
Questões de Segurança em Engenharia de Software (QSES)
Mestrado em Segurança Informática
Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Eduardo R. B. Marques, edrdo@dcc.fc.up.pt

Security and
Software Engineering

- An Introduction -

mailto:edrdo@dcc.fc.up.pt?subject=

Basic notions

Motivation for this course

 3

“The disconnect between security and development
has ultimately produced software development
efforts that lack any sort of contemporary
understanding of technical security risks. Today's
complex and highly connected computing environments
trigger myriad security concerns, so by blowing off the
idea of security entirely, software builders virtually
guarantee that their creations will have way too many
security weaknesses that could-and should have been
avoided.”, in “Bridging the gap between software
development and information security”, KR van Wyk, G
McGraw, IEEE Security and Privacy, 2005

“[this] “penetrate and patch” approach is not
working: unpatched systems remain vulnerable, and
even when they are the patched there are probably other
latent vulnerabilities that remain. “Penetrate and patch”
also doesn’t address the new vulnerabilities that are
introduced as the software evolves. “So we need shift
our mentality to building security in: We should aim
to build software that is free of vulnerabilities (or far
more likely to be free of them) right from the start.”, in

“From ‘Penetrate and Patch’ to ‘Building Security In’” by
Michael Hicks, PL Enthusiast blog, 2015

xkcd: “Security holes”

https://ieeexplore.ieee.org/document/1514408/
https://ieeexplore.ieee.org/document/1514408/
https://ieeexplore.ieee.org/document/1514408/
http://www.pl-enthusiast.net/2015/09/30/penetrate-and-patch-to-building-security-in/
https://www.cs.umd.edu/~mwh/
https://www.xkcd.com/424/

Security
A succinct definition:

“Achieving some goal in the presence of an
adversary.” Computer Systems Security course @ MIT

The “CIA triad” of security goals:
Confidentiality: data is not made available or disclosed to
unauthorized parties.
Integrity: data cannot be modified in an unauthorized or
undetected manner.
Availability: data must be available when needed.

Other common security goals
Privacy: data is subject to rights and obligations by all (authorized)
parties that have access to it (differs from confidenciality).
Non-repudiation: operations should be traceable and verifiable,
for instance in regard to the parties that own, modify, or transmit
data (“who did what and when”)?

 4

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-858-computer-systems-security-fall-2014/index.htm

Achieving security goals

Security: “Achieving some goal in the presence of an
adversary.”
Security depends on the interplay between:

Security policy: the requirements (goals) for the
software in regard to security.
Threat & risk assessment: considering what the
adversary might do and the associated risks
System implementation: building a system correctly,
i.e., in line with the security requirements and the threat/
risk assessment.

 5

Compromised security …

 6

Exploits of a mom
https://xkcd.com/327/

https://xkcd.com/327/

Compromised security …
Flaws in implementation

Security features (e.g., MITRE’s database for openssl)
Bugs in standard code that lead to unintended functionality (e.g.
buffer overflows, command injection, …)

Flaws in security policy or threat / risk assessment:
Weak password recovery questions (e.g. “Sarah Palin’s email
hack”)
Combined account info leakage (e.g. “The Epic Hacking of Mat
Honan and Our Identity Challenge”)
Trust all SSL Certificate Authorities (CAs) e.g. DigiNoar,
Comodo attacks.
Assume that achines disconnected from the Internet are secure,
e.g. the Stuxnet worm was originally injected in Iran’s nuclear
facilities via USB pen drives.

 7

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=openssl
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer+overflow
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=command+injection
https://en.wikipedia.org/wiki/Sarah_Palin_email_hack
https://en.wikipedia.org/wiki/Sarah_Palin_email_hack
https://blog.talkingidentity.com/2012/08/the-epic-hacking-of-mat-honan-and-our-identity-challenge.html
https://blog.talkingidentity.com/2012/08/the-epic-hacking-of-mat-honan-and-our-identity-challenge.html
https://en.wikipedia.org/wiki/DigiNotar
https://en.wikipedia.org/wiki/Comodo_Group#Certificate_hacking
https://en.wikipedia.org/wiki/Stuxnet

Basic terms
Vulnerability

Flaw that can be exploited by an adversary to violate the
security policy.

Attack
Adversarial actions to take advantage one or more more
software vulnerabilities.

Intrusion
Successful attack

Attack surface
I/O interfaces (“attack vectors”) that may expose a system to
attacks (e.g., OS, file system, network, …)

Exploit
A program or piece of code that is used during an attack to
trigger vulnerabilities.

 8

The CWE database
The CWE (Common Weakness Enumeration) database

A community-curated classification of categories of software
weaknesses
Example: CWE-77 - Command Injection

For convenience, the CWE entries may be viewed for
according to:

 a taxonomy like 7PK (The Seven Pernicious Kingdoms) — “By
organizing these errors into a simple taxonomy, we can teach
developers to recognize categories of problems that lead to
vulnerabilities and identify existing errors as they build
software.” [original 7PF paper]
… or by relevance in a certain domain like the OWASP Top 10
— “focuses on identifying the most serious web application
security risks for a broad array of organizations”

 9

https://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/700.html
https://cwe.mitre.org/documents/sources/SevenPerniciousKingdoms.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf

7PK view of the CWE database (fragment)

OWASP Top 10 (fragment)

https://cwe.mitre.org/data/definitions/700.html
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf

The CVE database

The CVE (Common Vulnerabilities & Exposures) database
Exposures / vulnerabilities found in concrete software
Example: CVE-2018-1000802 — command injection
vulnerability in CPython

CWE/CVE terminology:
Vulnerability: flawed computational logic in a system that
compromises security.
Exposure: misconfiguration/code in a system that does not
directly compromise security but may aid in exposing a system
to attack.
Weakness: general characterization of a set of vulnerabilities

 11

https://cve.mitre.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1000802
https://cve.mitre.org/about/terminology.html

Risk assessment — CVSS

Common Vulnerability Scoring System (CVSS)
A frameworkused to score the r isk level of
vulnerabilities in the CVE database.

CVSS scores
Base score: relates to the intrinsic characteristics of a
vulnerability, usually taken as the main reference for
risk level.
Temporal: changeable over the lifetime of a
vulnerability, accounts for possible remediation &
evolution of characteristics in time. [Q: What do you
think is the lifetime of a vulnerability?]
Environmental score: accounts for environmental
aspects, typically from a deployment perspective.

 12

https://nvd.nist.gov/vuln-metrics/cvss/

CVSS — base score metrics

 13

Source: CVSS V3 calculator

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

Threat modeling example / STRIDE

Threat model: assumptions about what an attacker can
do, i.e., assessment of possible threats.
STRIDE is a threat modeling framework used by the
OpenStack consortium and originally conceived by
Microsoft, that classify threats in the following categories:

Spoofing - impersonation of an entity (host, service, person, …)
Tampering - unauthorized data change / disruption.
Repudiation - unrecorded actions, even if they should be.
Information disclosure: extraction of information that should
not be available
Denial of service: system becomes unavailable.
Escalation: elevation of privileges beyond what is expected.

 14

https://wiki.openstack.org/wiki/Security/OSSA-Metrics#STRIDE

STRIDE — examples

Source: “Applying STRIDE - Commerce Server 2002”, Microsoft
 15

https://msdn.microsoft.com/en-us/library/ee798544(v=cs.20).aspx

Risk assessment — DREAD

Risk assessment deals with quantifying the risk posed by
identified vulnerabilities and the associated threats.
The DREAD model — assess risk 0-10 in regard to :

Damage potential - how much damage will be caused?
Reproducibility - how easy is it to reproduce the attack?
Exploitability - how difficult is it to launch an attack?
Affected users - how many users are affected?
Discoverability - how easy is it to discover the vulnerability?
Risk level = average of all 5 factors.

 16

https://wiki.openstack.org/wiki/Security/OSSA-Metrics#DREAD

DREAD example

 17

(from openstack.org)

https://wiki.openstack.org/wiki/Security/OSSA-Metrics#OSSA_2014-038

Common
misconceptions

and guiding principles

What do you think?

Our software is perfectly secure, because:
It works so reliably, meeting all functional requirements.
It has all the appropriate security features.
The possible use/deployments are well known and under
control.
We anticipated all threats.
The code is closed-source and the binary releases are
obfuscated. Our cryptography mechanisms are also secret.
For security, we conduct extensive pen-testing at the end of the
software development cycle.
We just released a patch that fixed all the security issues, and it
is protected against every known exploit.

 19

What do you think?
Let us discuss why all of these are serious misconceptions, and introduce guiding
principles:

It works so reliably, meeting all functional requirements.

Reliability != Security
It has all the appropriate security features.

Security Features != Secure Features
The possible use/deployments are well known and under control.

“The Trinity of Trouble”
We anticipated all threats.

“The attacker’s advantage and the defender’s dilemma"
The code is closed-source and the binary releases are obfuscated. Our cryptography
mechanisms are also secret.

Security by design vs security by obscurity
For security, we conduct extensive pen-testing at the end of the software development cycle.

SLDC and “the touchpoint model”
We just released a patch that fixed all the security issues, and it is protected against every
known exploit.

Window of vulnerability, zero-day exploits
 20

Reliability != Security

“Reliable software does what it is supposed to do. Secure software does what is
supposed to do, and nothing else.” — Ivan Arce, cited by Chess and West
It’s now only how the software is supposed to be used … but also how it can be abused !
Functional requirements are driven by use cases.
Security requirements are also driven by abuse cases, a concept we will came back to
later.

 21

specification
(functional requirements)

implementation
(code)

security
problemsbugs

implementation
fails to comply
with intended
functionality

implementation has
unpredicted/unintended

functionality
that compromises

security

reliable
functionality

Reliability != Security (2)

Specification: given (GET request parameter) X reply with "Hello X !”.
Implementation: reliable, but not secure … why?

 22

<html>
 <head>
 <title>PHP Hello program</title>
 </head>
 <body>
 <?php echo ‘Hello ‘ . $_GET[“X”]’; ?>
 </body>
</html>

Reliability != Security (3)

The security issue is that arbitrary HTML could be passed in X, in
particular it can inject a script that is executed in the client browser, the
typical strategy for a cross-site scripting attack.
Defense mechanism — input sanitization: htmlspecialchars sanitizes
the input by “escaping” HTML characters, preventing code execution.

 23

<html>
 <head>
 <title>PHP Hello program</title>
 </head>
 <body>
 <?php echo ‘Hello‘ . htmlspecialchars($_GET[“X"])’; ?>
 </body>
</html>

http://php.net/manual/en/function.htmlspecialchars.php

Bugs ?

 24

 “‘Bug’—as such li/le faults and difficulties are called—show themselves, and

months of anxious watching, st=dy, and labor are requisite before commercial

success—or failure—is cerAainly reached.” [Thomas Edison, 1878]

“Did You Know? Edison Coined the Term “Bug”, A. Magoun and P. Israel, The Institute, IEEE. 2013.
 http://theinstitute.ieee.org/technology-focus/technology-history/did-you-know-edison-coined-the-term-bug

Historical note
on the term
“bug”

http://theinstitute.ieee.org/technology-focus/technology-history/did-you-know-edison-coined-the-term-bug

 25

“First act=al case of bug being found” [!!]

Note in Harvard Mark II logbook by Grace Hopper,
1947 [actual moth (bug) part of the logbook], U.S.
Naval Historical Center Online Library Photograph

Historical note
on the term
“bug”

Security features != Secure features

Security features
Features that are related directly to security goals like the use of
cryptography, password handling, access control, etc.
They should of course be conceived carefully, but development
cannot focus on security features alone.

“Security Features” are just one of the “kingdoms” in 7PF.
Why ?
Secure features

Any feature, even if not directly related to a security requirement
or mechanism, may pose security at risk. 26

The “Trinity of Trouble” (ToT)

We cannot anticipate all possible use/deployments of a
software system.
Modern software is subject to the Trinity of Trouble
(ToT), a term introduced by Gary McGraw:

Connectivity: software systems are connected
Complexity: their organization can be intricate and complex
Extensibility: they evolve and can be extended in
unpredictable manner
All these aspects are naturally inter-related.

Let us look at a simple “tutorial” example.

 27

ToT - An example (1)

 28

<html> <head>
<script>
function showUser(str) {
if (str=="") {
 document.getElementById("txtHint").innerHTML="";
 return;
}
if (window.XMLHttpRequest) {// code for IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp=new XMLHttpRequest();
} else {// code for IE6, IE5
 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");
}
xmlhttp.onreadystatechange=function() {
 if (xmlhttp.readyState==4 && xmlhttp.status==200) {

 document.getElementById("txtHint").innerHTML=xmlhttp.responseText;
 }
}

xmlhttp.open("GET","getuser.php?q="+str,true);
xmlhttp.send();
}
</script>
</head>
<body>

<form>
<select name="users" onchange="showUser(this.value)">
<option value="">Select a person:</option>
<option value="1">Peter Griffin</option>
<option value="2">Lois Griffin</option>
<option value="3">Glenn Quagmire</option>
<option value="4">Joseph Swanson</option>
</select>

</form>

<div id="txtHint">Person info will be listed here.</div>

</body>

</html>

begin HTML
A Javascript method invoked by the

HTML form below

Use of the AJAX Javascript API
HTTP communication

and XHTML/XML formats are implicit

static HTML form

A “simple” example
“PHP - AJAX and MySQL”

 http://www.w3schools.com/php/
php_ajax_database.aspend HTML

dynamic HTML
section

invocation of server
side PHP

script; use of PHP
revealed

http://www.w3schools.com/php/php_ajax_database.asp
http://www.w3schools.com/php/php_ajax_database.asp

 29

ToT — An example (2)
<?php
$q=$_GET["q"];
$con = mysql_connect('localhost', 'peter', 'abc123');
if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }
mysql_select_db("ajax_demo", $con);

$sql="SELECT * FROM user WHERE id = '".$q."'";
$result = mysql_query($sql);

echo "<table border='1'>
<tr>
<th>Firstname</th>
<th>Lastname</th>
<th>Age</th>
<th>Hometown</th>
<th>Job</th>
</tr>";
while($row = mysql_fetch_array($result))
 {
 echo "<tr>";
 echo "<td>" . $row['FirstName'] . "</td>";
 echo "<td>" . $row['LastName'] . "</td>";
 ...
 }
echo "</table>";
mysql_close($con);
?>

A “simple” example
“PHP - AJAX and MySQL”

 http://www.w3schools.com/php/
php_ajax_database.asp

DB connection
Hard-coded credentials!

DB query
SQL injection possible!

generation of dynamic HTML

Use of possibly unsanitized
database data

http://www.w3schools.com/php/php_ajax_database.asp
http://www.w3schools.com/php/php_ajax_database.asp

 30

ToT — An example (3)
<?php
$q=$_GET["q"];
$con = mysql_connect('localhost', 'peter', 'abc123');
if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }
mysql_select_db("ajax_demo", $con);

$sql="SELECT * FROM user WHERE id = '".$q."'";
$result = mysql_query($sql);

echo "<table border='1'>
<tr>
<th>Firstname</th>
<th>Lastname</th>
<th>Age</th>
<th>Hometown</th>
<th>Job</th>
</tr>";
while($row = mysql_fetch_array($result))
 {
 echo "<tr>";
 echo "<td>" . $row['FirstName'] . "</td>";
 echo "<td>" . $row['LastName'] . "</td>";
 ...
 }
echo "</table>";
mysql_close($con);
?>

DB connection
Hard-coded credentials!

DB query
SQL injection possible!

generation of dynamic HTML

Use of possibly unsanitized
database data

In summary — Only a simple example (intended as a tutorial!)
… but one that illustrates how much of modern software is
developed:

everything mixed / low modularity, different languages/formats (PHP,
Javascript, SQL, HTML, XML)
wide attack surface helped by intricate/fragile client-side + server-
side + database dependencies
little security concerns

ToT — the BlueBorne case
BlueBorne is an attack vector directed at Bluetooth devices, just
reported by Armis (Sep. 2017)

can target most devices (billions of them!)
lead to control of devices, access corporate data and networks, network
penetration, and malware spread …
8 vulnerabilities can be combined or used in isolation to perform an attack

“So, what seems to be the problem?” section in the Armis white paper
“Bluetooth is complicated. Too complicated. Too many specific applications
are defined in the stack layer, with endless replication of facilities and
features. These over-complications are a direct result of the immense work,
and over-engineering that was put into creating the Bluetooth specification.
[…]”
“Bluetooth’s complexity kept researchers from auditing its implementations
at the same level of scrutiny that other highly exposed protocols, and
outwards-facing interfaces have been treated with.”
“The complications in the specifications translate into multiple pitfall
junctions in the various implementations of the Bluetooth standard.”

 31

https://www.armis.com/blueborne/
https://www.armis.com/blueborne/
http://go.armis.com/hubfs/BlueBorne%20Technical%20White%20Paper-1.pdf

The attacker’s advantage and the
defender’s dilemma

We cannot anticipate all possible threats!
Howard & Leblanc summarize the problem in 4 principles:

“Principle #1: The defender must defend all points; the attacker can
choose the weakest point.”
“Principle #2: The defender can defend only against known attacks; the
attacker can probe for unknown vulnerabilities.”
“Principle #3: The defender must be constantly vigilant; the attacker can
strike at will.”
“Principle #4: The defender must play by the rules; the attacker can play
dirty.”

For instance consider this report on automated malware
generation:

“the automation of malware production means that attackers can
generate and propagate malicious software at lightning speed, outpacing
the efforts of human security teams to identify and block new variants of
threats” from "Dark Trace Global Threat Report 2017, Selected Case
Studies" 32

https://www.pearson.com/us/higher-education/program/Le-Blanc-Writing-Secure-Code-2nd-Edition/PGM76030.html
https://www.darktrace.com/resources/wp-global-threat-report-2017.pdf
https://www.darktrace.com/resources/wp-global-threat-report-2017.pdf

Security by obscurity

So: “The code is closed-source and the binary releases are
obfuscated. Our cryptography mechanisms are also secret.”
Security by obscurity. relies on secrecy as a general method for
security.
It works as a deterrent / increased work factor for an adversary:

Secrets are hard to keep for a long time (e.g. consider leaks, reverse
engineering techniques).
Also in general, recall the “attacker’s advantages” principles

 33

Code talkers, xckd

https://xkcd.com/257/

Security by design

Instead we should seek that a system should be secure
by design.
Two famous guidelines from the realm of cryptography,
that should be taken to secure software in general:

Kerckhoffs's principle: “a cryptosystem should be secure
even if everything about the system, except the key, is public
knowledge”
Shannon’s maxim: “one ought to design systems under the
assumption that the enemy will immediately gain full familiarity
with them”

Design principles?

 34

Security by design — some example
principles by Viega and McGraw

1. Secure the weakest link
Security defense should be seen as a chain, attackers will look for the weakest link in
that chain.

2. Defense in depth
Manage risk by defense at all layers / components, such that if one of them fails, the
other has a fair chance.

3. Fail securely
Handle failures correctly & securely; failure handling is often overlooked in
reliability and security terms.

4. Least privilege
Execute software with the minimum required privileges to mitigate possible
impact of an attack (e.g. do not run servers with super-user privileges)

5. Compartmentalize
Try to limit the damage by compartmentalizing (e.g. using VPNs, containers, firewalls
…)

6. Keep It Simple (KISS) !!!
…

 35 [Viega and McGraw, Building Secure Software, chapter 5]

https://www.pearson.com/us/higher-education/program/Viega-Building-Secure-Software-How-to-Avoid-Security-Problems-the-Right-Way/PGM262222.html

The software development life cycle
(SDLC) and security

The SLDC Involves different:
“philosophies” — more or less “agile” …

stages (typically in a feedback loop) & related artifacts: requirements, design, code,
tests, deployments, …

people: “architects”, project managers, programmers, testers, QA people, …

So: “For security, we conduct extensive pen-testing at the end of the
software development cycle.”

The “penetrate and patch model” that Michael Hicks refers to (slide 2)…

Pen-testing is useful but only one of the possible security-driven activities in the
SDLC. 36

Waterfall XP SCRUM

Images from Wikipedia

http://www.pl-enthusiast.net/2015/09/30/penetrate-and-patch-to-building-security-in/

Security touch-points

Security is a cross-cutting concern and an emergent property; it must be
accounted for during the entire SDLC.
With that in mind, Gary McGraw proposed the influential touch-point model.
The idea is that touch-points define security-oriented tasks for different stages of
the SLDC.
Detailed touch-points have been identified and organized by initiatives such as
BSIMM and OpenSAMM.
We will cover the touchpoint model in the next class and go through some of the
touch-points in detail throughout the semester.

 37

Image source: “Software security”, G. McGraw, IEEE SECURITY & PRIVACY

https://www.bsimm.com/framework.html
https://www.opensamm.org/

Window of vulnerability

So: “We just released a patch that fixed all the security issues, and it is
protected against every known exploit.”
Window of vulnerability: time period of exposure to a vulnerability &
associated exploits

It starts when the vulnerability is discovered, by attackers or a security analyst
It continues over a period of time during which the vulnerability is publicized (by itself
potentially triggering attacks) and a patch is developed to fix the problem.
It ends only when all affected systems are effectively patched.

 38

Image source: OWASP Testing Guide introduction

https://www.owasp.org/index.php/Testing_Guide_Introduction

The Equifax data breach
“Equifax […] lost control of customer data that included Social Security
numbers, home addresses, credit card numbers, drivers license
numbers and birth dates. The company estimates that the data of 143
million people were exposed, which equals roughly half the US
population.”

From: “Your guide to surviving the Equifax data breach”, Sharon Profis, CNET

“The flaw in the Apache Struts framework was fixed on March 6.
Three days later, the bug was already under mass attack by hackers
[…] Equifax has said the breach on its site occurred in mid-May,
more than two months after the flaw came to light and a patch was
available.”

From: “Failure to patch two-month-old bug led to massive Equifax breach”, Dan
Goodwin, ArsTechnica.com, 14/09/2007

CVE-2017-5638: “The Jakarta Multipart parser in Apache Struts 2 2.3.x
[…] allows remote attackers to execute arbitrary commands via a #cmd=
string in a crafted Content-Type HTTP header, as exploited in the wild in
March 2017. “

From: MITRE vulnerability database
 39

https://www.cnet.com/how-to/your-guide-to-surviving-equifax-data-breach/
https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/
http://ArsTechnica.com
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638

Zero-day vulnerabilities

t - day vulnerability : a vulnerability hat has been known for t days (in the Equifax
case: t = 60)
Note that t may be 0 for a possibly long time! Zero-day vulnerability: the
vulnerability has not been disclosed by whoever found it … in effect it “does not
exist” and no time has passed for countermeasures.
The hunt for zero-day vulnerabilities promotes both good and bad initiatives

Zero Day Initiative
“New Dark-Web Market Is Selling Zero-Day Exploits to Hackers”, Wired article

 40

Image source: OWASP Testing Guide introduction

t = 0

https://www.zerodayinitiative.com/
https://www.wired.com/2015/04/therealdeal-zero-day-exploits/
https://www.owasp.org/index.php/Testing_Guide_Introduction

