
Questões de Segurança em Engenharia de Software (QSES)
Mestrado em Segurança Informática
Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Eduardo R. B. Marques, edrdo@dcc.fc.up.pt

All input is evil !

mailto:edrdo@dcc.fc.up.pt?subject=

General context

“All input is evil!” or “Trust no input!” are common
security “mantras”.
Malicious input and the lack of appropriate input
validation is the essencial ingredient of exploits targetting
several kinds of software vulnerabilities we will cover:

injection vulnerabilities (OS command, SQLi, …)
Web-app specific vulnerabilites (XSS, CSRF, …)
buffer overflows
…

2

What is an “input” ?
Input:

every item of data that comes from an external source and
affects program behavior

Possible data sources
Command line arguments
Configuration data (files, environment vars, etc)
Network servers
Database
File system
Shared memory
Hardware devices
…

3

4

<html> <head>
<script>
function showUser(str) {
if (str=="") {
 document.getElementById("txtHint").innerHTML="";
 return;
}
if (window.XMLHttpRequest) {// code for IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp=new XMLHttpRequest();
} else {// code for IE6, IE5
 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");
}
xmlhttp.onreadystatechange=function() {
 if (xmlhttp.readyState==4 && xmlhttp.status==200) {

 document.getElementById("txtHint").innerHTML=xmlhttp.responseText;
 }
}

xmlhttp.open("GET","getuser.php?q="+str,true);
xmlhttp.send();
}
</script>
</head>
<body>

<form>
<select name="users" onchange="showUser(this.value)">
<option value="">Select a person:</option>
<option value="1">Peter Griffin</option>
<option value="2">Lois Griffin</option>
<option value="3">Glenn Quagmire</option>
<option value="4">Joseph Swanson</option>
</select>

</form>

<div id="txtHint">Person info will be listed here.</div>

</body>

</html>

entire HTML can be
considered the “whole” input

AJAX data source /
interface with the server

A “simple” example
“PHP - AJAX and MySQL”

 http://www.w3schools.com/php/
php_ajax_database.asp

The “tutorial” from class 1 - client side

server output => input
to the client side

http://www.w3schools.com/php/php_ajax_database.asp
http://www.w3schools.com/php/php_ajax_database.asp

5

The “tutorial” from class 1 - server side
<?php
$q=$_GET["q"];
$con = mysql_connect('localhost', 'peter', 'abc123');
if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }
mysql_select_db("ajax_demo", $con);

$sql="SELECT * FROM user WHERE id = '".$q."'";
$result = mysql_query($sql);

echo "<table border='1'>
<tr>
<th>Firstname</th>
<th>Lastname</th>
<th>Age</th>
<th>Hometown</th>
<th>Job</th>
</tr>";
while($row = mysql_fetch_array($result))
 {
 echo "<tr>";
 echo "<td>" . $row['FirstName'] . "</td>";
 echo "<td>" . $row['LastName'] . "</td>";
 ...
 }
echo "</table>";
mysql_close($con);
?>

A “simple” example
“PHP - AJAX and MySQL”

 http://www.w3schools.com/php/
php_ajax_database.asp

GET request parameter

database data input
(passed on to client)

5

SQL injection possible
at this point

http://www.w3schools.com/php/php_ajax_database.asp
http://www.w3schools.com/php/php_ajax_database.asp

Trust boundary

6

Service database

configuration
files

trust boundary

clients

external
cloud services

chokepoint

A choke point defines a
communication point between

untrusted and trusted components.

No chokepoints inside the trust
boundary, relying on the fact that
untrusted data never enters the

boundary without being validated at a
chokepoint. Defense-in-depth

refinements: more chokepoints / trust
boundary levels

trusted

untrusted

logical division
between trusted and

untrusted
functionality

Trust boundary violation
Trust boundary violation (CWE-501)

“A trust boundary can be thought of as line drawn through a
program. On one side of the line, data is untrusted. On the other
side of the line, data is assumed to be trustworthy.”
“A trust boundary violation occurs when a program blurs the
line between what is trusted and what is untrusted. By
combining trusted and untrusted data in the same data structure, it
becomes easier for programmers to mistakenly trust unvalidated
data.”

Establishing trust boundaries may be hard due to the diversity
of input sources (and misplaced trust in some of them) and
he fact that trust is transitive: if A trusts B, then A implicitly
trust components that are part of B or interface with B
Consider for instance program dependencies in the form of
external libraries.

7

https://cwe.mitre.org/data/definitions/501.html

Trust boundary violation (2)

Example from Trust boundary violation (CWE-501)

8

https://cwe.mitre.org/data/definitions/501.html

Dealing with input
Integrity — is input data trustworthy?

Ensure that data has not been tampered and/or comes from a trusted source, e.g.
employing encrypted channels, checksums, digital signatures => integrity checks
usually deployed in association to communication mechanisms.

Validation — is input data valid ?
Ensure that the data is strongly typed, correct syntax, within length boundaries,
contains only permitted characters, or if numeric is correctly signed and within range
boundaries => syntactic checks usually deployed at chokepoint input handling
logic.
Mechanisms: sanitization and filtering with associated techniques e.g. data
encoding/“escaping”, whitelist and blacklist checks.

Application logic — does the input specify a legal operation?
At the application logic layer, does data make sense taking into account the specific
context of operation at stake => “in-depth” semantic checks throughout the
application logic.
Data may be be considered as arriving without tampering from a trusted source and
valid, but still be illegal in terms of the operation to execute (e.g., lack of appropriate
previleges, unauthorized session, …).

9

Input validation — generic aspects

As we will see in the study of several types of vulnerabilites … (along
with domain-specific strategies, mechanisms, and implementation aids)
Strategies

Rejection of bad data that does not conform to a certain criteria.
Sanitization: process data such that potentially malicious fragments are neutralized,
e.g. espace special meta-characters, remove known problematic sequences, etc

General mechanisms
While-list: computational logic identifies valid inputs such that they are accepted /
deemed
Black-list based: computation logic identifies invalid input such that they are rejected,
or merely removed/“escaped”

Implementation aids
Regular expressions
Grammar-based checks e.g. the use of schemas for compliance of XML or JSON data
Readily-avaliable sanitization functions/libraries (context-dependent), e.g., OWASP
Java Encoder, PHP data filtering, DOMPurify

10

https://www.owasp.org/index.php/OWASP_Validation_Regex_Repository
https://www.w3schools.com/xml/schema_intro.asp
https://json-schema.org/
https://www2.owasp.org/owasp-java-encoder/
https://www2.owasp.org/owasp-java-encoder/
https://www.php.net/manual/en/book.filter.php
https://github.com/cure53/DOMPurify

Whitelisting vs. blacklisting

Whitelists are generally preferable
they concretely define what good inputs are
but in some scenarios they can be too restrictive / unfeasible

Blacklists only identifies a set of bad inputs.
The set may be incomplete or hard to enumerate … providing a false
sense of security. Chances are that some bad inputs are not filtered out.
There is a vulnerably class for incomplete black-lists — CWE-184.
Blacklists may however be simpler to implement or more adequate in
some cases, e.g., blacklists of domains associated with e-mail spamming.

Further references (even beyond input validation)
Whitelisting vs blacklisting, OWASP “Input Validation Cheat Sheet”
Whitelisting vs. Blacklisting , Schneier on Security (short blog article by
Bruce Schneier)

11

https://cwe.mitre.org/data/definitions/184.html
https://mxtoolbox.com/blacklists.aspx
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet#Whitelisting_vs_blacklisting
https://www.schneier.com/blog/archives/2011/01/whitelisting_vs.html

Whitelist — simple example

Whitelist defines the set of valid inputs. All others will be
rejected.

12

 private static final String[] ALLOWED_FILE_EXTENSIONS = {
 ".gif", ".jpeg", ".png"
 };

 static boolean isValidFileExtension(String fileName) {
 for (String ext : ALLOWED_FILE_EXTENSIONS) {
 if (fileName.endsWith(ext)) {
 return true;
 }
 }
 return false;
 }

Blacklist — simple example

Blacklist defines the set of invalid inputs. All others will be
accepted.
Whitelists vs blacklists: what do you think it’s best?

13

 private static final String[] DISALLOWED_FILE_EXTENSIONS = {
 ".exe", ".com", ".bat"
 };

 static boolean isValidFileExtension(String fileName) {
 for (String ext : DISALLOWED_FILE_EXTENSIONS) {
 if (fileName.endsWith(ext)) {
 return false;
 }
 }
 return true;
 }

Regular expressions — simple example

Dates are validated with a YYYY-MM-DD format using a regular
expression. Values are subsequently checked to enforce that the date is
valid.

14

// Regular expression for dates in a YYYY-MM-DD format
 private static final Pattern DATE_PATTERN
 = Pattern.compile("(\\d{4})-(\\d{2})-(\\d{2})");

 static boolean isValidDate(String s) {
 Matcher m = DATE_PATTERN.matcher(s);
 if (! m.matches())
 return false;

 int year = Integer.parseInt(m.group(1));
 int month = Integer.parseInt(m.group(2));
 int day = Integer.parseInt(m.group(3));

 return month >= 1 &&
 month <= 12 &&
 day >= 1 &&
 day <= daysInMonth(month, year);
 }

