
Performance Analysis Metrics

Ricardo Rocha, Fernando Silva e Eduardo R. B. Marques

Departamento de Ciência de Computadores
Faculdade de Ciências
Universidade do Porto

Computação Paralela 2018/19

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 1 / 31



Performance and scalability

Key aspects:
Performance: reduction in computation time as computing resources
increase
Scalability: the ability to maintain or increase performance as the
computing resources and/or the problem size increases.

What may undermine performance and/or scalability?
Architectural limitations: latency and bandwidth, data coherency,
memory capacity.
Algorithmic limitations: lack of parallelism (sequential parts of
computation), communication and synchronization overheads, poor
scheduling / load balance.

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 2 / 31



Performance metrics

Metrics for processors/core
Apply to single processors, cores, or entire parallel computer.
Measure the number of operations the system may accomplish per
time-unit.
Benchmarks are used without concern for measuring speedup or
scalability.

Metrics for parallel applications – our main interest:
Assess the performance of a parallel application, in terms of speedup
or scalability.
Account for variation in execution time (and its subcomponents) of
an application as the number of processors and/or the problem size
increase.

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 3 / 31



Metrics and benchmarks for processors/core

Typical metrics:
MIPS: Million Instructions Per Second
MFLOPS: Millions of FLOating point Operations Per Second
Derived metrics are sometimes employed in order to normalize the
impact of aspects such as processor clock frequency.

Single processor, general-purpose benchmarks
SPEC CPU = SPECint + SPECfp – widely used, apply only to single
processing units (single-core CPUs or 1 core in a multi-core processor,
hyperthreading is disabled).
Historical, influential benchmarks in academia: Whetstone and
Dhrystone, also mostly directed to single-processor/core performance.

Specific to parallel computers
LINPACK
HPCG

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 4 / 31

https://www.spec.org/cpu2017/
http://www.roylongbottom.org.uk/whetstone.htm
http://www.roylongbottom.org.uk/dhrystone%20results.htm
https://top500.org/project/linpack/
http://www.hpcg-benchmark.org/


Performance Metrics for Parallel Applications

“Direct” metrics, derived from comparing sequential vs. parallel execution
time:

Speedup
Efficiency

“Laws” and metrics that help us quantify performance bounds for a
parallel application:

Amdhal’s law
Gustafson-Barsis’ law
Karp-Flatt metric
The isoeffiency relation and the (memory) scalability metric

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 5 / 31



Speedup and Efficiency

Let T(p, n) be the execution time of a program with p processors for
a problem of size n.
Sequential execution time = T(1, n).s
Speedup, a direct measure of performance:

S(p, n) =
T(1, n)
T(p, n)

Efficiency, provides a normalized metric for performance, illustrating
scalability more clearly:

E(p, n) =
S(p, n)

p
=

T(1, n)
p T(p, n)

Example (assuming some fixed n):
p 1 2 4 8 16
T 1000 520 280 160 100
S 1 1.92 3.57 6.25 10.0
E 1 0.96 0.89 0.78 0.63

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 6 / 31



Speedup and Efficiency

Reasoning on speedup / efficiency:
Ideal scenario:

S(p, n) ≈ p ⇔ E(n, p) ≈ 1 — linear speedup.
Perfect parallelism: the execution of the program in parallel has no
overheads.

Most common scenario, as p increases:
S(p, n) < p ⇔ E(n, p) < 1 — sub-linear speedup.
E(p1, n) > E(p2, n) for p1 < p2: efficiency decreases as the number
of processors increase.
Parallel execution overheads typically increase with p.

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 7 / 31



Super-linear speedup

Less often, we may have S(p) > p ⇔ E(p) > 1 — super-linear
speedup – and E(p1, n) < E(p2, n) for p1 < p2.
Possible reasons for super-linear speed-up may include:

Better memory performance, due to higher cache hit ratios and/or
lower memory usage;
Low initialization/communication/synchronization costs;
Improved work division / load balance;

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 8 / 31



Speedup and efficiency

Efficiency and Scalability

From the previous results, we can conclude that the efficiency of an
application is:

• A decreasing function on the number of processing units

• Typically, an increasing function on the size of the probem

33R. Rocha and F. Silva (DCC-FCUP) Performance Metrics Parallel Computing 15/16

Problem size fixed (n) Number of processing units fixed (p)

Typically:
For fixed n (shown left), efficiency decreases as p grows. Parallel
execution overheads due to aspects such as communication or
synchronization tend to grow with p.
For fixed p (shown right), efficiency increases with n – a trait known
as the Amdhal effect. The significance of parallel execution
overheads in total execution time tends to decrease as n increases.

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 9 / 31



Modelling performance

T(p, n), the execution time of a program using p processors for a problem
size of n, can be modelled as:

T(p, n) = seq(n) +
par(n)

p
+ ovh(p, n)

where:

seq(n): time for computation that can only be performed
sequentially (e.g., reading input, writing output results);
par(n): time for computation that can be performed in parallel 1

ovh(p, n): overhead time of running the program in parallel (e.g.,
synchronization, communication, redundant operations)

Given that ovh(1, n) = 0 the sequential execution time is given by:

T(1, n) = seq(n) + par(n)
1the fact that it does not depend on p may be a simplification, why?

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 10 / 31



Modelling performance(2)

Under the previously considered model, we get the following formula for
speedup:

S(p, n) =
T(1, n)
T(p, n)

=
seq(n) + par(n)

seq(n) + par(n)/p + ovh(p, n)

Note: for simpler notation, we will omit the p and n arguments for
S, seq, par, ovh when clear in context.

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 11 / 31



Amdhal’s law

Amhdal asked: If f ∈ [0, 1] is the fraction of computation (in the
sequential program) that can only be executed sequentially,
what is the maximum possible speedup?
Considering our model, we have:

f =
seq

seq + par
Amdahl’s reasoning discards ovh ≥ 0 for a speedup upperbound:

S =
seq + par

seq + par/p + comm
≤

seq
seq + par/p

We may then obtain:

S ≤ seq + par
seq + par

p
= seq + par

p−1
p seq + seq + par

p
= seq /f

p−1
p seq + seq /f

p

= seq/f
p−1

p seq+ seq(n)/f
p

= 1/f
p−1

p + 1
f p

= 1
f (p−1)

p + 1
p

= 1
f +(1−f )/p

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 12 / 31



Amdhal’s law

Let f ∈ [0, 1] be the fraction of operations in a
program that can only be executed sequentially.

The maximum speedup that can be achieved by a
program with p processors is:

S ≤
1

f + (1− f )/p
Observe also that

limp→+∞
1

f + (1− f )/p
=

1
f

and that in any case S ≤ 1
f .

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 13 / 31



Applying Amdhal’s law – example

Program Foo spends 90 % of the running time in computation that can be
parallelized. Using Amdhal’s law, estimate the maximum speedup:

1 when using 8 and 16 processors;
2 when using an arbitrary number of processors;

Resolution:
1 We have f = 0.1 thus S ≤ 1

0.1+0.9/p . This means that S ≤ 4.8 for
p = 8 and S ≤ 6.7 for p = 16.

2 S ≤ 1
0.1 = 10.

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 14 / 31



Limitations of Amdhal’s law

Amdhal’s law does not account for ovh(p, n), Thus, it may provide a
too optimistic upper bound for the speedup!
Suppose that we have a parallel program where
seq = n + 1000, par = n2/10, ovh = 10 (p − 1) logn.
This gives us f = n+1000

n+1000+n2/10 .
The following table compares
S = (seq + par)/(seq + par /p + ovh) with Amdhal’s bound (in
blue).

n = 100, f = 0.52 n = 200, f = 0.23 n = 400, f = 0.08 n = 800, f = 0.02
p = 2 1.28 1.31 1.60 1.63 1.84 1.85 1.94 1.95
p = 4 1.41 1.56 2.20 2.36 3.12 3.22 3.66 3.70
p = 8 1.36 1.71 2.51 3.06 4.56 5.12 6.41 6.71
p = 16 1.13 1.81 2.32 3.59 5.27 7.25 9.67 11.34
p = 32 0.82 1.86 1.75 3.92 4.63 9.16 11.21 17.32
p = 64 0.52 1.88 1.13 4.12 3.21 10.55 9.38 23.50
p → ∞ 1.92 4.34 12.50 50

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 15 / 31



From Amdhal’s law to Gustafson-Barsis Law

Amdhal’s law demonstrates that speedup increases as the number of
processors increases too, but usually assuming a fixed problem size (n)
and making a prediction based on the sequential version of a program.
Gustafson and Barsis (in “Reevaluating Amdahl’s Law”, 1988) shift
the focus by trying to estimate maximum speedup, based on the
parallel version of a program.
As a basis of their argument, they consider s to be the fraction of
parallel computation that is devoted to inherently sequential
computations, i.e.,

s =
seq

seq + par/p

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 16 / 31



Deriving Gustafson-Barsis’ Law

As introduced previously, let

s =
seq

seq + par /p
and note that 1− s =

par /p
seq + par /p

Thus seq = (seq + par /p) s and par = (seq + par /p)(1− s)p
As in the derivation of Amdahl’s law, ignore ovh to obtain

S ≤
seq + par

seq + par /p
We then have

S ≤ seq + par
seq + par /p = (seq + par /p)(s + (1− s)p)

seq + par /p
= s + (1− s) p
= p + (1− p) s

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 17 / 31



Gustafson-Barsis’ Law

Given a parallel program solving a problem of size n
using p processors, let s be the fraction of total
execution time spent in serial code.

The maximum achievable speedup is:

S ≤ p + (1− p) s

Gustafson-Barsis’ speedup upperbound is called the
scaled speedup.

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 18 / 31



Gustafson-Barsis’ Law – example application

A profile of program Foo running on 16 processors revealed that s = 5%
of the time is spent on inherently sequential computation.

1 What is the scaled speedup for the 16 processors?
2 What is the scaled speedup prediction for 32 processors?

Resolution:
1 For s = 0.05, p = 8 the scaled speedup is

S ≤ p + (1− p)s = 16− 15× 0.05 = 15.25.
2 For s = 0.05, p = 16 we have S ≤ 32− 31× 0.05 = 30.45.

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 19 / 31



Gustafson-Barsis’ Law – example application (2)

We wish that program Foo running on 1024 processors achieves a speedup
of 800 for a certain problem.

1 What is the maximum fraction s of parallel execution that can be
devoted to inherently sequential computation?

2 What about in the case of a desired speedup of 900?

Resolution:
1 800 ≤ 1024− 1023 s ⇔ s ≤ 224/1023 ≈ 0.21.
2 900 ≤ 1024− 1023 s ⇔ s ≤ 124/1023 ≈ 0.12.

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 20 / 31



Karp-Flatt metric

Amdhal’s law and Gustafson-Barsis’ law ignore ovh(p, n), the
overhead of parallel computation, overestimating possible speedup.
Karp and Flatt propose another metric that takes ovh(p, n) into
account, called the experimentally determined serial fraction e of
the parallel computation, defined as:

e =
seq(n) + ovh(p, n)

seq(n) + par(n)
=

seq(n) + ovh(p, n)
T(1, n)

Thus e can be seen as the fraction of serial computation, including
parallel overheads.
e can be rewritten in as (derivation omitted):

e =
1/S − 1/p
1− 1/p

The metric is useful to provide other insights into performance
beyond speedup.

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 21 / 31



Karp-Flatt metric

Given a parallel program with speedup S on p > 1
processors, the experimentally determined serial
fraction e is defined as:

e =
1/S − 1/p
1− 1/p

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 22 / 31



Applications of the Karp-Flatt metric

For fixed n, the efficiency E of a parallel program typically decreases as
the number of processors p increase.

The Karp-Flatt metric is useful to identify the reasons for that decrease in
efficiency a posteriori, i.e., from the results of program execution since it
depends on S (can be measured) and p (a known value):

If e does not increase with p, the decrease in E should relate to
lack of parallelism in the program.
If e increases with p, the decrease in E is explained by
algorithmic/architectural overheads in the parallelisation (ovh).

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 23 / 31



Applications of the Karp-Flatt metric – examples

Example 1:
p 2 4 8 16 32
S 1.994 3.943 7.553 12.932 16.438
E 0.997 0.986 0.944 0.808 0.514
e 0.003 0.005 0.008 0.016 0.031

The decrease in E is explained by the increase in e. The program
suffers from greater overhead in parallel execution as p increases.
Example 2:

p 2 4 8 16 32
S 1.978 3.873 7.430 13.729 23.768
E 0.989 0.968 0.929 0.858 0.743
e 0.011 0.011 0.011 0.011 0.011

E decreases but e remains stable, as p increases. The program suffers
from lack of parallelism as p increases.

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 24 / 31



Isoefficiency relation and the scalability metric

E typically increases n and decreases with the number of processors p.
This begs the question: to maintain the same level of efficiency,
when p is increased, how should n be also increased?
Follow-up question: is the increase in n sustainable in memory terms?
How does the program scale in terms of memory requirements?
To help answer these questions Grama et al. introduced the
isoefficiency relation and the scalability metric (“Isoefficiency:

Measuring the scalability of parallel algorithms and architectures”, IEEE Parallel &

Distributed Technology: Systems & Technology, 1(3):21, 1993).

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 25 / 31



Isoefficiency relation — derivation

Let T0(p, n) be the total amount of time spent by all processors in
the parallel program performing work not done by the serial program,
i.e.:

T0(p, n) = (p − 1) seq(n) + p ovh(p, n)

It can be shown that:

E(p, n) ≥
1

1 + T0(p,n)
T(1,n)

⇔ T(1, n) ≥
E(p, n)

1− E(p, n)
T0(p, n)

The isoefficiency relation is then written as:

T(1, n) ≥ C T0(p, n) where C =
E(p, n)

1− E(p, n)

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 26 / 31



Isoefficiency relation

Let

T0(p, n) = (p − 1) seq(n) + p ovh(p, n)

and
C =

E(p, n)
1− E(n, p)

To maintain the same level of efficiency as p
increases, n must be increased such that:

T(1, n) ≥ C T0(p, n)

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 27 / 31



Isoefficiency relation – example

Suppose that we have a parallel program where where
T0(p, n) = n p and T(1, n) = 0.1 n2.
Suppose the desired level of efficiency is E = 0.9. Then:

T (1, n) ≥ 0.9
0.1 T0(p, n) = 9T0(p, n)

⇐⇒ 0.1 n2 ≥ 9n p
⇐⇒ n ≥ 90 p

Say that p = 10. Then we should have n ≥ 900.
Say n = 2700. Then we should have p ≤ 30.

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 28 / 31



The scalability metric

The isoefficiency relation is an expression of the form n ≥ f (p) It
establishes conditions to maintain efficiency in relation to execution
time, but not memory requirements!
To quantify the scalability in memory terms, let M(n) be the amount
of memory required to solve a problem of size n.
M(n) cannot grow arbitrarily, i.e., beyond the amount of memory
available per processor.
We then must have M(n) ≥ M(f (p)). To maintain the same level
of efficiency the amount of required memory per processor is

M(n)
p
≥

M(f (p))
p

The term
M(f (p))

p
is called the scalability metric.

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 29 / 31



The scalability metirc

The lower the complexity of the scalability function, the more scalable
is the parallel program. Efficiency cannot be maintained and
should decrease as M(f (p))

p approximates or exceeds the
available memory per processor.

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 30 / 31



Scalability metric – example

In our previous example the isoefficiency relation is expressed by
n ≥ 90 p.
If M(n) = n2 then

M(f (p))
p

=
8100 p2

p
= 8100p is Θ(p)

an indication of low scalability.
On the other hand if M(n) = n log n

M(f (p))
p

=
90 p log(90 p)

p
= 90 log(90 p)is Θ(log p)

has better scalability.

R. Rocha, E. Marques (DCC-FCUP) Performance Analysis Computação Paralela 2018/19 31 / 31


