
Parallel programming using threads

Extended and adapted by Eduardo R. B. Marques from original slides by Ricardo Rocha and Fernando Silva

Departamento de Ciência de Computadores
Faculdade de Ciências
Universidade do Porto

Computação Paralela 2018/2019

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 1 / 45

Revision: concurrent programming with processes

Heap

Data

Text

Stack

Recursos

Identidade

...

...

...
pid= fork()
...
...

Files
Sockets
...

PID= 1000
UID
GID
...

...Registos

SP
PC
...

Heap

Data

Text

Stack

Recursos

Identidade

...

...

...
pid= fork()
...
...

Files
Sockets
...

PID= 1001
UID
GID
...

...Registos

SP
PC
...

Processo Pai Processo Filho

var1
var2
pid= 0

var1
var2
pid= 1001

fork()

Revision questions:
How does fork() work?
What is shared (and not shared) between parent and child processes?
How may processes interact?

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 2 / 45

Concurrent programming with processes

Heap

Data

Text

Stack

Recursos

Identidade

...

...

...
pid= fork()
...
...

Files
Sockets
...

PID= 1000
UID
GID
...

...Registos

SP
PC
...

Heap

Data

Text

Stack

Recursos

Identidade

...

...

...
pid= fork()
...
...

Files
Sockets
...

PID= 1001
UID
GID
...

...Registos

SP
PC
...

Processo Pai Processo Filho

var1
var2
pid= 0

var1
var2
pid= 1001

fork()

Parent process invokes fork() to create a child process.
The child process has a separate memory address space, initially a
copy of the parent process’ memory. Some OS resources like file
descriptors and network sockets are shared between child and parent
process though.
Processes interact using OS-supported shared-memory,
memory-mapped I/O, or other inter-process communication (IPC)
primitives (message queues, semaphores, ...).

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 3 / 45

Multithreaded processes

Heap

Data

Text

Stack

Stack

Resources

Identity

Registers

...

var1
var2

start()
...
task_one()
...
task_two()
...
terminate()
...

task_one()
start()

task_two()

Files
Locks
Sockets
...

PID
UID
GID
...

SP
PC
...

...

Registers SP
PC
...Thread 1

Thread 2

Multithreaded Process = { Threads } + { Shared resources }
A thread is a sequential execution flow within the process, with its
own individual stack and program counter.
Threads transparently share the memory address space and
other process resources.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 4 / 45

Multithreaded process execution

tempo

CPU

CPU

P1

P2

time

All threads in the process execute concurrently, possibly on different
processors / cores over time.
Thread-level (as well as process-level) scheduling is typically
preemptive and non-deterministic. Execution interleavings and
processor / core allocation vary from execution to execution.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 5 / 45

Using threads for parallel computing

Parallel computing employs concurrency abstractions
(message-passing, shared-memory, ...) with the aim of reducing the
overall execution time of a computational workload.
In the case of threads, we need to exploit the concurrency between
actions in different threads (like computation or I/O) that can be
executed independently and in any order.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 6 / 45

Threads vs. Processes

Advantages of using threads:
A more convenient programming model.
The use of a single shared address space reduces the memory load on
the system.
Latencies for synchronization and context switch are typically lower.

Transparent resource sharing requires careful programming however, to
ensure the correct operation of the program. Correct operation is usually
termed thread safety. Particular care has to be taken to avoid race
conditions, deadlocks, or memory corruption.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 7 / 45

POSIX threads (pthreads)

POSIX threads: a standardised C library interface for multithreading
(IEEE 1003.1c-1995).
Other libraries with similar intent are defined (e.g., Windows Threads
library) and many languages provide built-in support for threads (e.g.
Java). The thread model has the same core traits in any case.
Getting started:

Source code needs to include pthread.h:
#include <pthread.h>

int main(int argc, char** argv) {
// Ready? Set? Go!
...

}

Programs must link with the pthreads library using -lpthread, e.g.:
gcc myProgram.c -lpthread -o myProgram

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 8 / 45

https://standards.ieee.org/standard/1003_1c-1995.html

Hello pthreads!
#include <pthread.h>
void* thread_main(void* arg) {

long rank = (long) arg;
printf("Hello from thread %ld\n", rank);
return (void*) (rank + 1);
// pthread_exit((void*) rank+1) could also be used equivalently

}
int main(int argc, char** argv) {

long n_threads = atol(argv[1]);
pthread_t* vth = (pthread_t*) malloc(sizeof(pthread_t) * (n_threads-1));
for (long rank = 0; rank < n_threads - 1; rank++) {

pthread_create(&vth[rank], NULL, &thread_main, (void*) rank);
}
printf("Hello from main thread\n");
for (long rank = 0; rank < n_threads - 1; rank++) {

long rval;
pthread_join(vth[rank], (void**) &rval);
printf("Thread %ld done, returned %ld\n", rank, rval);

}
free(th);
printf("Done");
return 0;

}
Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 9 / 45

Hello pthreads! (2)

Executing
./hello_word.bin 4

... one may obtain (among several possible outputs):
Hello from thread 0
Hello from main thread
Hello from thread 1
Hello from thread 2
Thread 0 done, returned 1
Thread 1 done, returned 2
Thread 2 done, returned 3
Done

Just print-outs, no use of shared data (which we will see in later
examples).
First, let us describe how the involved primitives work:
pthread_create and pthread_join.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 10 / 45

Thread creation

int pthread_create(pthread_t *th, pthread_attr_t *attr,
void * (*start_routine)(void *), void *arg)

pthread_create creates a new thread:
th is the thread handle returned on exit;
attr defines the thread’s attributes (NULL for defaults);
start_routine is a function defining the entry point for the thread;
arg is the argument to pass to start_routine;
0 is returned on success, non-zero value indicates an error.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 11 / 45

Multithreaded program lifecycle

The C program starts in main() (as usual) that runs in its own
thread, the “main” thread.
New threads are dynamically created using pthread_create().
A thread ends execution when its starting procedure returns OR it
calls pthread_exit(). It is also possible to use pthread_cancel to
stop a thread from another thread (but we won’t make use of it).
The overall program execution ends when all threads are terminated
OR one of the threads calls exit() causing all others to be abruptly
terminated.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 12 / 45

Joining threads

int pthread_join(pthread_t th, void **thread_return);

pthread_join(th, thread_return) suspends the calling thread
until th terminates. The return value of th through its start
procedure or pthread_exit is given in thread_return (if set to
NULL, th’s return value will be ignored).
Note: th must be joinable, i.e., not be in a detached state set using
pthread_detach (we won’t make use of this feature).

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 13 / 45

Summary of other pthread lifecycle functions

pthread_t pthread_self(void);
void pthread_exit(void* val);
int pthread_tryjoin_np(pthread_t th, void **retval);
int pthread_timedjoin_np(pthread_t th, void **retval,

struct timespec* time);
int pthread_detach(pthread_t th);
int pthread_cancel(pthread_t th);

pthread_self() returns the handle of calling thread.
pthread_exit(v) terminates calling thread with a return value of v.
pthread_tryjoin_np(th, r) join th or return immediately (does
not block).
pthread_timedjoin_np(th, r, to) join th with timeout tp1

pthread_detach(th) detaches th (cannot be joined later).
pthread_cancel(th) sends a cancellation request to th.

1Similarly to join, other primitives have “try” and time-out based variants.
Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 14 / 45

Caution with stack-allocated data

Threads SHOULD NOT share stack-allocated data through pointers
to local function variables.
In particular, be careful with the start routine argument for
pthread_create, and the return value of threads:
void foo() {

some_data_t localVar = ...;
pthread_create(..., start, &local_var); // WRONG!

}
void* start_routine(void * arg) {

some_data_t localVar = ...;
return &local_var; // OR pthread_exit(&local_var); // WRONG!

}

In these cases, you may use primitive values (disguised as void*, as
as in the example). If pointers are used instead, they should refer to
(valid) data in the global address space (heap or static-allocated).

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 15 / 45

Dot product – definition

The dot product of vectors u = [u0, . . . , un−1] and v = [v0, . . . , vn−1]
is given by

u · v =
n−1∑
i=0

ui × vi = (u0 × v0) + ...+ (un−1 × vn−1)

Example: if u = [0, 2, 1, 3] and v = [1, 0,−1, 3] then
u · v = (0× 1) + (2× 0) + (1×−1) + (3× 3) = 8

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 16 / 45

Dot product – sequential code

int dot_product(int* u, int* v, int n) {
int r = 0;
for (int i = 0; i < n; i++) {

r += u[i] * v[i];
}
return r;

}

How can this code be parallelised using multiple threads?
Note that there are no dependencies between iterations in respect to
u[i] ∗ v[i].

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 17 / 45

Dot product – parallelisation approach

Let thread i = 0, . . . ,N − 1 calculate a partial dot product:

ri = u[i × k : (i + 1)× k] · v [i × k : (i + 1)× k]

where k = n/N.
The partial dot products can be summed (reduced) to obtain the final
result r = r0 + . . .+ rN−1.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 18 / 45

Dot product – code for thread coordination

typedef struct {
... // next slide

} shared_data_t;
shared_data_t sd; // shared data global variable
void* do_work(void *arg) { ... } // next slide
int parallel_dot_product(int* u, int* v, int n, int n_threads) {

pthread_t* vth = (pthread_t*) malloc((n_threads-1)*sizeof(pthread_t));
...
for (long rank = 1; rank < n_threads; rank++)

pthread_create(&vth[rank-1], NULL, &do_work, (void*) rank);
do_work((void*) 0);
for (long rank = 1; rank < n_threads; rank++)

pthread_join(vth[rank-1], NULL);
...
free(vth);
return sd.result;

}

The code is similar to the “Hello pthreads” example.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 19 / 45

Dot product – parallel computation per each thread

typedef struct {
int n; // global size of vectors
int *u, *v; // pointers to the vectors
int result; // result
int n_threads; // number of threads
...

} shared_data_t;
shared_data_t sd; // shared data global variable
void* do_work(void* arg) {

long rank = (long) arg;
int my_n = sd.n / sd.n_threads;
int *my_u = sd.u + rank * my_n ,

*my_v = sd.v + rank * my_n ;
int my_result = dot_product(my_u, my_v, my_n); // sequential version
... // is there something missing?
sd.result = sd.result + my_result; // update global result
... // is there something missing?
return 0;

}

Is there something (important) missing?
Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 20 / 45

Dot product – race conditions

Suppose that two threads simultaneously execute
sd. result = sd. result + my_result 2

A possible interleaving of actions (shown above) may lead to
sd.result ending up with the value 2 rather than 3 = 1 + 2.
There is a race condition over sd.result!
Definition: a race condition happens when (1) two or more threads
simultaneously access the same data AND (2) at least one of them is
a writer.

2or equivalently sd. result += my_result
Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 21 / 45

Dot product – effect of race condition

The result may be wrong and be different from time to time, e.g.:
> ./seq_dp.bin 1000 # sequential version
u . v = -1654
> ./par_dp.bin 1000 1000 # wrong result
u . v = -1741
Threads: 1000
> ./par_dp.bin 1000 1000 # this time same result as seq. version
u . v = -1654
Threads: 1000
> ./par_dp.bin 1000 1000 # another wrong result
u . v = -1730
Threads: 1000

Note: the race is only frequently observable for a high number of
threads. A programming mistake such as this may go unnoticed easily
if only a few basic tests are conducted.
Concurrency bugs are many times subtle and hard to detect and
replicate.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 22 / 45

Dot product – using a mutex

We need to use a mutex!

typedef struct {
...
pthread_mutex_t mutex; // mutex for updating result

} shared_data_t;
shared_data_t sd; // shared data global variable
void* do_work(void* arg) {

...
pthread_mutex_lock(&sd.mutex); // enter critical region
sd.result = sd.result + my_result; // update global result
pthread_mutex_unlock(&sd.mutex); // leave critical region
...

}
int parallel_dot_product(int* u, int* v, int n, int n_threads) {

...
pthread_mutex_init(&sd.mutex, NULL); // initialization
...
pthread_mutex_destroy(&sd.mutex); // tear-down
...

}

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 23 / 45

Pthread mutex functions

In the dot product example, we ensure absence of races by employing a a
mutex (MUTual EXclusion) resource. A mutex can be owned, i.e.
“locked”, by at most one thread at any given time.

int pthread_mutex_init(pthread_mutex_t *mutex,
pthread_mutexattr_t *mutexattr);

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_destroy(pthread_mutex_t *mutex);

pthread_mutex_init(mutex, attr) initialises Code with given
attributes attr (usually attr=NULL for defaults).
pthread_mutex_lock(mutex) blocks execution of calling thread
until it obtains the lock over the mutex.
pthread_mutex_unlock(mutex) releases the lock over the mutex.
pthred_mutex_destroy(mutex) tears-down the mutex.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 24 / 45

Dot product – race condition eliminated

Update over sd.result is now synchronised using mutual exclusion.
After a thread obtains the lock, other competing threads will block
until the lock is released.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 25 / 45

Bad use of mutex objects – a few examples

Typical programming mistakes (among others):
Lock is not released – other threads may block forever – deadlock!

pthread_mutex_lock(&sd.mutex);
sd.result = sd.result + my_result;
// pthread_mutex_unlock(&sd.mutex); Oops, I forgot!

Lock also covers code outside critical region – inhibits parallelism!.
pthread_mutex_lock(&sd.mutex);
int my_result = dot_product(my_u, my_v, my_n);
sd.result = sd.result + my_result;
pthread_mutex_unlock(&sd.mutex);

Lock does not cover entire critical region – atomicity violation! –
code does not logically execute as an atomic transaction. The
fragment below allows races.

int v = sd.result;
pthread_mutex_lock(&sd.mutex);
sd.result = v + my_result;
pthread_mutex_unlock(&sd.mutex);

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 26 / 45

Heat diffusion algorithm

To simulate heat diffusion in 2-D space, a finite difference scheme can
be employed iteratively over a grid.
For position (i , j) a new value x ′i ,j is calculated as:

x ′i ,j = xi ,j + α(xi ,j−1 + xi ,j+1 + xi+1,j + xi−1,j − 4xi ,j)

α > 0 is a constant parameter.
The algorithm iterates until a steady-state solution is found.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 27 / 45

Heat diffusion – evolution

initial state 100 iterations 1000 iterations 10000 iterations

The code for heat diffusion: seq_hd.c (sequential) and par_hd.c
(parallel).
A X11 visualisation window appears (use -h for available options; use
make GUI=0 to disable the GUI).

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 28 / 45

Heat diffusion – computation step

double heat_diffusion(
int m, int n, double alpha,
double** Xold, double** Xnew

) {
double error = 0;
for (int i=1; i <= m; i++) {

for (int j=1; j <= n; j++) {
Xnew[i][j] = Xold[i][j] + alpha *

(Xold[i][j-1] + Xold[i][j+1] +
Xold[i-1][j] + Xold[i+1][j]
- 4.0 * Xold[i][j]);

double diff = fabs(Xnew[i][j] - Xold[i][j]);
if (diff > error)

error = diff;
}

}
return error;

}

This code can be parallelised using a row-wise or column-wise partition.
Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 29 / 45

Heat diffusion – iteration

for (i = 0; i < cfg.maxIter && error >= cfg.errorThreshold; i++) {
// Computation step.
error = heat_diffusion(cfg.N, cfg.N, cfg.alpha, Xold, Xnew);
// Swap buffers for next iteration (avoid costly copying).
double** tmp = Xold;
Xold = Xnew;
Xnew = tmp;

}

For parallelisation we also need to:
Reduce the error (take the maximum) calculated by each thread, as in
the dot product example.
Ensure that threads are always synchronised in the same iteration.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 30 / 45

Heat diffusion – parallelisation (part 1)

typedef struct {
double **Xold, **Xnew;
double global_error;
pthread_mutex_t mutex;
...

} shared_data_t;
shared_data_t sd;
void* do_work(void * arg) {

...
for (int iter = 0; iter < cfg.maxIter

&& sd.global_error >= cfg.errorThreshold; iter++) {
double my_error = heat_diffusion(my_N, cfg.N, cfg.alpha,

my_Xold, my_Xnew);
pthread_mutex_lock(& (sd.mutex));
if (my_error > sd.global_error) sd.global_error = my_error;
pthread_mutex_unlock(& (sd.mutex));
...

}

Similar strategy to the dot product algorithm.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 31 / 45

Heat diffusion – parallelisation (part 2)

typedef struct {
...
pthread_barrier_t barrier;

} shared_data_t;
shared_data_t sd;
void* do_work(void * arg) {

...
for (int iter = 0; iter < cfg.maxIter

&& sd.global_error >= cfg.errorThreshold; iter++) {
...
pthread_barrier_wait(& (sd.barrier));
double** tmp = my_Xold;
my_Xold = my_Xnew;
my_Xnew = tmp;

}

To ensure threads are synchronised in the same iteration, we employ a
barrier. (Do you remember MPI_Barrier ?)

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 32 / 45

Barriers

A barrier is a primitive that blocks all participants at a synchronization
point until all participants reach that point.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 33 / 45

Heat diffusion

If we remove the call to pthread_barrier_when, then the threads
become out-of-sync, as illustrated by the above screenshot for 2 threads.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 34 / 45

Pthreads support for barriers

Barrier operations3:

int pthread_barrier_init(pthread_barrier_t *barrier,
pthread_barrierattr_t *restrict attr, unsigned count);

int pthread_wait(pthread_barrier_t *barrier);
int pthread_barrier_destroy(pthread_barrier_t *barrier);

pthread_barrier_init(b,attr,count) initialises b for count
participants.
pthread_barrier_wait(b) blocks the calling thread on barrier b,
until all participants reach the barrier. The barrier is reset for re-use
on return.
pthread_barrier_destroy(b) tears-down b.

3Barriers are implemented only in Pthreads implementations that enable the “Barriers
option”, e.g., they are not defined in standard Linux or MacOs distributions. We’ll use
an alternative implementation of barriers using condition variables (discussed next).

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 35 / 45

Waiting on conditions

int do_wait = 1;
while (do_wait) {

pthread_mutex_lock(mutex);
if (some_condition())

do_wait = 0;
pthread_mutex_unlock(mutex);

}

In many a cases a thread has to wait for a certain synchronisation
condition to hold. Using a mutex we can repeatedly test for the
condition, as illustrated above. This is a costly “busy-wait” scheme
and may also generate high contention between threads, due to
repeated lock acquisition and release.
Ideally, we would like that the thread suspends execution and
relinquishes the lock until the condition holds. This type of
synchronisation is provided by condition variables, also known as
monitors.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 36 / 45

Condition variables in Pthreads

int pthread_cond_init(pthread_cond_t *cond,
pthread_condattr_t *cond_attr);

int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_destroy(pthread_cond_t *cond);

pthread_cond_init / pthread_cond_destroy are used for
initialization / tear-down (as usual).
pthread_cond_wait(cond,mutex): waits on cond, releasing the
lock on mutex while blocked, and re-acquiring it when unblocked.
pthread_cond_signal(cond) unblocks one thread waiting on cond.
pthread_cond_broadcast(cond) unblocks all threads waiting on
cond.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 37 / 45

Condition variables – use

// Waiting thread
pthread_mutex_lock(&mutex);
while (! some_condition())

pthread_cond_wait(&cond, &mutex);
pthread_mutex_unlock(&mutex)

// Signalling thread
pthread_mutex_lock(&mutex);
if (some_condition())

pthread_cond_signal(&cond); // or broadcast
pthread_mutex_unlock(&mutex);

A loop is required in combination with pthread_cond_wait due to
(rare but) possible spurious wakeups.
A condition variable is used associates to a single mutex. A thread
that calls pthread_cond_wait / signal / broadcast must have
a lock on the mutex.
Multiple condition variables may be associated to the same mutex.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 38 / 45

Condition variables – illustration

A call to pthread_cond_wait proceeds in the following steps:
1 releases the mutex and suspends execution
2 waits for a signal
3 waits to re-acquire the mutex before returning

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 39 / 45

Using condition variables – blocking queue example

typedef struct {
unsigned capacity, size, head;
void** data;
pthread_mutex_t mutex;
pthread_cond_t not_empty, not_full;

} bqueue_t;
void bqueue_init(bqueue_t* q, unsigned capacity);
void bqueue_add(bqueue_t* q, void* v);
void* bqueue_remove(bqueue_t* q);
void bqueue_destroy(bqueue_t* q, unsigned capacity);

A fixed-capacity blocking queue is a data structure commonly used in
multithreaded programs, e.g., may be used to implement task pools. The
intended semantics are:

bqueue_add(q,v) adds v to the end of q, blocking if q is full.
bqueue_remove(q) removes head of q, blocking if q is empty.
We will use a circular buffer for elements (data). The use of
condition variables would be similar for other representations.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 40 / 45

Implementing a blocking FIFO queue (2)

void bqueue_add(bqueue_t* q, void* item) {
pthread_mutex_lock(& (q -> mutex));
while (q -> size == q -> capacity) // block if full

pthread_cond_wait(& (q -> not_full), & (q->mutex));
q -> data[(q -> head + q -> size) % q -> capacity] = item;
q -> size ++;
pthread_cond_signal(& (q -> not_empty)); // signal not_empty
pthread_mutex_unlock(& (q -> mutex));

}

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 41 / 45

Implementing a blocking FIFO queue (3)

void* bqueue_remove(bqueue_t* q) {
void* item;
pthread_mutex_lock(& (q -> mutex));
while (q -> size == 0) // block if empty

pthread_cond_wait(& (q -> not_empty), & (q->mutex));
item = q -> data [q -> head];
q -> head = (q -> head + 1) % q -> capacity;
q -> size --;
pthread_cond_signal(& (q -> not_full)); // signal not_full
pthread_mutex_unlock(& (q -> mutex));
return item;

}

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 42 / 45

Implementing pthread_barrier_t

typedef struct {
unsigned size, in, out;
pthread_mutex_t mutex;
pthread_cond_t all_in, all_out;

} pthread_barrier_t;
int pthread_barrier_init(pthread_barrier_t* b, unsigned count) {

b -> count = count;
b -> in = 0;
b -> out = 0;
pthread_mutex_init(&(barrier -> mutex), NULL);
pthread_cond_init(&(barrier -> all_in), NULL);
pthread_cond_init(&(barrier -> all_out), NULL);
return 0;

}

Given that pthreads barriers are not defined in standard Linux or MacOs
distributions, we may define our own (relatively simple) implementation of
pthread_barrier_t using condition variables.

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 43 / 45

Implementing pthread_barrier_t (2)

int pthread_barrier_wait(pthread_barrier_t* b) {
pthread_mutex_lock(& (b -> mutex));
b -> in ++;
if (b -> in == b -> count)

pthread_cond_broadcast(& (b -> all_in)); // all in
else while (b -> in != b -> count)

pthread_cond_wait(& (b -> all_in), & (b -> mutex));
b -> out ++;
...
return 0;

}

b −> in == b −> count −→ all threads reached the barrier.
b −> out == b −> count −→ all threads are ready to leave the
barrier (not blocked on all_in).

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 44 / 45

Implementing pthread_barrier_t (3)

int pthread_barrier_wait(pthread_barrier_t* b) {
pthread_mutex_lock(& (b -> mutex));
b -> in ++;
if (b -> in == b -> count)

pthread_cond_broadcast(& (b -> all_in)); // all in
else while (b -> in != b -> count)

pthread_cond_wait(& (b -> all_in), & (b -> mutex));
b -> out ++;
if (b -> out == b -> count) {

b -> in = 0; // reinitialise barrier for next round
b -> out = 0;
pthread_cond_broadcast(& (b -> all_out)); // all out

} else while (b -> out != 0)
pthread_cond_wait(& (b -> all_out), & (b -> mutex));

pthread_mutex_unlock(& (b -> mutex));
return 0;

}

out/all_out are used to guarantee threads exit the barrier orderly.
Note that otherwise a thread could leave and re-enter the barrier
while others are still blocked on all_in .

Computação Paralela 2018/19 (DCC-FCUP) Parallel programming using threads 45 / 45

