
Programming
Distributed Memory Machines

with MPI

Ricardo Rocha and Fernando Silva

Computer Science Department
Faculty of Sciences
University of Porto

Parallel Computing 2018/2019

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 1 / 99



Programming Distributed Memory Machines

Applications are seen as a set of programs (or processes), each with its
own memory, that execute independently in different machines.
Cooperation between the programs is achieved by exchanging messages.

Programmers must control synchronization and operation details of the
application but, do not want to waist too much (any?) time with the low
level communication details.

Message passing libraries extend existing languages and provide
programmers with an implementation abstraction for communication
details without the programmer having to explicitly know how that is
accomplished at the network level. They usually support/include:

Remote execution of programs
Send/receive message support between the programs
Tools to monitor the execution state of the programs

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 2 / 99



Programming Distributed Memory Machines

Applications are seen as a set of programs (or processes), each with its
own memory, that execute independently in different machines.
Cooperation between the programs is achieved by exchanging messages.

Programmers must control synchronization and operation details of the
application but, do not want to waist too much (any?) time with the low
level communication details.

Message passing libraries extend existing languages and provide
programmers with an implementation abstraction for communication
details without the programmer having to explicitly know how that is
accomplished at the network level. They usually support/include:

Remote execution of programs
Send/receive message support between the programs
Tools to monitor the execution state of the programs

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 2 / 99



Programming Distributed Memory Machines

Applications are seen as a set of programs (or processes), each with its
own memory, that execute independently in different machines.
Cooperation between the programs is achieved by exchanging messages.

Programmers must control synchronization and operation details of the
application but, do not want to waist too much (any?) time with the low
level communication details.

Message passing libraries extend existing languages and provide
programmers with an implementation abstraction for communication
details without the programmer having to explicitly know how that is
accomplished at the network level. They usually support/include:

Remote execution of programs
Send/receive message support between the programs
Tools to monitor the execution state of the programs

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 2 / 99



Message Passing Libraries

Communication:
No shared variables
Pairwise or point-to-point functions to send and receive messages
Collective functions to move data (broadcast, scatter, gather) and to
resume data (reduce) from all/several programs

Synchronization:
No locks (there are no shared variables to protect)
Synchronous messages
Barrier mechanisms

Inquiries:
How many processes?
Which one am I?
Any messages waiting?

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 3 / 99



Message Passing Libraries

Communication:
No shared variables
Pairwise or point-to-point functions to send and receive messages
Collective functions to move data (broadcast, scatter, gather) and to
resume data (reduce) from all/several programs

Synchronization:
No locks (there are no shared variables to protect)
Synchronous messages
Barrier mechanisms

Inquiries:
How many processes?
Which one am I?
Any messages waiting?

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 3 / 99



Message Passing Libraries

Communication:
No shared variables
Pairwise or point-to-point functions to send and receive messages
Collective functions to move data (broadcast, scatter, gather) and to
resume data (reduce) from all/several programs

Synchronization:
No locks (there are no shared variables to protect)
Synchronous messages
Barrier mechanisms

Inquiries:
How many processes?
Which one am I?
Any messages waiting?

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 3 / 99



Message Passing Libraries

Many message passing libraries have been proposed:
PVM, Parallel Virtual Machine (Oak Ridge National Laboratory,
University of Tennessee)
ACL Message Passing Library (Advanced Computing Lab, Los Alamos
National Laboratory)
CMMD (Thinking Machines Corporation)
MPL, Message Passing Library (IBM SP2)
NX Message Passing (Intel Paragon)
...

But, nowadays MPI (Message Passing Interface) is the industry
standard.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 4 / 99



Message Passing Interface (MPI)

Started in 1992 as a cooperation between universities and industries from
Europe and the United States:

First published in 1994 (MPI-1)
Extensions have been proposed to handle dynamic execution and
parallel IO (MPI-2) and non-blocking collectives (MPI-3)

MPI is just a specification (MPI Forum – http://www.mpi-forum.org)
Not a programming language
Not a implementation
Initial libraries implemented only for the C/C++ and Fortran
languages (now also for Perl, Python, Ruby, OCaml, Java, R, ...)

Major implementations:
MPICH (http://www.mcs.anl.gov/mpi/mpich)
OpenMPI (hhtp://http://www.open-mpi.org)

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 5 / 99



Message Passing Interface (MPI)

Started in 1992 as a cooperation between universities and industries from
Europe and the United States:

First published in 1994 (MPI-1)
Extensions have been proposed to handle dynamic execution and
parallel IO (MPI-2) and non-blocking collectives (MPI-3)

MPI is just a specification (MPI Forum – http://www.mpi-forum.org)
Not a programming language
Not a implementation
Initial libraries implemented only for the C/C++ and Fortran
languages (now also for Perl, Python, Ruby, OCaml, Java, R, ...)

Major implementations:
MPICH (http://www.mcs.anl.gov/mpi/mpich)
OpenMPI (hhtp://http://www.open-mpi.org)

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 5 / 99



Message Passing Interface (MPI)

Started in 1992 as a cooperation between universities and industries from
Europe and the United States:

First published in 1994 (MPI-1)
Extensions have been proposed to handle dynamic execution and
parallel IO (MPI-2) and non-blocking collectives (MPI-3)

MPI is just a specification (MPI Forum – http://www.mpi-forum.org)
Not a programming language
Not a implementation
Initial libraries implemented only for the C/C++ and Fortran
languages (now also for Perl, Python, Ruby, OCaml, Java, R, ...)

Major implementations:
MPICH (http://www.mcs.anl.gov/mpi/mpich)
OpenMPI (hhtp://http://www.open-mpi.org)

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 5 / 99



Goals and Novel Features of MPI

Main goals:
Increase program’s portability
Increase and improve functionality
Achieve efficient implementations on several different architectures
Support heterogeneous environments

Novel Features:
Communicators encapsulate communication spaces for library safety
Data types reduce copying costs and permit heterogeneity
Multiple communication modes allow precise buffer management
Extensive collective operations for scalable global communication
Topologies encapsulate different user views of process layout and
permits efficient process placement
Profiling interface encourages portable tools

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 6 / 99



Single Program Multiple Data (SPMD)

SPMD is a programming model in which all components that make the
parallel application are included in just one executable. Each running
process can then determine its own rank among all processes and thus
separate its execution flow from the others when needed.

...
if (my_rank == 0) {

// code for process 0
}
...
else if (my_rank == N) {

// code for process N
}
...

MPI does not impose any constraint on the programming model and
SPMD is just a possible option, but a more portable one.
R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 7 / 99



MPI Execution Environment

A program initiates the MPI execution environment with a call to:

MPI_Init(int *argc, char ***argv)

and terminates the MPI execution environment by calling:

MPI_Finalize(void)

All MPI functions return 0 if OK or a positive value in case of error.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 8 / 99



General Structure of a MPI Program

// include library of MPI function calls
#include <mpi.h>

main(int argc, char **argv) {
...
// no MPI calls before this point
MPI_Init(&argc, &argv);

...

MPI_Finalize();
// no MPI calls after this point
...

}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 9 / 99



Communicators

A MPI program sees its execution environment as groups of processes:
The communicator data structure encapsulates the concept of group
of processes and defines a communication space for the set of
processes in a group
All processes have a unique identifier, named rank, that determines
their position (from 0 to N-1) within the communicator

0 1

2 3

CommunicatorProcess rank

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 10 / 99



Communicators

All communication functions take place within the context of a
communicator:

By default, the MPI execution environment sets a universal
communicator MPI_COMM_WORLD including all processes in execution
A process can be part of more than one communicator and assume
different rankings in each of them

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 11 / 99



Getting Information About Communicators

MPI_Comm_rank(MPI_Comm comm, int *rank)

MPI_Comm_rank() returns in rank the position of the current process in
the communicator comm.

MPI_Comm_size(MPI_Comm comm, int *size)

MPI_Comm_size() returns in size the number of processes participating
in the communicator comm.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 12 / 99



MPI Messages

In its essence, messages are just data packets being exchanged among
processes. For a message to be exchanged, the MPI execution
environment needs to know at least the following data:

Sender process
Receiver process
Location of data at origin
Location of data at destination
Size of data
Type of data

As we will see, a very relevant information in MPI messages is the type of
data.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 13 / 99



MPI Messages

In its essence, messages are just data packets being exchanged among
processes. For a message to be exchanged, the MPI execution
environment needs to know at least the following data:

Sender process
Receiver process
Location of data at origin
Location of data at destination
Size of data
Type of data

As we will see, a very relevant information in MPI messages is the type of
data.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 13 / 99



Basic Data Types

MPI C
MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_PACKED

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 14 / 99



Sending Messages

MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

MPI_Send() is the basic function for sending messages:
buf is the starting address of the data to be sent
count is the number of elements of type datatype to be sent
datatype is the type of data to be sent
dest is the rank of the receiver process within communicator comm

tag is an identification tag for the message being sent, which allows
to group/distinguish the messages being exchanged
comm is the communicator for the processes involved in the
communication

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 15 / 99



Receiving Messages

MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI_Recv() is the basic function for receiving messages:
buf is the starting address where received data must be placed
count is the maximum number of elements of type datatype to be
received (must be ≥ to the number of elements being sent)
datatype is the type of data to be received

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 16 / 99



Receiving Messages

MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

source is the rank of the sending process within communicator comm
(MPI_ANY_SOURCE allows to receive from any process)
tag is the identification tag for the message being received
(MPI_ANY_TAG allows to receive any message)
comm is the communicator for the processes involved
status returns information about the sending process and message
tag (status.MPI_SOURCE and status.MPI_TAG) (if not important,
can be ignored using MPI_STATUS_IGNORE)

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 17 / 99



Getting Information About Received Messages

MPI_Get_count(MPI_Status *status, MPI_Datatype datatype,
int *count)

MPI_Get_count() returns in count the number of elements of type
datatype received in the message associated with status.

MPI_Probe(int source, int tag, MPI_Comm comm,
MPI_Status *status)

MPI_Probe() synchronizes the reception of the next message, by returning
in status information about the message, but without receiving it:

To effectively receive the message, a call to MPI_Recv() is required
Useful when we do not know beforehand the size of the message, thus
allowing to avoid overflowing the receiving buffer

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 18 / 99



Getting Information About Received Messages

MPI_Get_count(MPI_Status *status, MPI_Datatype datatype,
int *count)

MPI_Get_count() returns in count the number of elements of type
datatype received in the message associated with status.

MPI_Probe(int source, int tag, MPI_Comm comm,
MPI_Status *status)

MPI_Probe() synchronizes the reception of the next message, by returning
in status information about the message, but without receiving it:

To effectively receive the message, a call to MPI_Recv() is required
Useful when we do not know beforehand the size of the message, thus
allowing to avoid overflowing the receiving buffer

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 18 / 99



I’m Alive! (mpi-alive.c)

#define MY_TAG 0

main(int argc, char **argv) {
int i, my_rank, n_procs; char msg[100]; MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &n_procs);
if (my_rank != 0) {

sprintf(msg, "I’m Alive!");
MPI_Send(msg, strlen(msg)+1, MPI_CHAR, 0, MY_TAG, MPI_COMM_WORLD);

} else {
for (i= 1; i < n_procs; i++) {

MPI_Recv(msg, 100, MPI_CHAR, MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD, &status);

printf("%d: %s\n", status.MPI_SOURCE, msg);
}

}
MPI_Finalize();

}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 19 / 99



Communication Modes

MPI allows different communication modes for sending messages:
Standard send: MPI_Send()

Synchronous send: MPI_Ssend()

Buffered send: MPI_Bsend()

In any case, message ordering is always preserved and reception should be
done using MPI_Recv(). If a process A sends N messages to a process B
by making N calls to MPI_Send()/MPI_Ssend()/MPI_Bsend() and
process B makes N calls to MPI_Recv() to receive the N messages, the
MPI execution environment ensures that the 1st send call is matched with
the 1st receive call, the 2nd send call is matched with the 2nd receive call,
and so on.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 20 / 99



Communication Modes

MPI allows different communication modes for sending messages:
Standard send: MPI_Send()

Synchronous send: MPI_Ssend()

Buffered send: MPI_Bsend()

In any case, message ordering is always preserved and reception should be
done using MPI_Recv(). If a process A sends N messages to a process B
by making N calls to MPI_Send()/MPI_Ssend()/MPI_Bsend() and
process B makes N calls to MPI_Recv() to receive the N messages, the
MPI execution environment ensures that the 1st send call is matched with
the 1st receive call, the 2nd send call is matched with the 2nd receive call,
and so on.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 20 / 99



Synchronous Send

MPI_Ssend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Sender waits to transmit until the receiver confirms it is ready to receive:
Although this communication mode may be useful in certain cases, its
use delays the sender until the receiver is ready
It should be used only when the sender needs to ensure that the
message has been received before proceeding with execution

MPI_Ssend

MPI_Recv

time

Sender

Receiver

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 21 / 99



Buffered Send

MPI_Bsend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

The message is first copied into a local buffer and only then sent to the
receiver:

The sender does not depends on synchronizing with the receiver and
can continue its execution without any delay
Requires the association of an explicit local buffer to the sender

MPI_Bsend

MPI_Recv

time

Sender

Receiver

local
buffer

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 22 / 99



Attaching and Detaching a Local Buffer

MPI_Buffer_attach(void *buf, int size)

MPI_Buffer_attach() tells the MPI execution environment that the
memory space starting at buf and with size size can be used for local
buffering of messages. At any instant, only one local buffer can be
attached to a process.

MPI_Buffer_detach(void **buf, int *size)

MPI_Buffer_detach() tells the MPI execution environment to stop using
the buffer pointed by buf for local buffering of messages. If there are
pending messages in the buffer, it returns only when all messages have
been delivered. MPI_Buffer_detach() does not free the buffer’s
memory, and for that one must call the free() system call.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 23 / 99



Attaching and Detaching a Local Buffer

MPI_Buffer_attach(void *buf, int size)

MPI_Buffer_attach() tells the MPI execution environment that the
memory space starting at buf and with size size can be used for local
buffering of messages. At any instant, only one local buffer can be
attached to a process.

MPI_Buffer_detach(void **buf, int *size)

MPI_Buffer_detach() tells the MPI execution environment to stop using
the buffer pointed by buf for local buffering of messages. If there are
pending messages in the buffer, it returns only when all messages have
been delivered. MPI_Buffer_detach() does not free the buffer’s
memory, and for that one must call the free() system call.
R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 23 / 99



Welcome! (mpi-welcome.c)

main(int argc, char **argv) {
int buf_size; char *local_buf;
...
buf_size = BSIZE; local_buf = (char *) malloc(buf_size);
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &n_procs);
MPI_Buffer_attach(local_buf, buf_size);
sprintf(msg, "Welcome!");
for (i = 0; i < n_procs; i++) if (i != my_rank)

MPI_Bsend(msg, strlen(msg)+1, MPI_CHAR, i, MY_TAG, MPI_COMM_WORLD);
for (i = 0; i < n_procs; i++) if (i != my_rank) {

sprintf(msg, "Argh!");
MPI_Recv(msg, 100, MPI_CHAR, MPI_ANY_SOURCE, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);
printf("%d->%d: %s\n", status.MPI_SOURCE, my_rank, msg);

}
MPI_Buffer_detach(&local_buf, &buf_size);
free(local_buf);
MPI_Finalize();

}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 24 / 99



Standard Send

MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

Terminates when the message is sent but this does not imply that it has
been delivered to the receiver. The MPI execution environment may keep
the message on hold for a while in a local buffer:

Typically, small messages are buffered while larger messages are
synchronized (MPI implementation dependent)
For portability, programmers should assume synchronization

MPI_Send

MPI_Recv

time

Sender

Receiver

local
buffer

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 25 / 99



Simultaneous Send and Receive

MPI_Sendrecv(void *sendbuf, int sendcount,
MPI_Datatype sendtype, int dest, int sendtag, void *recvbuf,
int recvcount, MPI_Datatype recvtype, int source,
int recvtag, MPI_Comm comm, MPI_Status *status)

MPI_Sendrecv() allows for the simultaneous sending and receiving of
messages. Useful when one wants circular communications on a set of
processes, thus avoiding mismatches and potential deadlocks:

sendbuf is the starting address of the data to be sent
sendcount is the number of elements of type sendtype to be sent
sendtype is the type of data to be sent
dest is the rank of the receiver process within communicator comm

sendtag is the identification tag for the message being sent

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 26 / 99



Simultaneous Send and Receive

MPI_Sendrecv(void *sendbuf, int sendcount,
MPI_Datatype sendtype, int dest, int sendtag, void *recvbuf,
int recvcount, MPI_Datatype recvtype, int source,
int recvtag, MPI_Comm comm, MPI_Status *status)

recvbuf is the starting address where received data must be placed
recvcount is the maximum number of elements of type recvtype to
be received
recvtype is the type of data to be received
source is the rank of the sending process within communicator comm

recvtag is the identification tag for the message being received
comm is the communicator for the processes involved
status returns information about the sending process

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 27 / 99



Simultaneous Send and Receive

MPI_Sendrecv(void *sendbuf, int sendcount,
MPI_Datatype sendtype, int dest, int sendtag, void *recvbuf,
int recvcount, MPI_Datatype recvtype, int source,
int recvtag, MPI_Comm comm, MPI_Status *status)

Important aspects of the MPI_Sendrecv() communication mode:
The buffers sendbuf and recvbuf must be different
The tags sendtag and recvtag, the sizes sendcount and
recvcount, and the types of data sendtype and recvtype, can be
different
A message that is sent using MPI_Sendrecv() can be received by
any other receiving method
A message that is received with MPI_Sendrecv() may have been
sent by any other sending method

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 28 / 99



Simultaneous Send and Receive

MPI_Sendrecv_replace(void *buf, int count,
MPI_Datatype datatype, int dest, int sendtag, int source,
int recvtag, MPI_Comm comm, MPI_Status *status)

MPI_Sendrecv_replace() allows for the simultaneous sending and
receiving of messages using the same buffer to send and to receive:

At the end of the communication, the message being sent is replaced
by the one being received
The buffer buf, the size count and the type of data datatype are
used to define both the messages being sent and being received
A message that is sent using MPI_Sendrecv_replace() can be
received by any other receiving method
A message that is received with MPI_Sendrecv_replace() may have
been sent by any other sending method

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 29 / 99



Non-Blocking Communications

A communication is said to be blocking if it suspends the execution until
the communication succeeds. A blocking communication succeeds when
the message buffer associated with the communication can be reused.

A communication is said to be non-blocking if the continuation of the
execution does not depend on the success of the communication.
Nevertheless, the message buffer associated with the communication
should not be reused until the communication succeeds.

The advantage of non-blocking communication is to start sending the
messages as early as possible and only later verify their success
The call to a non-blocking function returns immediately since it only
announces to the MPI execution environment the existence of a
message to be sent or received
The communication completes when, in a later moment, the process
gets to know the success of the communication

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 30 / 99



Non-Blocking Communications

A communication is said to be blocking if it suspends the execution until
the communication succeeds. A blocking communication succeeds when
the message buffer associated with the communication can be reused.

A communication is said to be non-blocking if the continuation of the
execution does not depend on the success of the communication.
Nevertheless, the message buffer associated with the communication
should not be reused until the communication succeeds.

The advantage of non-blocking communication is to start sending the
messages as early as possible and only later verify their success
The call to a non-blocking function returns immediately since it only
announces to the MPI execution environment the existence of a
message to be sent or received
The communication completes when, in a later moment, the process
gets to know the success of the communication

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 30 / 99



Non-Blocking Communications

A communication is said to be blocking if it suspends the execution until
the communication succeeds. A blocking communication succeeds when
the message buffer associated with the communication can be reused.

A communication is said to be non-blocking if the continuation of the
execution does not depend on the success of the communication.
Nevertheless, the message buffer associated with the communication
should not be reused until the communication succeeds.

The advantage of non-blocking communication is to start sending the
messages as early as possible and only later verify their success
The call to a non-blocking function returns immediately since it only
announces to the MPI execution environment the existence of a
message to be sent or received
The communication completes when, in a later moment, the process
gets to know the success of the communication

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 30 / 99



Non-Blocking Send and Receive

MPI_Isend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *req)

MPI_Irecv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Request *req)

Both functions return in req the identifier that permits later verification
on the success of the communication.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 31 / 99



Non-Blocking Probing of Messages

MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,
MPI_Status *status)

MPI_Iprobe() checks (without blocking) for the arrival of a message
associated with source, tag and comm without receiving it:

Returns in flag the logical value that indicates the arrival of some
message, and status provides information about it
To receive the message, one has to use a receiving function

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 32 / 99



Success of Non-Blocking Communications

MPI_Wait(MPI_Request *req, MPI_Status *status)

MPI_Wait() blocks the calling process until the communication identified
by req succeeds. Returns in status information about the message.

MPI_Test(MPI_Request *req, int *flag, MPI_Status *status)

MPI_Test() tests whether the communication identified by req has
succeeded. Returns in flag the logical value that indicates the success of
the communication and, in case of success, returns in status information
about the message.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 33 / 99



Hello! (mpi-hello.c)

main(int argc, char **argv) {
char recv_msg[100]; MPI_Request req[100];
...
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &n_procs);
for (i = 0; i < n_procs; i++) if (my_rank != i) {

sprintf(msg, "Hello proc %d!", i);
MPI_Irecv(recv_msg, 100, MPI_CHAR, MPI_ANY_SOURCE, MPI_ANY_TAG,

MPI_COMM_WORLD, &(req[i]));
MPI_Isend(msg, strlen(msg)+1, MPI_CHAR, i, MY_TAG, MPI_COMM_WORLD,

&(req[i + n_procs]));
}
for (i = 0; i < n_procs; i++) if (my_rank != i) {

sprintf(recv_msg, "Argh!");
MPI_Wait(&(req[i]), &status);
printf("%d->%d: %s\n", status.MPI_SOURCE, my_rank, recv_msg);
MPI_Wait(&(req[i + n_procs]), &status);

}
MPI_Finalize();

}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 34 / 99



Which Communications Should I Use?

Most users use standard communications to send and receive messages,
specially when the MPI implementation is efficient. However, their use do
not guarantee the functionality and portability of the application.

Alternatively, the use of synchronous and non-blocking standard
communications is sufficient to build robust applications.

Non-blocking communications do not always lead to the best results. Their
use should only be considered when there is a clear computation overlap.

Very commonly, sending is done with non-blocking functions and receiving
with blocking functions.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 35 / 99



Which Communications Should I Use?

Most users use standard communications to send and receive messages,
specially when the MPI implementation is efficient. However, their use do
not guarantee the functionality and portability of the application.

Alternatively, the use of synchronous and non-blocking standard
communications is sufficient to build robust applications.

Non-blocking communications do not always lead to the best results. Their
use should only be considered when there is a clear computation overlap.

Very commonly, sending is done with non-blocking functions and receiving
with blocking functions.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 35 / 99



Which Communications Should I Use?

Most users use standard communications to send and receive messages,
specially when the MPI implementation is efficient. However, their use do
not guarantee the functionality and portability of the application.

Alternatively, the use of synchronous and non-blocking standard
communications is sufficient to build robust applications.

Non-blocking communications do not always lead to the best results. Their
use should only be considered when there is a clear computation overlap.

Very commonly, sending is done with non-blocking functions and receiving
with blocking functions.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 35 / 99



Which Communications Should I Use?

Most users use standard communications to send and receive messages,
specially when the MPI implementation is efficient. However, their use do
not guarantee the functionality and portability of the application.

Alternatively, the use of synchronous and non-blocking standard
communications is sufficient to build robust applications.

Non-blocking communications do not always lead to the best results. Their
use should only be considered when there is a clear computation overlap.

Very commonly, sending is done with non-blocking functions and receiving
with blocking functions.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 35 / 99



Which Communications Should I Use?

Most users use standard communications to send and receive messages,
specially when the MPI implementation is efficient. However, their use do
not guarantee the functionality and portability of the application.

Alternatively, the use of synchronous and non-blocking standard
communications is sufficient to build robust applications.

Non-blocking communications do not always lead to the best results. Their
use should only be considered when there is a clear computation overlap.

Very commonly, sending is done with non-blocking functions and receiving
with blocking functions.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 35 / 99



Grouping Data for Communication

With message passing, a natural heuristic to maximize performance is to
minimize the number of messages being exchanged:

By default, all sending and receiving functions allow grouping in a
single message, data of the same type that is contiguously stored in
memory

datatype datatype datatype datatype...

count

On top of this basic functionality, MPI allows one to:
Define new data types that group data of various types
Pack and unpack data into/from a buffer

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 36 / 99



Grouping Data for Communication

With message passing, a natural heuristic to maximize performance is to
minimize the number of messages being exchanged:

By default, all sending and receiving functions allow grouping in a
single message, data of the same type that is contiguously stored in
memory

datatype datatype datatype datatype...

count

On top of this basic functionality, MPI allows one to:
Define new data types that group data of various types
Pack and unpack data into/from a buffer

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 36 / 99



Derived Data Types

MPI allows the dynamic definition (during execution time) of new data
types built from the existing basic data types:

Initially, all processes must build the derived data types
Then, they must make the derived data type known to the MPI
execution environment
When the derived data type is no longer needed, each process frees it
from the MPI execution environment

Derived data types are used in communication messages similarly to
the basic data types. Thus, sender and receiver must know about them.
This is normally accomplished in the common part of the code.

There is a cost in building derived data types, hence it should only be
used when one expects a significant number of messages to be exchanged.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 37 / 99



Derived Data Types

MPI allows the dynamic definition (during execution time) of new data
types built from the existing basic data types:

Initially, all processes must build the derived data types
Then, they must make the derived data type known to the MPI
execution environment
When the derived data type is no longer needed, each process frees it
from the MPI execution environment

Derived data types are used in communication messages similarly to
the basic data types. Thus, sender and receiver must know about them.
This is normally accomplished in the common part of the code.

There is a cost in building derived data types, hence it should only be
used when one expects a significant number of messages to be exchanged.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 37 / 99



Derived Data Types

MPI allows the dynamic definition (during execution time) of new data
types built from the existing basic data types:

Initially, all processes must build the derived data types
Then, they must make the derived data type known to the MPI
execution environment
When the derived data type is no longer needed, each process frees it
from the MPI execution environment

Derived data types are used in communication messages similarly to
the basic data types. Thus, sender and receiver must know about them.
This is normally accomplished in the common part of the code.

There is a cost in building derived data types, hence it should only be
used when one expects a significant number of messages to be exchanged.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 37 / 99



Derived Data Types for Regular Data Intervals

MPI_Type_vector(int count, int blocklength, int stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_vector() builds a new data type from an existing vector of
data:

count is the number of data blocks in the new derived data type
blocklength is the number of contiguous elements in each block
stride is the number of contiguous elements that separate the start
of each block (i.e. the displacement)
oldtype is the data type of the elements in the existing vector
newtype is the identifier of the new derived data type

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 38 / 99



Derived Data Types for Regular Data Intervals

MPI_Type_vector(int count, int blocklength, int stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

count = 2

blocklenght = 3

stride = 4

newtype

oldtype oldtype oldtype oldtype oldtype oldtype oldtype oldtype

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 39 / 99



Derived Data Types for Heterogeneous Data

MPI_Type_struct(int count, int blocklengths[],
MPI_Aint displacements[], MPI_Datatype oldtypes[],
MPI_Datatype *newtype)

MPI_Type_struct() builds a new data type from a data structure that
may include different basic data types:

count is the number of data blocks in the new derived data type (it
is also the number of items in blocklengths[], displacements[]
and oldtypes[])
blocklengths[] gives the number of contiguous elements in each
block
displacements[] gives the starting position, in bytes, of each block
oldtypes[] gives the data type of the elements in each block
newtype is the identifier of the new derived data type

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 40 / 99



Derived Data Types for Heterogeneous Data

MPI_Type_struct(int count, int blocklengths[],
MPI_Aint displacements[], MPI_Datatype oldtypes[],
MPI_Datatype *newtype)

count = 3

block 0

newtype

MPI_INT MPI_CHAR MPI_DOUBLEMPI_CHAR MPI_CHAR MPI_CHAR MPI_DOUBLE

block 1 block 2

blocklengths[3] = {1, 4, 2}
displacements[3] = {0, int_length, int_length + 4 * char_length}
oldtypes[3] = {MPI_INT, MPI_CHAR, MPI_DOUBLE}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 41 / 99



Getting Information for Derived Data Types

A derived data type represents a collection of data items in memory that
specifies both the basic types of the items and their relative locations in
memory. To specify the locations, one needs to determine the size in
bytes of a data type.

MPI_Type_extent(MPI_Datatype datatype, MPI_Aint *extent)

MPI_Type_extent() returns in extent the size in bytes of datatype.

MPI_Address(void *location, MPI_Aint *address)

MPI_Address() returns in address the memory address of location.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 42 / 99



Getting Information for Derived Data Types

A derived data type represents a collection of data items in memory that
specifies both the basic types of the items and their relative locations in
memory. To specify the locations, one needs to determine the size in
bytes of a data type.

MPI_Type_extent(MPI_Datatype datatype, MPI_Aint *extent)

MPI_Type_extent() returns in extent the size in bytes of datatype.

MPI_Address(void *location, MPI_Aint *address)

MPI_Address() returns in address the memory address of location.
R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 42 / 99



Certifying Derived Data Types

MPI_Type_commit(MPI_Datatype *datatype)

MPI_Type_commit() certifies within the MPI execution environment the
existence of a new derived type identified by datatype.

MPI_Type_free(MPI_Datatype *datatype)

MPI_Type_free() frees from the MPI execution environment the derived
type identified by datatype.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 43 / 99



Certifying Derived Data Types

MPI_Type_commit(MPI_Datatype *datatype)

MPI_Type_commit() certifies within the MPI execution environment the
existence of a new derived type identified by datatype.

MPI_Type_free(MPI_Datatype *datatype)

MPI_Type_free() frees from the MPI execution environment the derived
type identified by datatype.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 43 / 99



Handling Columns of Matrices (mpi-typevector.c)

MPI_Datatype colMatrix;
int my_matrix[ROWS][COLS];
int my_vector[ROWS];
...
// build a derived datatype with ROWS blocks
// of 1 element separated by COLS elements
MPI_Type_vector(ROWS, 1, COLS, MPI_INT, &colMatrix);
MPI_Type_commit(&colMatrix);

...
// send column 1 of my_matrix
MPI_Send(&my_matrix[0][1], 1, colMatrix, dest, tag, comm);
...
// receive a given column of data in column 3 of my_matrix
MPI_Recv(&my_matrix[0][3], 1, colMatrix, src, tag, comm, &status);
...
// receive a given column of data in my_vector
MPI_Recv(&my_vector[0], ROWS, MPI_INT, src, tag, comm, &status);
...
// free the derived datatype
MPI_Type_free(&colMatrix);

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 44 / 99



Handling Columns of Matrices (mpi-typevector.c)

MPI_Datatype colMatrix;
int my_matrix[ROWS][COLS];
int my_vector[ROWS];
...
// build a derived datatype with ROWS blocks
// of 1 element separated by COLS elements
MPI_Type_vector(ROWS, 1, COLS, MPI_INT, &colMatrix);
MPI_Type_commit(&colMatrix);
...
// send column 1 of my_matrix
MPI_Send(&my_matrix[0][1], 1, colMatrix, dest, tag, comm);

...
// receive a given column of data in column 3 of my_matrix
MPI_Recv(&my_matrix[0][3], 1, colMatrix, src, tag, comm, &status);
...
// receive a given column of data in my_vector
MPI_Recv(&my_vector[0], ROWS, MPI_INT, src, tag, comm, &status);
...
// free the derived datatype
MPI_Type_free(&colMatrix);

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 44 / 99



Handling Columns of Matrices (mpi-typevector.c)

MPI_Datatype colMatrix;
int my_matrix[ROWS][COLS];
int my_vector[ROWS];
...
// build a derived datatype with ROWS blocks
// of 1 element separated by COLS elements
MPI_Type_vector(ROWS, 1, COLS, MPI_INT, &colMatrix);
MPI_Type_commit(&colMatrix);
...
// send column 1 of my_matrix
MPI_Send(&my_matrix[0][1], 1, colMatrix, dest, tag, comm);
...
// receive a given column of data in column 3 of my_matrix
MPI_Recv(&my_matrix[0][3], 1, colMatrix, src, tag, comm, &status);

...
// receive a given column of data in my_vector
MPI_Recv(&my_vector[0], ROWS, MPI_INT, src, tag, comm, &status);
...
// free the derived datatype
MPI_Type_free(&colMatrix);

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 44 / 99



Handling Columns of Matrices (mpi-typevector.c)

MPI_Datatype colMatrix;
int my_matrix[ROWS][COLS];
int my_vector[ROWS];
...
// build a derived datatype with ROWS blocks
// of 1 element separated by COLS elements
MPI_Type_vector(ROWS, 1, COLS, MPI_INT, &colMatrix);
MPI_Type_commit(&colMatrix);
...
// send column 1 of my_matrix
MPI_Send(&my_matrix[0][1], 1, colMatrix, dest, tag, comm);
...
// receive a given column of data in column 3 of my_matrix
MPI_Recv(&my_matrix[0][3], 1, colMatrix, src, tag, comm, &status);
...
// receive a given column of data in my_vector
MPI_Recv(&my_vector[0], ROWS, MPI_INT, src, tag, comm, &status);

...
// free the derived datatype
MPI_Type_free(&colMatrix);

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 44 / 99



Handling Columns of Matrices (mpi-typevector.c)

MPI_Datatype colMatrix;
int my_matrix[ROWS][COLS];
int my_vector[ROWS];
...
// build a derived datatype with ROWS blocks
// of 1 element separated by COLS elements
MPI_Type_vector(ROWS, 1, COLS, MPI_INT, &colMatrix);
MPI_Type_commit(&colMatrix);
...
// send column 1 of my_matrix
MPI_Send(&my_matrix[0][1], 1, colMatrix, dest, tag, comm);
...
// receive a given column of data in column 3 of my_matrix
MPI_Recv(&my_matrix[0][3], 1, colMatrix, src, tag, comm, &status);
...
// receive a given column of data in my_vector
MPI_Recv(&my_vector[0], ROWS, MPI_INT, src, tag, comm, &status);
...
// free the derived datatype
MPI_Type_free(&colMatrix);

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 44 / 99



Handling Data Structures (mpi-typestruct.c)

struct { int a; char b[4]; double c[2]; } my_struct;
MPI_Datatype strType, oldtypes[3];
MPI_Aint int_length, char_length, offsets[3];
int blocklengths[3];
...
// build a derived datatype representing my_struct
MPI_Type_extent(MPI_INT, &int_length);
MPI_Type_extent(MPI_CHAR, &char_length);
blocklengths[0] = 1; blocklengths[1] = 4; blocklengths[2] = 2;
oldtypes[0] = MPI_INT; oldtypes[1] = MPI_CHAR;
oldtypes[2] = MPI_DOUBLE;
offsets[0] = 0; offsets[1] = int_length;
offsets[2] = int_length + 4 * char_length;
MPI_Type_struct(3, blocklengths, offsets, oldtypes, &strType);
MPI_Type_commit(&strType);

...
// send my_struct
MPI_Send(&my_struct, 1, strType, dest, tag, comm);
...
// receive in my_struct
MPI_Recv(&my_struct, 1, strType, src, tag, comm, &status);

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 45 / 99



Handling Data Structures (mpi-typestruct.c)

struct { int a; char b[4]; double c[2]; } my_struct;
MPI_Datatype strType, oldtypes[3];
MPI_Aint int_length, char_length, offsets[3];
int blocklengths[3];
...
// build a derived datatype representing my_struct
MPI_Type_extent(MPI_INT, &int_length);
MPI_Type_extent(MPI_CHAR, &char_length);
blocklengths[0] = 1; blocklengths[1] = 4; blocklengths[2] = 2;
oldtypes[0] = MPI_INT; oldtypes[1] = MPI_CHAR;
oldtypes[2] = MPI_DOUBLE;
offsets[0] = 0; offsets[1] = int_length;
offsets[2] = int_length + 4 * char_length;
MPI_Type_struct(3, blocklengths, offsets, oldtypes, &strType);
MPI_Type_commit(&strType);
...
// send my_struct
MPI_Send(&my_struct, 1, strType, dest, tag, comm);

...
// receive in my_struct
MPI_Recv(&my_struct, 1, strType, src, tag, comm, &status);

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 45 / 99



Handling Data Structures (mpi-typestruct.c)

struct { int a; char b[4]; double c[2]; } my_struct;
MPI_Datatype strType, oldtypes[3];
MPI_Aint int_length, char_length, offsets[3];
int blocklengths[3];
...
// build a derived datatype representing my_struct
MPI_Type_extent(MPI_INT, &int_length);
MPI_Type_extent(MPI_CHAR, &char_length);
blocklengths[0] = 1; blocklengths[1] = 4; blocklengths[2] = 2;
oldtypes[0] = MPI_INT; oldtypes[1] = MPI_CHAR;
oldtypes[2] = MPI_DOUBLE;
offsets[0] = 0; offsets[1] = int_length;
offsets[2] = int_length + 4 * char_length;
MPI_Type_struct(3, blocklengths, offsets, oldtypes, &strType);
MPI_Type_commit(&strType);
...
// send my_struct
MPI_Send(&my_struct, 1, strType, dest, tag, comm);
...
// receive in my_struct
MPI_Recv(&my_struct, 1, strType, src, tag, comm, &status);

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 45 / 99



Packing Data

MPI_Pack(void *buf, int count, MPI_Datatype datatype,
void *packbuf, int packsize, int *position, MPI_Comm comm)

MPI_Pack() packs non-contiguous data into contiguous memory
positions:

buf is the starting address of the data to be packed
count is the number of elements of type datatype to be packed
datatype is the type of data to be packed
packbuf is the starting address of the packing buffer
packsize is the size in bytes of the packing buffer
position is the buffer position (in bytes) from where the data should
be packed
comm is the communicator for the processes involved

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 46 / 99



Packing Data

MPI_Pack(void *buf, int count, MPI_Datatype datatype,
void *packbuf, int packsize, int *position, MPI_Comm comm)

count = 2

buf

datatype datatype

packbuf

packbuf

datatype

packsize

datatype

position

position

MPI_Pack

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 47 / 99



Unpacking Data

MPI_Unpack(void *packbuf, int packsize, int *position,
void *buf, int count, MPI_Datatype datatype, MPI_Comm comm)

MPI_Unpack() unpacks contiguous data into non-contiguous positions in
memory:

packbuf is the starting address of the packing buffer
packsize is the size in bytes of the packing buffer
position is the buffer position (in bytes) from where the data should
be unpacked
buf is the starting address to where the data should be unpacked
count is the number of elements of type datatype to be unpacked
datatype is the type of data to be unpacked
comm is the communicator for the processes involved

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 48 / 99



Unpacking Data

MPI_Unpack(void *packbuf, int packsize, int *position,
void *buf, int count, MPI_Datatype datatype, MPI_Comm comm)

count = 2

buf

datatype datatype

packbuf

packbuf

datatype

packsize

datatype

position

position

MPI_Unpack

datatype datatype

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 49 / 99



Matrix of Variable Size (mpi-pack.c)

// initially ROWS and COLS are not known to process 1
int *my_matrix, ROWS, COLS, pos;
char buf[BSIZE]; // packing buffer
...
if (my_rank == 0) {

// pack and send ROWS, COLS and my_matrix
pos = 0;
MPI_Pack(&ROWS, 1, MPI_INT, buf, BSIZE, &pos, comm);
MPI_Pack(&COLS, 1, MPI_INT, buf, BSIZE, &pos, comm);
MPI_Pack(my_matrix, ROWS * COLS, MPI_INT, buf, BSIZE, &pos, comm);
MPI_Send(buf, pos, MPI_PACKED, 1, tag, comm);

}

else if (my_rank == 1) {
// receive and unpack ROWS, COLS and my_matrix
pos = 0;
MPI_Recv(&buf, BSIZE, MPI_PACKED, 0, tag, comm, &status);
MPI_Unpack(&buf, BSIZE, &pos, &ROWS, 1, MPI_INT, comm);
MPI_Unpack(&buf, BSIZE, &pos, &COLS, 1, MPI_INT, comm);
// allocate space to represent my_matrix
my_matrix = (int *) malloc(ROWS * COLS * sizeof(int));
MPI_Unpack(&buf, BSIZE, &pos, my_matrix, ROWS * COLS, MPI_INT, comm);

}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 50 / 99



Matrix of Variable Size (mpi-pack.c)

// initially ROWS and COLS are not known to process 1
int *my_matrix, ROWS, COLS, pos;
char buf[BSIZE]; // packing buffer
...
if (my_rank == 0) {

// pack and send ROWS, COLS and my_matrix
pos = 0;
MPI_Pack(&ROWS, 1, MPI_INT, buf, BSIZE, &pos, comm);
MPI_Pack(&COLS, 1, MPI_INT, buf, BSIZE, &pos, comm);
MPI_Pack(my_matrix, ROWS * COLS, MPI_INT, buf, BSIZE, &pos, comm);
MPI_Send(buf, pos, MPI_PACKED, 1, tag, comm);

} else if (my_rank == 1) {
// receive and unpack ROWS, COLS and my_matrix
pos = 0;
MPI_Recv(&buf, BSIZE, MPI_PACKED, 0, tag, comm, &status);
MPI_Unpack(&buf, BSIZE, &pos, &ROWS, 1, MPI_INT, comm);
MPI_Unpack(&buf, BSIZE, &pos, &COLS, 1, MPI_INT, comm);
// allocate space to represent my_matrix
my_matrix = (int *) malloc(ROWS * COLS * sizeof(int));
MPI_Unpack(&buf, BSIZE, &pos, my_matrix, ROWS * COLS, MPI_INT, comm);

}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 50 / 99



Which Data Types Should I Use?

If data is of the same type and found in contiguous memory positions then
just use the count argument of the sending and receiving functions.

If data is of the same type but not found contiguously in memory, then
one should create a derived type using MPI_Type_vector() (for data
separated by regular intervals) or MPI_Type_indexed() (for data
separated by irregular intervals).

If data is heterogeneous and shows a regular pattern, then one should
create a derived type using MPI_Type_struct().

If data is heterogeneous but not shows any regular pattern, then one
should use MPI_Pack() and MPI_Unpack(). MPI_Pack() and
MPI_Unpack() can also be used to exchange heterogeneous data once (or
just a few times).

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 51 / 99



Which Data Types Should I Use?

If data is of the same type and found in contiguous memory positions then
just use the count argument of the sending and receiving functions.

If data is of the same type but not found contiguously in memory, then
one should create a derived type using MPI_Type_vector() (for data
separated by regular intervals) or MPI_Type_indexed() (for data
separated by irregular intervals).

If data is heterogeneous and shows a regular pattern, then one should
create a derived type using MPI_Type_struct().

If data is heterogeneous but not shows any regular pattern, then one
should use MPI_Pack() and MPI_Unpack(). MPI_Pack() and
MPI_Unpack() can also be used to exchange heterogeneous data once (or
just a few times).

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 51 / 99



Which Data Types Should I Use?

If data is of the same type and found in contiguous memory positions then
just use the count argument of the sending and receiving functions.

If data is of the same type but not found contiguously in memory, then
one should create a derived type using MPI_Type_vector() (for data
separated by regular intervals) or MPI_Type_indexed() (for data
separated by irregular intervals).

If data is heterogeneous and shows a regular pattern, then one should
create a derived type using MPI_Type_struct().

If data is heterogeneous but not shows any regular pattern, then one
should use MPI_Pack() and MPI_Unpack(). MPI_Pack() and
MPI_Unpack() can also be used to exchange heterogeneous data once (or
just a few times).

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 51 / 99



Which Data Types Should I Use?

If data is of the same type and found in contiguous memory positions then
just use the count argument of the sending and receiving functions.

If data is of the same type but not found contiguously in memory, then
one should create a derived type using MPI_Type_vector() (for data
separated by regular intervals) or MPI_Type_indexed() (for data
separated by irregular intervals).

If data is heterogeneous and shows a regular pattern, then one should
create a derived type using MPI_Type_struct().

If data is heterogeneous but not shows any regular pattern, then one
should use MPI_Pack() and MPI_Unpack(). MPI_Pack() and
MPI_Unpack() can also be used to exchange heterogeneous data once (or
just a few times).

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 51 / 99



Which Data Types Should I Use?

If data is of the same type and found in contiguous memory positions then
just use the count argument of the sending and receiving functions.

If data is of the same type but not found contiguously in memory, then
one should create a derived type using MPI_Type_vector() (for data
separated by regular intervals) or MPI_Type_indexed() (for data
separated by irregular intervals).

If data is heterogeneous and shows a regular pattern, then one should
create a derived type using MPI_Type_struct().

If data is heterogeneous but not shows any regular pattern, then one
should use MPI_Pack() and MPI_Unpack(). MPI_Pack() and
MPI_Unpack() can also be used to exchange heterogeneous data once (or
just a few times).

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 51 / 99



Collective Communications

In parallel programming, it is common that, in certain moments during
execution, a process wants to communicate the same set of data with the
remaining processes (e.g. to initialize data or tasks).

1

N-1

i

step 1

step i

step N-1

...

...

0

...
if (my_rank == 0)

for (dest = 1; dest < n_procs; dest++)
MPI_Send(data, count, datatype, dest, tag, comm);

else
MPI_Recv(data, count, datatype, 0, tag, comm, &status);

...

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 52 / 99



Collective Communications

In parallel programming, it is common that, in certain moments during
execution, a process wants to communicate the same set of data with the
remaining processes (e.g. to initialize data or tasks).

1

N-1

i

step 1

step i

step N-1

...

...

0

...
if (my_rank == 0)

for (dest = 1; dest < n_procs; dest++)
MPI_Send(data, count, datatype, dest, tag, comm);

else
MPI_Recv(data, count, datatype, 0, tag, comm, &status);

...

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 52 / 99



Collective Communications

The structure of communication shown in the previous example is
inherently sequential since all communications are done from process 0. If
other processes collaborate in disseminating information, one may
significantly reduce the total communication time.

0

0

4

step 1

0 62 51 73

2 1 3

0 1

step 2

step 3

Using a tree structure for communication, we can distribute data in
dlog2 Ne steps instead of N − 1 as happened before.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 53 / 99



Collective Communications

The structure of communication shown in the previous example is
inherently sequential since all communications are done from process 0. If
other processes collaborate in disseminating information, one may
significantly reduce the total communication time.

0

0

4

step 1

0 62 51 73

2 1 3

0 1

step 2

step 3

Using a tree structure for communication, we can distribute data in
dlog2 Ne steps instead of N − 1 as happened before.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 53 / 99



Collective Communications

To implement a tree structure, in each step, each process needs to
determine if it is a sender/receiver process and find what is the
destination/source of data to be sent/received:

If my_rank < 2step−1, then send to my_rank + 2step−1

If 2step−1 ≤ my_rank < 2step, then receive from my_rank − 2step−1

A possible implementation is:

...
for (step = 1; step <= upper_log2(n_procs); step++)

if (my_rank < pow(2, step - 1))
send_to(my_rank + pow(2, step - 1));

else if (my_rank >= pow(2, step - 1) && my_rank < pow(2, step))
receive_from(my_rank - pow(2, step -1));

...

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 54 / 99



Collective Communications

To implement a tree structure, in each step, each process needs to
determine if it is a sender/receiver process and find what is the
destination/source of data to be sent/received:

If my_rank < 2step−1, then send to my_rank + 2step−1

If 2step−1 ≤ my_rank < 2step, then receive from my_rank − 2step−1

A possible implementation is:

...
for (step = 1; step <= upper_log2(n_procs); step++)

if (my_rank < pow(2, step - 1))
send_to(my_rank + pow(2, step - 1));

else if (my_rank >= pow(2, step - 1) && my_rank < pow(2, step))
receive_from(my_rank - pow(2, step -1));

...

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 54 / 99



Collective Communications

In parallel programming, it is also common that a process, often process 0,
receives partial results from other processes to calculate intermediate or
final results. If we invert the tree structure for communication, we can
apply the same idea to resume data in dlog2 Ne steps.

0

0

4

step 1

0 62 51 73

2 1 3

0 1 step 2

step 3

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 55 / 99



Collective Messages

To free the programmer from the details of efficiently implementing
collective communications, MPI defines a set of functions that deal
specifically with that. We can thus classify the messages in:

Point-to-point – the message is sent by one process and received by
another process (e.g. every type of messages that we saw before)
Collective – consist of many point-to-point concurrent messages
involving all processes in a communicator

Collective messages are variants or combinations of the following
primitives:

Broadcast
Reduce
Scatter
Gather

Collective messages must be called by all processes in a communicator

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 56 / 99



Collective Messages

To free the programmer from the details of efficiently implementing
collective communications, MPI defines a set of functions that deal
specifically with that. We can thus classify the messages in:

Point-to-point – the message is sent by one process and received by
another process (e.g. every type of messages that we saw before)
Collective – consist of many point-to-point concurrent messages
involving all processes in a communicator

Collective messages are variants or combinations of the following
primitives:

Broadcast
Reduce
Scatter
Gather

Collective messages must be called by all processes in a communicator

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 56 / 99



Collective Messages

To free the programmer from the details of efficiently implementing
collective communications, MPI defines a set of functions that deal
specifically with that. We can thus classify the messages in:

Point-to-point – the message is sent by one process and received by
another process (e.g. every type of messages that we saw before)
Collective – consist of many point-to-point concurrent messages
involving all processes in a communicator

Collective messages are variants or combinations of the following
primitives:

Broadcast
Reduce
Scatter
Gather

Collective messages must be called by all processes in a communicator
R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 56 / 99



Broadcast

MPI_Bcast(void *buf, int count, MPI_Datatype datatype,
int root, MPI_Comm comm)

MPI_Bcast() propagates a message from one process to all the processes
in a communicator:

buf is the starting address of the data to be sent/received
count is the number of elements of type datatype to be
sent/received
datatype is the type of data to be sent/received
root is the rank of the process in communicator comm that holds the
message to be propagated
comm is the communicator to which all processes belong

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 57 / 99



Broadcast

MPI_Bcast(void *buf, int count, MPI_Datatype datatype,
int root, MPI_Comm comm)

buf

MPI_Bcast()

count=2buf

datatype datatype

root

buf

buf

buf

datatype datatype

root

rank 0

rank 2

rank 3

buf

datatype datatype

rank 2

buf

datatype datatype

rank 3

buf

datatype datatype

rank 0

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 58 / 99



Reduce

MPI_Reduce(void *sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

MPI_Reduce() resumes data from all the processes in a communicator
into a unique process:

sendbuf is the starting address of the data to be sent
recvbuf is the starting address where received data must be resumed
(only relevant for process root)
count is the number of elements of type datatype to be sent
datatype is the type of data to be sent
op is the reduction operation to be applied to the received data
root is the rank of the process in communicator comm that receives
and resumes the data
comm is the communicator to which all processes belong

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 59 / 99



Reduce

MPI_Reduce(void *sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

sendbuf

MPI_Reduce()

count=2sendbuf

datatype datatype

root

sendbuf

sendbuf

recvbuf

root

rank 0

rank 2

rank 3

recvbuf

rank 2

recvbuf

rank 3

recvbuf

rank 0

count=2

count=2

count=2

datatype datatype

datatype datatype

datatype datatype

op

datatype datatype

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 60 / 99



Reduction Operations

Operation Meaning
MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product
MPI_LAND logical and
MPI_BAND bit-wise and
MPI_LOR logical or
MPI_BOR bit-wise or
MPI_LXOR logical exclusive-or
MPI_BXOR bit-wise exclusive-or

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 61 / 99



Allreduce

MPI_Allreduce(void *sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

datatypedatatype

datatype datatype

datatype

sendbuf

MPI_Allreduce()

count=2sendbuf

datatype datatype

rank 1

sendbuf

sendbuf

recvbuf

rank 1

rank 0

rank 2

rank 3

recvbuf

rank 2

recvbuf

rank 3

recvbuf

rank 0

count=2

count=2

count=2

datatype datatype

datatype datatype

datatype datatype

op

datatype datatype

datatype

op

op

op

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 62 / 99



Scatter

MPI_Scatter(void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

MPI_Scatter() divides data from one process in equal parts and
distributes it orderly to all the processes in a communicator:

sendbuf is the starting address of the data to be sent (only relevant
to process root)
sendcount is the number of elements of type sendtype to be sent to
each process (only relevant to process root)
sendtype is the type of data to be sent (only relevant to process
root)

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 63 / 99



Scatter

MPI_Scatter(void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

recvbuf is the starting address where received data must be placed
recvcount is the number of elements of type recvtype to be
received (usually the same as sendcount)
recvtype is the type of data to be received (usually the same as
sendtype)
root is the rank of the process in communicator comm that holds the
data to be distributed
comm is the communicator to which all processes belong

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 64 / 99



Scatter

MPI_Scatter(void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

sendbuf

rank 0

MPI_Scatter()

sendcount=2sendbuf

sendtype sendtype

root

recvbuf

recvtype

rank 0

sendtype

recvbuf

recvtype

root

recvbuf

recvtype

rank 2

sendtype

sendbuf

rank 2

sendbuf

rank 3

recvbuf

recvtype

rank 3

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 65 / 99



Gather

MPI_Gather(void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm)

MPI_Gather() receives orderly in a unique process data from all the
processes in a communicator:

sendbuf is the starting address of the data to be sent
sendcount is the number of elements of type sendtype to be sent
by each process
sendtype is the type of data to be sent

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 66 / 99



Gather

MPI_Gather(void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm)

recvbuf is the starting address where received data must be placed
(only relevant to process root)
recvcount is the number of elements of type recvtype to be
received from each process (only relevant to process root and usually
the same as sendcount)
recvtype is the type of data to be received (only relevant to process
root and usually the same as sendtype)
root is the rank of the process in communicator comm that receives
the data
comm is the communicator to which all processes belong

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 67 / 99



Gather

MPI_Gather(void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm)

recvbuf

rank 0

MPI_Gather()

recvcount=2recvbuf

recvtype recvtype

root

sendbuf

sendtype

rank 0

recvtype

sendbuf

sendtype

root

sendbuf

sendtype

rank 2

recvtype

recvbuf

rank 2

recvbuf

rank 3

sendbuf

sendtype

rank 3

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 68 / 99



Allgather

MPI_Allgather(void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)

recvtyperecvtyperecvtyperecvtype

recvtyperecvtyperecvtype

recvtype recvtype recvtype recvtype

recvtype recvtype recvtype recvtype

recvbuf

rank 0

MPI_Allgather()

recvcount=2recvbuf

rank 1

sendbuf

sendtype

rank 0

sendbuf

sendtype

rank 1

sendbuf

sendtype

rank 2

recvbuf

rank 2

recvbuf

rank 3

sendbuf

sendtype

rank 3

recvcount=2

recvcount=2

recvcount=2

recvtype

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 69 / 99



Scalar Product

The scalar product of 2 vectors with dimension N is given by:
x · y = x0y0 + x1y1 + · · ·+ xn−1yn−1

A possible implementation is:

int scalar_product(int x[], int y[], int n) {
int i, sp = 0;
for (i = 0; i < n; i++) sp = sp + x[i] * y[i];
return sp;

}

If we have P processes, then each one can calculate K (N/P) components
of the scalar product: Components
Process 0 x0y0 + x1y1 + · · ·+ xk−1yk−1
Process 1 xkyk + xk+1yk+1 + · · ·+ x2k−1y2k−1
· · · · · ·
Process (P-1) x(p−1)ky(p−1)k + x(p−1)k+1y(p−1)k+1 + · · ·+ xn−1yn−1

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 70 / 99



Scalar Product

The scalar product of 2 vectors with dimension N is given by:
x · y = x0y0 + x1y1 + · · ·+ xn−1yn−1

A possible implementation is:

int scalar_product(int x[], int y[], int n) {
int i, sp = 0;
for (i = 0; i < n; i++) sp = sp + x[i] * y[i];
return sp;

}

If we have P processes, then each one can calculate K (N/P) components
of the scalar product: Components
Process 0 x0y0 + x1y1 + · · ·+ xk−1yk−1
Process 1 xkyk + xk+1yk+1 + · · ·+ x2k−1y2k−1
· · · · · ·
Process (P-1) x(p−1)ky(p−1)k + x(p−1)k+1y(p−1)k+1 + · · ·+ xn−1yn−1

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 70 / 99



Scalar Product

The scalar product of 2 vectors with dimension N is given by:
x · y = x0y0 + x1y1 + · · ·+ xn−1yn−1

A possible implementation is:

int scalar_product(int x[], int y[], int n) {
int i, sp = 0;
for (i = 0; i < n; i++) sp = sp + x[i] * y[i];
return sp;

}

If we have P processes, then each one can calculate K (N/P) components
of the scalar product: Components
Process 0 x0y0 + x1y1 + · · ·+ xk−1yk−1
Process 1 xkyk + xk+1yk+1 + · · ·+ x2k−1y2k−1
· · · · · ·
Process (P-1) x(p−1)ky(p−1)k + x(p−1)k+1y(p−1)k+1 + · · ·+ xn−1yn−1

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 70 / 99



Scalar Product (mpi-scalar.c)

int K, sp, my_sp, *vecX, *vecY, *locX, *locY;
...
if (my_rank == ROOT) {

... // initialize vecX, vecY and K
}

// send K to all processes
MPI_Bcast(&K, 1, MPI_INT, ROOT, MPI_COMM_WORLD);
// allocate space for local components of vecX and vecY
locX = (int *) malloc(K * sizeof(int));
locY = (int *) malloc(K * sizeof(int));
// distribute the components of vecX and vecY
MPI_Scatter(vecX, K, MPI_INT, locX, K, MPI_INT, ROOT, MPI_COMM_WORLD);
MPI_Scatter(vecY, K, MPI_INT, locY, K, MPI_INT, ROOT, MPI_COMM_WORLD);
// calculate the scalar product and print the result
my_sp = scalar_product(locX, locY, K);
MPI_Reduce(&my_sp, &sp, 1, MPI_INT, MPI_SUM, ROOT, MPI_COMM_WORLD);
if (my_rank == ROOT)

printf("Scalar product = %d\n", sp);

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 71 / 99



Scalar Product (mpi-scalar.c)

int K, sp, my_sp, *vecX, *vecY, *locX, *locY;
...
if (my_rank == ROOT) {

... // initialize vecX, vecY and K
}
// send K to all processes
MPI_Bcast(&K, 1, MPI_INT, ROOT, MPI_COMM_WORLD);

// allocate space for local components of vecX and vecY
locX = (int *) malloc(K * sizeof(int));
locY = (int *) malloc(K * sizeof(int));
// distribute the components of vecX and vecY
MPI_Scatter(vecX, K, MPI_INT, locX, K, MPI_INT, ROOT, MPI_COMM_WORLD);
MPI_Scatter(vecY, K, MPI_INT, locY, K, MPI_INT, ROOT, MPI_COMM_WORLD);
// calculate the scalar product and print the result
my_sp = scalar_product(locX, locY, K);
MPI_Reduce(&my_sp, &sp, 1, MPI_INT, MPI_SUM, ROOT, MPI_COMM_WORLD);
if (my_rank == ROOT)

printf("Scalar product = %d\n", sp);

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 71 / 99



Scalar Product (mpi-scalar.c)

int K, sp, my_sp, *vecX, *vecY, *locX, *locY;
...
if (my_rank == ROOT) {

... // initialize vecX, vecY and K
}
// send K to all processes
MPI_Bcast(&K, 1, MPI_INT, ROOT, MPI_COMM_WORLD);
// allocate space for local components of vecX and vecY
locX = (int *) malloc(K * sizeof(int));
locY = (int *) malloc(K * sizeof(int));

// distribute the components of vecX and vecY
MPI_Scatter(vecX, K, MPI_INT, locX, K, MPI_INT, ROOT, MPI_COMM_WORLD);
MPI_Scatter(vecY, K, MPI_INT, locY, K, MPI_INT, ROOT, MPI_COMM_WORLD);
// calculate the scalar product and print the result
my_sp = scalar_product(locX, locY, K);
MPI_Reduce(&my_sp, &sp, 1, MPI_INT, MPI_SUM, ROOT, MPI_COMM_WORLD);
if (my_rank == ROOT)

printf("Scalar product = %d\n", sp);

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 71 / 99



Scalar Product (mpi-scalar.c)

int K, sp, my_sp, *vecX, *vecY, *locX, *locY;
...
if (my_rank == ROOT) {

... // initialize vecX, vecY and K
}
// send K to all processes
MPI_Bcast(&K, 1, MPI_INT, ROOT, MPI_COMM_WORLD);
// allocate space for local components of vecX and vecY
locX = (int *) malloc(K * sizeof(int));
locY = (int *) malloc(K * sizeof(int));
// distribute the components of vecX and vecY
MPI_Scatter(vecX, K, MPI_INT, locX, K, MPI_INT, ROOT, MPI_COMM_WORLD);
MPI_Scatter(vecY, K, MPI_INT, locY, K, MPI_INT, ROOT, MPI_COMM_WORLD);

// calculate the scalar product and print the result
my_sp = scalar_product(locX, locY, K);
MPI_Reduce(&my_sp, &sp, 1, MPI_INT, MPI_SUM, ROOT, MPI_COMM_WORLD);
if (my_rank == ROOT)

printf("Scalar product = %d\n", sp);

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 71 / 99



Scalar Product (mpi-scalar.c)

int K, sp, my_sp, *vecX, *vecY, *locX, *locY;
...
if (my_rank == ROOT) {

... // initialize vecX, vecY and K
}
// send K to all processes
MPI_Bcast(&K, 1, MPI_INT, ROOT, MPI_COMM_WORLD);
// allocate space for local components of vecX and vecY
locX = (int *) malloc(K * sizeof(int));
locY = (int *) malloc(K * sizeof(int));
// distribute the components of vecX and vecY
MPI_Scatter(vecX, K, MPI_INT, locX, K, MPI_INT, ROOT, MPI_COMM_WORLD);
MPI_Scatter(vecY, K, MPI_INT, locY, K, MPI_INT, ROOT, MPI_COMM_WORLD);
// calculate the scalar product and print the result
my_sp = scalar_product(locX, locY, K);

MPI_Reduce(&my_sp, &sp, 1, MPI_INT, MPI_SUM, ROOT, MPI_COMM_WORLD);
if (my_rank == ROOT)

printf("Scalar product = %d\n", sp);

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 71 / 99



Scalar Product (mpi-scalar.c)

int K, sp, my_sp, *vecX, *vecY, *locX, *locY;
...
if (my_rank == ROOT) {

... // initialize vecX, vecY and K
}
// send K to all processes
MPI_Bcast(&K, 1, MPI_INT, ROOT, MPI_COMM_WORLD);
// allocate space for local components of vecX and vecY
locX = (int *) malloc(K * sizeof(int));
locY = (int *) malloc(K * sizeof(int));
// distribute the components of vecX and vecY
MPI_Scatter(vecX, K, MPI_INT, locX, K, MPI_INT, ROOT, MPI_COMM_WORLD);
MPI_Scatter(vecY, K, MPI_INT, locY, K, MPI_INT, ROOT, MPI_COMM_WORLD);
// calculate the scalar product and print the result
my_sp = scalar_product(locX, locY, K);
MPI_Reduce(&my_sp, &sp, 1, MPI_INT, MPI_SUM, ROOT, MPI_COMM_WORLD);
if (my_rank == ROOT)

printf("Scalar product = %d\n", sp);

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 71 / 99



Matrix-Vector Product (mpi-matrixvector.c)

The product of a matrix mat[ROWS,COLS] and a column vector
vec[COLS] is a row vector prod[ROWS] such that each prod[i] is the
scalar product of row i of the matrix by the column vector. If we have
ROWS processes, then each one can calculate one element of the result.

int ROWS, COLS, *mat, *vec, *prod, sp, *row;
... // initialize ROWS, COLS and the vector
if (my_rank == ROOT) { ... } // initialize the matrix
// distribute the matrix
MPI_Scatter(mat, COLS, MPI_INT, row, COLS, MPI_INT, ROOT, MPI_COMM_WORLD);
// calculate the matrix-vector product and print the result
sp = scalar_product(row, vec, COLS);
MPI_Gather(&sp, 1, MPI_INT, prod, 1, MPI_INT, ROOT, MPI_COMM_WORLD);
if (my_rank == ROOT) {

printf("Matrix-vector product: ");
for (i = 0; i < ROWS; i++) printf("%d ", prod[i]);

}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 72 / 99



Matrix-Vector Product (mpi-matrixvector.c)

The product of a matrix mat[ROWS,COLS] and a column vector
vec[COLS] is a row vector prod[ROWS] such that each prod[i] is the
scalar product of row i of the matrix by the column vector. If we have
ROWS processes, then each one can calculate one element of the result.

int ROWS, COLS, *mat, *vec, *prod, sp, *row;
... // initialize ROWS, COLS and the vector
if (my_rank == ROOT) { ... } // initialize the matrix
// distribute the matrix

MPI_Scatter(mat, COLS, MPI_INT, row, COLS, MPI_INT, ROOT, MPI_COMM_WORLD);
// calculate the matrix-vector product and print the result
sp = scalar_product(row, vec, COLS);
MPI_Gather(&sp, 1, MPI_INT, prod, 1, MPI_INT, ROOT, MPI_COMM_WORLD);
if (my_rank == ROOT) {

printf("Matrix-vector product: ");
for (i = 0; i < ROWS; i++) printf("%d ", prod[i]);

}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 72 / 99



Matrix-Vector Product (mpi-matrixvector.c)

The product of a matrix mat[ROWS,COLS] and a column vector
vec[COLS] is a row vector prod[ROWS] such that each prod[i] is the
scalar product of row i of the matrix by the column vector. If we have
ROWS processes, then each one can calculate one element of the result.

int ROWS, COLS, *mat, *vec, *prod, sp, *row;
... // initialize ROWS, COLS and the vector
if (my_rank == ROOT) { ... } // initialize the matrix
// distribute the matrix
MPI_Scatter(mat, COLS, MPI_INT, row, COLS, MPI_INT, ROOT, MPI_COMM_WORLD);

// calculate the matrix-vector product and print the result
sp = scalar_product(row, vec, COLS);
MPI_Gather(&sp, 1, MPI_INT, prod, 1, MPI_INT, ROOT, MPI_COMM_WORLD);
if (my_rank == ROOT) {

printf("Matrix-vector product: ");
for (i = 0; i < ROWS; i++) printf("%d ", prod[i]);

}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 72 / 99



Matrix-Vector Product (mpi-matrixvector.c)

The product of a matrix mat[ROWS,COLS] and a column vector
vec[COLS] is a row vector prod[ROWS] such that each prod[i] is the
scalar product of row i of the matrix by the column vector. If we have
ROWS processes, then each one can calculate one element of the result.

int ROWS, COLS, *mat, *vec, *prod, sp, *row;
... // initialize ROWS, COLS and the vector
if (my_rank == ROOT) { ... } // initialize the matrix
// distribute the matrix
MPI_Scatter(mat, COLS, MPI_INT, row, COLS, MPI_INT, ROOT, MPI_COMM_WORLD);
// calculate the matrix-vector product and print the result
sp = scalar_product(row, vec, COLS);

MPI_Gather(&sp, 1, MPI_INT, prod, 1, MPI_INT, ROOT, MPI_COMM_WORLD);
if (my_rank == ROOT) {

printf("Matrix-vector product: ");
for (i = 0; i < ROWS; i++) printf("%d ", prod[i]);

}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 72 / 99



Matrix-Vector Product (mpi-matrixvector.c)

The product of a matrix mat[ROWS,COLS] and a column vector
vec[COLS] is a row vector prod[ROWS] such that each prod[i] is the
scalar product of row i of the matrix by the column vector. If we have
ROWS processes, then each one can calculate one element of the result.

int ROWS, COLS, *mat, *vec, *prod, sp, *row;
... // initialize ROWS, COLS and the vector
if (my_rank == ROOT) { ... } // initialize the matrix
// distribute the matrix
MPI_Scatter(mat, COLS, MPI_INT, row, COLS, MPI_INT, ROOT, MPI_COMM_WORLD);
// calculate the matrix-vector product and print the result
sp = scalar_product(row, vec, COLS);
MPI_Gather(&sp, 1, MPI_INT, prod, 1, MPI_INT, ROOT, MPI_COMM_WORLD);
if (my_rank == ROOT) {

printf("Matrix-vector product: ");
for (i = 0; i < ROWS; i++) printf("%d ", prod[i]);

}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 72 / 99



Communicators

A communicator is defined as a set of processes that can exchange
messages among themselves. Associated to a communicator we have:

A group – an ordered set of processes
A context – a data-structure that uniquely identifies the
communicator

The MPI execution environment allows programmers to define new
communicators. MPI distinguishes 2 types of communicators:

Intra-communicators – allow exchange of messages and collective
communications between processes belonging to a communicator
Inter-communicators – allow exchange of messages between
processes belonging to disjoint intra-communicators

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 73 / 99



Communicators

A communicator is defined as a set of processes that can exchange
messages among themselves. Associated to a communicator we have:

A group – an ordered set of processes
A context – a data-structure that uniquely identifies the
communicator

The MPI execution environment allows programmers to define new
communicators. MPI distinguishes 2 types of communicators:

Intra-communicators – allow exchange of messages and collective
communications between processes belonging to a communicator
Inter-communicators – allow exchange of messages between
processes belonging to disjoint intra-communicators

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 73 / 99



Communicators

The general procedure for creating new communicators is as follows:
Obtain a group of processes from an existing communicator
Create a new group from the previous one indicating which processes
must take part in it
Create a new communicator based on the new group
After using them, free the groups and the communicators

In addition to this general procedure, the MPI execution environment
provides specific functions to create communicators automatically.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 74 / 99



Creating Groups

MPI_Comm_group(MPI_Comm comm, MPI_Group *group)

MPI_Comm_group() returns in group the group of processes in
communicator comm.

MPI_Group_incl(MPI_Group old_group, int size, int ranks[],
MPI_Group *new_group)

MPI_Group_incl() creates a new group new_group from old_group by
including the size processes referenced in ranks[].

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 75 / 99



Creating Groups

MPI_Group_excl(MPI_Group old_group, int size, int ranks[],
MPI_Group *new_group)

MPI_Group_excl() creates a new group new_group from old_group by
excluding the size processes referenced in ranks[].

MPI_Group_free(MPI_Group *group)

MPI_Group_free() frees from the MPI execution environment the group
identified by group.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 76 / 99



Creating Communicators

MPI_Comm_create(MPI_Comm old_comm, MPI_Group group,
MPI_Comm *new_comm)

MPI_Comm_create() creates a new communicator new_comm made by the
group of processes in group of communicator old_comm.
MPI_Comm_create() is a collective communication, thus it must be called
by all processes, including those not adhering to the new communicator. If
more than one communicator is created, the order of creation must be the
same in all processes.

MPI_Comm_free(MPI_Comm *comm)

MPI_Comm_free() frees from the MPI execution environment the
communicator identified by comm.
R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 77 / 99



Even Processes (mpi-even.c)

MPI_Group world_group, even_group;
MPI_Comm even_comm;
...
for (i = 0; i < n_procs; i += 2)

ranks[i/2] = i;
MPI_Comm_group(MPI_COMM_WORLD, &world_group);
MPI_Group_incl(world_group, (n_procs + 1)/2, ranks, &even_group);
MPI_Comm_create(MPI_COMM_WORLD, even_group, &even_comm);
MPI_Group_free(&world_group);
MPI_Group_free(&even_group);
if (my_rank % 2 == 0) {

MPI_Comm_rank(even_comm, &even_rank);
printf("World %d Even %d\n", my_rank, even_rank);
MPI_Comm_free(&even_comm);

}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 78 / 99



Creating Communicators

MPI_Comm_dup(MPI_Comm old_comm, MPI_Comm *new_comm)

MPI_Comm_dup() creates a new communicator new_comm identical to
old_comm.

MPI_Comm_split(MPI_Comm old_comm, int split_key, int rank_key,
MPI_Comm *new_comm)

MPI_Comm_split() creates one or more communicators new_comm from
old_comm by grouping in each new communicator the processes with
identical values of split_key and by ordering them by rank_key (the
process with the least rank_key will get rank 0, the second least gets rank
1, and so on). The processes that do not want to adhere to any new
communicator must include in split_key a constant MPI_UNDEFINED.
R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 79 / 99



Even and Odd Processes (mpi-split.c)

MPI_Comm split_comm;
...
MPI_Comm_split(MPI_COMM_WORLD, my_rank % 2, my_rank, &split_comm);
MPI_Comm_rank(split_comm, &split_rank);
printf("World %d Split %d\n", my_rank, split_rank);
MPI_Comm_free(&split_comm);

Executing the code with 5 processes, produces the following output:

World 0 Split 0
World 1 Split 0
World 2 Split 1
world 3 Split 1
World 4 Split 2

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 80 / 99



Even and Odd Processes (mpi-split.c)

MPI_Comm split_comm;
...
MPI_Comm_split(MPI_COMM_WORLD, my_rank % 2, my_rank, &split_comm);
MPI_Comm_rank(split_comm, &split_rank);
printf("World %d Split %d\n", my_rank, split_rank);
MPI_Comm_free(&split_comm);

Executing the code with 5 processes, produces the following output:

World 0 Split 0
World 1 Split 0
World 2 Split 1
world 3 Split 1
World 4 Split 2

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 80 / 99



Even and Odd Processes (mpi-split.c)

MPI_Comm split_comm;
...
MPI_Comm_split(MPI_COMM_WORLD, my_rank % 2, my_rank, &split_comm);
MPI_Comm_rank(split_comm, &split_rank);
printf("World %d Split %d\n", my_rank, split_rank);
MPI_Comm_free(&split_comm);

Executing the code with 5 processes, produces the following output:

World 0 Split 0
World 1 Split 0
World 2 Split 1
world 3 Split 1
World 4 Split 2

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 80 / 99



Topologies

The MPI programming model is independent of the physical
communication topology that may exist among the processors available in
the system.

Nevertheless, in order to increase the communication performance of an
application, the hardware topology must coincide as much as possible with
the application communication topology.

MPI allows the programmer to define the topology of a communicator
with the aim that the MPI execution environment will use it to optimize
communication performance within that communicator. Two topologies
can be defined:

Cartesian Grids
Arbitrary Graphs

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 81 / 99



Creating a Cartesian Grid

MPI_Cart_create(MPI_Comm old_comm, int ndims, int dims[],
int periods[], int reorder, MPI_Comm *new_comm)

MPI_Cart_create() creates a new communicator identical to old_comm
in which the group of processes is organized as being a cartesian grid:

old_comm is the communicator from which the new communicator
representing the grid must be created
ndims is the number of dimensions of the grid (it is also the number
of items in dims[] and periods[])
dims[] specifies the number of processes in each dimension of the
grid
periods[] specifies if the dimensions are periodical or not, i.e., if the
last process of each dimension communicates or not with the first
process in the same dimension (a value of 1 indicates that it is
periodical, and a value of 0 indicates that it is not)

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 82 / 99



Creating a Cartesian Grid

MPI_Cart_create(MPI_Comm old_comm, int ndims, int dims[],
int periods[], int reorder, MPI_Comm *new_comm)

reorder specifies if the positions of the processes in the grid must be
equal to those in old_comm or if they can be re-ordered by the MPI
execution environment in order to optimize performance in future
communications (a value of 0 indicates that the positions must be the
same, a value of 1 indicates that they may be re-ordered)
new_comm is the new communicator that represents the grid

MPI_Cart_create() is a collective communication, thus it must be called
by all processes in communicator old_comm.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 83 / 99



Getting Information About Cartesian Grids

MPI_Cart_coords(MPI_Comm comm, int rank, int ndims,
int coords[])

MPI_Cart_coords() returns in coords[] the ndims coordinates of the
process with position rank in the grid represented by communicator comm.

MPI_Cart_rank(MPI_Comm comm, int coords[], int *rank)

MPI_Cart_rank() returns in rank the position of the process with
coordinates coords[] in the grid represented by communicator comm.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 84 / 99



Cartesian Grid (mpi-cart.c)

MPI_Comm grid_comm;
int up, down, right, left, reorder, dims[2], periods[2], coords[2];
...
dims[0] = 4; dims[1] = 2; periods[0] = 1; periods[1] = 1; reorder = 0;
MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, reorder, &grid_comm);
MPI_Comm_rank(grid_comm, &grid_rank);
MPI_Cart_coords(grid_comm, grid_rank, 2, coords);
coords[0] -= 1;
MPI_Cart_rank(grid_comm, coords, &up);
coords[0] += 2;
MPI_Cart_rank(grid_comm, coords, &down);
coords[0] -= 1; coords[1] -= 1;
MPI_Cart_rank(grid_comm, coords, &left);
coords[1] += 2;
MPI_Cart_rank(grid_comm, coords, &right);
coords[1] -= 1;
printf("World %d Grid %d (%d,%d) --> up %d down %d left %d right %d\n",

my_rank, grid_rank, coords[0], coords[1], up, down, left, right);

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 85 / 99



Cartesian Grid (mpi-cart.c)

Executing the code with 8 processes, produces the following output:

World 0 Grid 0 (0,0) --> up 6 down 2 left 1 right 1
World 1 Grid 1 (0,1) --> up 7 down 3 left 0 right 0
World 2 Grid 2 (1,0) --> up 0 down 4 left 3 right 3
World 3 Grid 3 (1,1) --> up 1 down 5 left 2 right 2
World 4 Grid 4 (2,0) --> up 2 down 6 left 5 right 5
World 5 Grid 5 (2,1) --> up 3 down 7 left 4 right 4
World 6 Grid 6 (3,0) --> up 4 down 0 left 7 right 7
World 7 Grid 7 (3,1) --> up 5 down 1 left 6 right 6

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 86 / 99



Cartesian Grid (mpi-cart.c)

Executing the code with 8 processes, produces the following output:

World 0 Grid 0 (0,0) --> up 6 down 2 left 1 right 1
World 1 Grid 1 (0,1) --> up 7 down 3 left 0 right 0
World 2 Grid 2 (1,0) --> up 0 down 4 left 3 right 3
World 3 Grid 3 (1,1) --> up 1 down 5 left 2 right 2
World 4 Grid 4 (2,0) --> up 2 down 6 left 5 right 5
World 5 Grid 5 (2,1) --> up 3 down 7 left 4 right 4
World 6 Grid 6 (3,0) --> up 4 down 0 left 7 right 7
World 7 Grid 7 (3,1) --> up 5 down 1 left 6 right 6

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 86 / 99



Creating Communicators from a Cartesian Grid

MPI_Cart_sub(MPI_Comm old_comm, int dims[], MPI_Comm *new_comm)

MPI_Cart_sub() creates one or more communicators new_comm based on
the cartesian grid represented by communicator old_comm by grouping in
each communicator the processes according to the dimensions specified in
dims[] (a value of 1 indicates that the dimension is part of the new
communicators, and a value of 0 indicates that it is not). The coordinates
of the processes in the new communicators new_comm are the same as in
old_comm for the dimensions that are part of the new communicators.

MPI_Cart_sub() is a collective communication, thus it must be called by
all processes in communicator old_comm.

The functionality attained by MPI_Cart_sub() is similar to that of
MPI_Comm_split(). The difference is that MPI_Cart_sub() is specific
for creating communicators by combining the dimensions of cartesian grids.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 87 / 99



Creating Communicators from a Cartesian Grid

MPI_Cart_sub(MPI_Comm old_comm, int dims[], MPI_Comm *new_comm)

MPI_Cart_sub() creates one or more communicators new_comm based on
the cartesian grid represented by communicator old_comm by grouping in
each communicator the processes according to the dimensions specified in
dims[] (a value of 1 indicates that the dimension is part of the new
communicators, and a value of 0 indicates that it is not). The coordinates
of the processes in the new communicators new_comm are the same as in
old_comm for the dimensions that are part of the new communicators.

MPI_Cart_sub() is a collective communication, thus it must be called by
all processes in communicator old_comm.

The functionality attained by MPI_Cart_sub() is similar to that of
MPI_Comm_split(). The difference is that MPI_Cart_sub() is specific
for creating communicators by combining the dimensions of cartesian grids.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 87 / 99



Creating Communicators from a Cartesian Grid

MPI_Cart_sub(MPI_Comm old_comm, int dims[], MPI_Comm *new_comm)

MPI_Cart_sub() creates one or more communicators new_comm based on
the cartesian grid represented by communicator old_comm by grouping in
each communicator the processes according to the dimensions specified in
dims[] (a value of 1 indicates that the dimension is part of the new
communicators, and a value of 0 indicates that it is not). The coordinates
of the processes in the new communicators new_comm are the same as in
old_comm for the dimensions that are part of the new communicators.

MPI_Cart_sub() is a collective communication, thus it must be called by
all processes in communicator old_comm.

The functionality attained by MPI_Cart_sub() is similar to that of
MPI_Comm_split(). The difference is that MPI_Cart_sub() is specific
for creating communicators by combining the dimensions of cartesian grids.
R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 87 / 99



Creating Communicators from a Cartesian Grid

MPI_Cart_sub(MPI_Comm old_comm, int dims[], MPI_Comm *new_comm)

Consider a tri-dimensional grid with dimensions 4× 2× 5:
If dims[] is equal to {1,0,1} it means that two new bi-dimensional
communicators are created with dimensions 4× 5. The process with
coordinates (2,1,3) in the tri-dimensional grid will have coordinates
(2,3) in the new communicator.

If dims[] is equal to {0,0,1} it means that 8 new uni-dimensional
communicators are created with dimension 5. The process with
coordinates (2,1,3) in the tri-dimensional grid will have coordinates
(3) in the new communicator.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 88 / 99



Creating Communicators from a Cartesian Grid

MPI_Cart_sub(MPI_Comm old_comm, int dims[], MPI_Comm *new_comm)

Consider a tri-dimensional grid with dimensions 4× 2× 5:
If dims[] is equal to {1,0,1} it means that two new bi-dimensional
communicators are created with dimensions 4× 5. The process with
coordinates (2,1,3) in the tri-dimensional grid will have coordinates
(2,3) in the new communicator.
If dims[] is equal to {0,0,1} it means that 8 new uni-dimensional
communicators are created with dimension 5. The process with
coordinates (2,1,3) in the tri-dimensional grid will have coordinates
(3) in the new communicator.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 88 / 99



Processes in Column (mpi-cartsub.c)

dims[0] = 4; dims[1] = 2; periods[0] = 1; periods[1] = 1; reorder = 0;
MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, reorder, &grid_comm);
MPI_Comm_rank(grid_comm, &grid_rank);
dims[0] = 1; // dimension 0 is part of the new communicators
dims[1] = 0; // dimension 1 is not part of the new communicators
MPI_Cart_sub(grid_comm, dims, &col_comm);
MPI_Comm_rank(col_comm, &row_rank);
printf("World %d Grid %d Row %d\n", my_rank, grid_rank, row_rank);

Executing the code with 8 processes, produces the following output:

World 0 Grid 0 Row 0
World 1 Grid 1 Row 0
World 2 Grid 2 Row 1
World 3 Grid 3 Row 1
World 4 Grid 4 Row 2
World 5 Grid 5 Row 2
World 6 Grid 6 Row 3
World 7 Grid 7 Row 3

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 89 / 99



Processes in Column (mpi-cartsub.c)

dims[0] = 4; dims[1] = 2; periods[0] = 1; periods[1] = 1; reorder = 0;
MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, reorder, &grid_comm);
MPI_Comm_rank(grid_comm, &grid_rank);
dims[0] = 1; // dimension 0 is part of the new communicators
dims[1] = 0; // dimension 1 is not part of the new communicators
MPI_Cart_sub(grid_comm, dims, &col_comm);
MPI_Comm_rank(col_comm, &row_rank);
printf("World %d Grid %d Row %d\n", my_rank, grid_rank, row_rank);

Executing the code with 8 processes, produces the following output:

World 0 Grid 0 Row 0
World 1 Grid 1 Row 0
World 2 Grid 2 Row 1
World 3 Grid 3 Row 1
World 4 Grid 4 Row 2
World 5 Grid 5 Row 2
World 6 Grid 6 Row 3
World 7 Grid 7 Row 3

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 89 / 99



Processes in Column (mpi-cartsub.c)

dims[0] = 4; dims[1] = 2; periods[0] = 1; periods[1] = 1; reorder = 0;
MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, reorder, &grid_comm);
MPI_Comm_rank(grid_comm, &grid_rank);
dims[0] = 1; // dimension 0 is part of the new communicators
dims[1] = 0; // dimension 1 is not part of the new communicators
MPI_Cart_sub(grid_comm, dims, &col_comm);
MPI_Comm_rank(col_comm, &row_rank);
printf("World %d Grid %d Row %d\n", my_rank, grid_rank, row_rank);

Executing the code with 8 processes, produces the following output:

World 0 Grid 0 Row 0
World 1 Grid 1 Row 0
World 2 Grid 2 Row 1
World 3 Grid 3 Row 1
World 4 Grid 4 Row 2
World 5 Grid 5 Row 2
World 6 Grid 6 Row 3
World 7 Grid 7 Row 3

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 89 / 99



Measuring Execution Time

double MPI_Wtime(void)

double MPI_Wtick(void)

MPI_Wtime() returns the elapsed time, in seconds, since an arbitrary point
in the past. MPI_Wtick() returns the precision of MPI_Wtime(). For
example, if MPI_Wtime() is incremented every microsecond then
MPI_Wtick() returns 0.000001.

MPI_Barrier(MPI_Comm comm)

MPI_Barrier() blocks until all the processes in communicator comm also
call MPI_Barrier().

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 90 / 99



Measuring Execution Time

double MPI_Wtime(void)

double MPI_Wtick(void)

MPI_Wtime() returns the elapsed time, in seconds, since an arbitrary point
in the past. MPI_Wtick() returns the precision of MPI_Wtime(). For
example, if MPI_Wtime() is incremented every microsecond then
MPI_Wtick() returns 0.000001.

MPI_Barrier(MPI_Comm comm)

MPI_Barrier() blocks until all the processes in communicator comm also
call MPI_Barrier().
R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 90 / 99



Measuring Execution Time

double start, finish;
...
MPI_Barrier(MPI_COMM_WORLD);
start = MPI_Wtime();
...
// part of the execution being measured
...
MPI_Barrier(MPI_COMM_WORLD);
finish = MPI_Wtime();
if (my_rank == 0)

printf("Execution time: %f seconds\n", finish - start);

The values returned by MPI_Wtime() are in real time, i.e., all the time that
the process may be suspended by the operating system is also counted.

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 91 / 99



Computing π

The value of π can be calculated by approximation using the Monte Carlo
method. The idea is as follows:

Generate N random points (x , y)
For each point (x , y) verify if x ∗ x + y ∗ y < 1 and depending on the
result increment the variables in or out
Calculate the approximate value of π as 4 ∗ in/(in + out)

in

out

area    / area    =
pi
4

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 92 / 99



Computing π: How To Proceed in Parallel?

Consider the following approach:
Define one process as the server of random points
Consider the remaining processes as clients and define a new
communicator grouping them
Clients successively ask the server for sequences of random points,
count which points are in and which are out, and then propagate that
info to the remaining clients
When the total number of points processed by all clients exceeds N,
the computation ends and one of the processes prints the approximate
value of π

How do you comment this approach?

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 93 / 99



Computing π: How To Proceed in Parallel?

Consider the following approach:
Define one process as the server of random points
Consider the remaining processes as clients and define a new
communicator grouping them
Clients successively ask the server for sequences of random points,
count which points are in and which are out, and then propagate that
info to the remaining clients
When the total number of points processed by all clients exceeds N,
the computation ends and one of the processes prints the approximate
value of π

How do you comment this approach?

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 93 / 99



Computing π (mpi-pi.c)

...
// define a new communicator for the clients
MPI_Comm_group(MPI_COMM_WORLD, &world_group);
ranks[0] = SERVER;
MPI_Group_excl(world_group, 1, ranks, &worker_group);
MPI_Comm_create(MPI_COMM_WORLD, worker_group, &workers_comm);
MPI_Group_free(&worker_group); MPI_Group_free(&world_group);

// read the number of points to process and broadcast it
if (my_rank == ROOT) scanf("%d", &total_points);
MPI_Bcast(&total_points, 1, MPI_INT, ROOT, MPI_COMM_WORLD);
// initialize the time counter
MPI_Barrier(MPI_COMM_WORLD); start = MPI_Wtime();
// compute the approximate value of PI
if (my_rank == SERVER) server(); else client();
// end time counting and output result
MPI_Barrier(MPI_COMM_WORLD); finish = MPI_Wtime();
if (my_rank == ROOT) {

printf("PI = %.20f\n", (4.0 * total_in) / (total_in + total_out));
printf("Execution time = %f seconds\n", finish - start);

}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 94 / 99



Computing π (mpi-pi.c)

...
// define a new communicator for the clients
MPI_Comm_group(MPI_COMM_WORLD, &world_group);
ranks[0] = SERVER;
MPI_Group_excl(world_group, 1, ranks, &worker_group);
MPI_Comm_create(MPI_COMM_WORLD, worker_group, &workers_comm);
MPI_Group_free(&worker_group); MPI_Group_free(&world_group);
// read the number of points to process and broadcast it
if (my_rank == ROOT) scanf("%d", &total_points);
MPI_Bcast(&total_points, 1, MPI_INT, ROOT, MPI_COMM_WORLD);

// initialize the time counter
MPI_Barrier(MPI_COMM_WORLD); start = MPI_Wtime();
// compute the approximate value of PI
if (my_rank == SERVER) server(); else client();
// end time counting and output result
MPI_Barrier(MPI_COMM_WORLD); finish = MPI_Wtime();
if (my_rank == ROOT) {

printf("PI = %.20f\n", (4.0 * total_in) / (total_in + total_out));
printf("Execution time = %f seconds\n", finish - start);

}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 94 / 99



Computing π (mpi-pi.c)

...
// define a new communicator for the clients
MPI_Comm_group(MPI_COMM_WORLD, &world_group);
ranks[0] = SERVER;
MPI_Group_excl(world_group, 1, ranks, &worker_group);
MPI_Comm_create(MPI_COMM_WORLD, worker_group, &workers_comm);
MPI_Group_free(&worker_group); MPI_Group_free(&world_group);
// read the number of points to process and broadcast it
if (my_rank == ROOT) scanf("%d", &total_points);
MPI_Bcast(&total_points, 1, MPI_INT, ROOT, MPI_COMM_WORLD);
// initialize the time counter
MPI_Barrier(MPI_COMM_WORLD); start = MPI_Wtime();

// compute the approximate value of PI
if (my_rank == SERVER) server(); else client();
// end time counting and output result
MPI_Barrier(MPI_COMM_WORLD); finish = MPI_Wtime();
if (my_rank == ROOT) {

printf("PI = %.20f\n", (4.0 * total_in) / (total_in + total_out));
printf("Execution time = %f seconds\n", finish - start);

}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 94 / 99



Computing π (mpi-pi.c)

...
// define a new communicator for the clients
MPI_Comm_group(MPI_COMM_WORLD, &world_group);
ranks[0] = SERVER;
MPI_Group_excl(world_group, 1, ranks, &worker_group);
MPI_Comm_create(MPI_COMM_WORLD, worker_group, &workers_comm);
MPI_Group_free(&worker_group); MPI_Group_free(&world_group);
// read the number of points to process and broadcast it
if (my_rank == ROOT) scanf("%d", &total_points);
MPI_Bcast(&total_points, 1, MPI_INT, ROOT, MPI_COMM_WORLD);
// initialize the time counter
MPI_Barrier(MPI_COMM_WORLD); start = MPI_Wtime();
// compute the approximate value of PI
if (my_rank == SERVER) server(); else client();

// end time counting and output result
MPI_Barrier(MPI_COMM_WORLD); finish = MPI_Wtime();
if (my_rank == ROOT) {

printf("PI = %.20f\n", (4.0 * total_in) / (total_in + total_out));
printf("Execution time = %f seconds\n", finish - start);

}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 94 / 99



Computing π (mpi-pi.c)

...
// define a new communicator for the clients
MPI_Comm_group(MPI_COMM_WORLD, &world_group);
ranks[0] = SERVER;
MPI_Group_excl(world_group, 1, ranks, &worker_group);
MPI_Comm_create(MPI_COMM_WORLD, worker_group, &workers_comm);
MPI_Group_free(&worker_group); MPI_Group_free(&world_group);
// read the number of points to process and broadcast it
if (my_rank == ROOT) scanf("%d", &total_points);
MPI_Bcast(&total_points, 1, MPI_INT, ROOT, MPI_COMM_WORLD);
// initialize the time counter
MPI_Barrier(MPI_COMM_WORLD); start = MPI_Wtime();
// compute the approximate value of PI
if (my_rank == SERVER) server(); else client();
// end time counting and output result
MPI_Barrier(MPI_COMM_WORLD); finish = MPI_Wtime();
if (my_rank == ROOT) {

printf("PI = %.20f\n", (4.0 * total_in) / (total_in + total_out));
printf("Execution time = %f seconds\n", finish - start);

}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 94 / 99



Computing π (mpi-pi.c)

server() {
...
do {

MPI_Recv(&req_points, 1, MPI_INT, MPI_ANY_SOURCE,
TAG_REQUEST, MPI_COMM_WORLD, &status);

if (req_points) {
for (i = 0; i < req_points; i++)

rands[i] = random();
MPI_Send(rands, req_points, MPI_INT, status.MPI_SOURCE,

TAG_REPLY, MPI_COMM_WORLD);
}

} while (req_points);
}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 95 / 99



Computing π (mpi-pi.c)

client() {
...
in = out = 0;
req_points = REQ_POINTS;
do {

MPI_Send(&req_points, 1, MPI_INT, SERVER,
TAG_REQUEST, MPI_COMM_WORLD);

MPI_Recv(rands, req_points, MPI_INT, SERVER,
TAG_REPLY, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

for (i = 0; i < req_points; i += 2) {
x = (((double) rands[i]) / RAND_MAX) * 2 - 1;
y = (((double) rands[i+1]) / RAND_MAX) * 2 - 1;
(x * x + y * y < 1.0) ? in++ : out++;

}
MPI_Allreduce(&in, &total_in, 1, MPI_INT, MPI_SUM, workers_comm);
MPI_Allreduce(&out, &total_out, 1, MPI_INT, MPI_SUM, workers_comm);
more = (total_in + total_out < total_points);
if (more == 0 && my_rank == ROOT)

MPI_Send(&more, 1, MPI_INT, SERVER, TAG_REQUEST, MPI_COMM_WORLD);
} while (more);

}

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 96 / 99



Standard I/O

In the local node (the one where the user invokes the execution
command), the standard input is inherited from the terminal where the
execution starts. In all remote nodes, it is redirected to /dev/null.

In all nodes, the standard output and the standard error are redirected
to the terminal where the execution starts.

remote node

local node

remote node remote node

stdin

stdout

stderr

stdin

stdout

stderr

stdin

stdout

stderr

stdin

stdout

stderr

MPI terminal

stdin

stdout

stderr

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 97 / 99



Compiling and Executing Programs

MPI provides a set of scripts to deal with the headers and libraries that
may be necessary for compilation and execution:

mpicc – compilation script for MPI programs written in C
mpiCC – compilation script for MPI programs written in C++
mpif77 – compilation script for MPI programs written in Fortran
mpirun – execution command used to start the distributed execution
of a given MPI program

To allow a proper setup, the following information should be provided to
command mpirun:

The cluster of machines to be considered (option --hostfile)
The number of executing units to be launched (option -np)
The scheduling policy (option --byslot or --bynode)

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 98 / 99



Host Files and Scheduling Policies

The host file scheme must specify the name of the machines to be used
and the number of slots (CPUs or cores) per machine (e.g. slots=2).

# cluster with 4 machines and 11 processing units
# one single processor machine (default slots is 1)
node01.dcc.fc.up.pt
# one dual-processor machine (default max-slots is ‘infinite’)
node02.dcc.fc.up.pt slots=2
# two quad-core machines with over-subscribing disallowed
node03.dcc.fc.up.pt slots=4 max-slots=4
node04.dcc.fc.up.pt slots=4 max-slots=4

Two scheduling policies are available:
By slot – schedule processes on a node until all of its default slots are
exhausted before proceeding to the next node (default policy)
By node – schedule one process per node in round-robin (looping
back to the first node as necessary) until all processes have been
scheduled (nodes are skipped once their default slots are exhausted)

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 99 / 99



Host Files and Scheduling Policies

The host file scheme must specify the name of the machines to be used
and the number of slots (CPUs or cores) per machine (e.g. slots=2).

# cluster with 4 machines and 11 processing units
# one single processor machine (default slots is 1)
node01.dcc.fc.up.pt
# one dual-processor machine (default max-slots is ‘infinite’)
node02.dcc.fc.up.pt slots=2
# two quad-core machines with over-subscribing disallowed
node03.dcc.fc.up.pt slots=4 max-slots=4
node04.dcc.fc.up.pt slots=4 max-slots=4

Two scheduling policies are available:
By slot – schedule processes on a node until all of its default slots are
exhausted before proceeding to the next node (default policy)
By node – schedule one process per node in round-robin (looping
back to the first node as necessary) until all processes have been
scheduled (nodes are skipped once their default slots are exhausted)

R. Rocha and F. Silva (DCC-FCUP) Programming with MPI Parallel Computing 18/19 99 / 99


