.
.
.

Prev

.
.
.

HiHi

K3 VK3 VI

Adjust only
valid
nodes

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V K3K3 V

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V VK3 VIK3 VK3 VI

Bm

Bn

K3 V

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

ä The expand operation has two steps:

© Find and begin the expansion in the right-most (or deepest) valid node.
© Adjust only valid nodes on the new hash level. Leave the invalid nodes

unchanged (it allows threads to recover to valid data structures).

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V K4 VK3 VI

Hash Level
.
.
.

Hi+1
Prev

Bn

Bm

K4 K2V V

K1 V

HiHiHi

Bk

.
.
.

Prev

.
.
.

HiHi

K3 VK3 VI

Adjust only
valid
nodes

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V K3K3 V

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V VK3 VIK3 VK3 VI

Bm

Bn

K3 V

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V VK3 VIK3 VK3 VI

Bm

Bn

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

ä The expand operation has two steps:

© Find and begin the expansion in the right-most (or deepest) valid node.
© Adjust only valid nodes on the new hash level. Leave the invalid nodes

unchanged (it allows threads to recover to valid data structures).

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V K4 VK3 VI

Hash Level
.
.
.

Hi+1
Prev

Bn

Bm

K4 K2V V

K1 V

HiHiHi

Bk

.
.
.

Prev

.
.
.

HiHi

K3 VK3 VI

Adjust only
valid
nodes

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V K3K3 V

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V VK3 VIK3 VK3 VI

Bm

Bn

K3 V

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V VK3 VIK3 VK3 VI

Bm

Bn

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2Bk

.
.
.

Prev

.
.
.

HiHi

V V

K3 VK3 VIK3 VK3 VI

K2 V

Bm

Bn

K2 V

Check if
K3 remains
valid after
adjustment

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

ä The expand operation has two steps:

© Find and begin the expansion in the right-most (or deepest) valid node.
© Adjust only valid nodes on the new hash level. Leave the invalid nodes

unchanged (it allows threads to recover to valid data structures).

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V K4 VK3 VI

Hash Level
.
.
.

Hi+1
Prev

Bn

Bm

K4 K2V V

K1 V

HiHiHi

Bk

.
.
.

Prev

.
.
.

HiHi

K3 VK3 VI

Adjust only
valid
nodes

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V K3K3 V

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V VK3 VIK3 VK3 VI

Bm

Bn

K3 V

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V VK3 VIK3 VK3 VI

Bm

Bn

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2Bk

.
.
.

Prev

.
.
.

HiHi

V V

K3 VK3 VIK3 VK3 VI

K2 V

Bm

Bn

K2 V

Check if
K3 remains
valid after
adjustment

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2Bk

.
.
.

Prev

.
.
.

HiHi

V V

K3 VK3 VIK3 VK3 VI

K2 VK2 V

Bm

Bn

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

The FP Design - Expand (Valid and Invalid Nodes)

ä The expand operation has two steps:

© Find and begin the expansion in the right-most (or deepest) valid node.
© Adjust only valid nodes on the new hash level. Leave the invalid nodes

unchanged (it allows threads to recover to valid data structures).

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V V K4 VK3 VI

Hash Level
.
.
.

Hi+1
Prev

Bn

Bm

K4 K2V V

K1 V

HiHiHi

Bk

.
.
.

Prev

.
.
.

HiHi

K3 VK3 VI

Adjust only
valid
nodes

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V K3K3 V

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V VK3 VIK3 VK3 VI

Bm

Bn

K3 V

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2 K3Bk

.
.
.

Prev

.
.
.

HiHi

V V VK3 VIK3 VK3 VI

Bm

Bn

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2Bk

.
.
.

Prev

.
.
.

HiHi

V V

K3 VK3 VIK3 VK3 VI

K2 V

Bm

Bn

K2 V

Check if
K3 remains
valid after
adjustment

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

K1 K2Bk

.
.
.

Prev

.
.
.

HiHi

V V

K3 VK3 VIK3 VK3 VI

K2 VK2 V

Bm

Bn

Hash Level
HiHiHi

.
.
.

Hi+1
Prev

Bn

Bm

Bk

.
.
.

Prev

.
.
.

HiHi

K3 VK3 VIK3 VK3 VI

K2 VK2 V

K1 VK2 VK1 V

18 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Performance Analysis

ä Hardware: 32 (2 x 16) core AMD with 32 GB of main memory.

ä Software: Linux Fedora 20 with Oracle’s Java Development Kit 1.8.

ä Benchmarks: Sets of 106 randomized keys with insert, search and remove
methods (each benchmark had 5 warm up runs and 20 standard runs).

ä FP design: Expanded with 6 valid nodes and had two configurations (8 and
32 hash bucket levels).

19 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Performance Analysis

ä In the next slides, we will be comparing the FP design against other state-of-
the-art hash map designs that support efficiently multithreading: Concurrent
Hash Maps (CH), Concurrent Skip Lists (CS), Non Blocking Hash Maps (NB)
and Concurrent Tries (CT).

ä Podium colors: first place, second place and third place.

20 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Performance Analysis

ä Execution time (lower is better) Speedup Ratio (higher is better).

Threads Execution Time (ETp) Speedup Ratio (ET1/ETp)
(Tp) CH CS NB CT FP8 FP32 CH CS NB CT FP8 FP32

1st – Insert: 100% Search: 0% Remove: 0%
1 663 3,238 12,968 919 946 542
8 294 550 2,933 207 174 176 2.26 5.89 4.42 4.44 5.44 3.08

16 199 332 2,031 118 117 124 3.33 9.75 6.39 7.79 8.09 4.37
24 201 276 1,717 107 96 153 3.30 11.73 7.55 8.59 9.85 3.54
32 212 270 1,576 97 89 74 3.13 11.99 8.23 9.47 10.63 7.32

2nd – Insert: 0% Search: 100% Remove: 0%
1 155 3,753 225 773 720 379
8 38 535 34 120 118 76 4.08 7.01 6.62 6.44 6.10 4.99

16 27 327 25 78 76 53 5.74 11.48 9.00 9.91 9.47 7.15
24 30 309 22 70 64 53 5.17 12.15 10.23 11.04 11.25 7.15
32 32 315 26 78 69 54 4.84 11.91 8.65 9.91 10.43 7.02

3rd – Insert: 0% Search: 0% Remove: 100%
1 314 4,144 451 1,585 872 582
8 105 595 122 226 172 137 2.99 6.96 3.70 7.01 5.07 4.25

16 62 341 77 156 108 89 5.06 12.15 5.86 10.16 8.07 6.54
24 55 303 66 132 94 130 5.71 13.68 6.83 12.01 9.28 4.48
32 54 306 64 124 101 102 5.81 13.54 7.05 12.78 8.63 5.71

21 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Performance Analysis

ä Execution time (lower is better) Speedup Ratio (higher is better).

Threads Execution Time (ETp) Speedup Ratio (ET1/ETp)
(Tp) CH CS NB CT FP8 FP32 CH CS NB CT FP8 FP32

4th – Insert: 60% Search: 30% Remove: 10%
1 721 2,510 15,342 1,027 873 618
8 150 413 4,030 174 148 142 4.81 6.08 3.81 5.90 5.90 4.35

16 128 247 2,803 115 91 106 5.63 10.16 5.47 8.93 9.59 5.83
24 75 191 2,566 89 72 74 9.61 13.14 5.98 11.54 12.13 8.35
32 72 178 1,870 90 80 67 10.01 14.10 8.20 11.41 10.91 9.22

5th – Insert: 20% Search: 70% Remove: 10%
1 282 1,890 12,370 764 757 395
8 51 282 8,517 171 157 74 5.53 6.70 1.45 4.47 4.82 5.34

16 39 184 3,623 87 72 82 7.23 10.27 3.41 8.78 10.51 4.82
24 37 143 3,058 73 69 64 7.62 13.22 4.05 10.47 10.97 6.17
32 38 145 2,081 74 69 65 7.42 13.03 5.94 10.32 10.97 6.08

6th – Insert: 25% Search: 50% Remove: 25%
1 279 2,059 12,181 1,087 808 440
8 113 340 3,125 159 127 83 2.47 6.06 3.90 6.84 6.36 5.30

16 64 214 3,482 104 82 70 4.36 9.62 3.50 10.45 9.85 6.29
24 42 180 2,609 87 71 78 6.64 11.44 4.67 12.49 11.38 5.64
32 44 166 1,902 83 77 66 6.34 12.40 6.40 13.10 10.49 6.67

22 / 23

The Internals of a Novel Lock-Free Hash Map Design Miguel Areias and Ricardo Rocha

Thank You !!!

Miguel Areias
miguel-areias@dcc.fc.up.pt

FP design : https://github.com/miar/ffp
FCT grant: SFRH/BPD/108018/2015

23 / 23

	anm0:

