
Questões de Segurança em Engenharia de Software (QSES)
Mestrado em Segurança Informática
Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Eduardo R. B. Marques, edrdo@dcc.fc.up.pt

Web application
vulnerabilities

mailto:edrdo@dcc.fc.up.pt?subject=

Introduction

Web applications

Basic aspects
Browser and server communicate through HTTP or HTTPS (HTTP: plain-text,
HTTPS = HTTP over encrypted TLS connection)
Server-side features: Dynamic HTML generation, business logic, persistence
layer (e.g., SQL database)
Client-side: renders HTML, executes scripts.

Q: What may an adversary do?
3

web
server

request
browser

app
reply

databaseuser HTTP/HTTPS link

adversary

HTTP requests

4

GET http://127.0.0.1:8081/vulnerabilities/xss_r/?
 name=Eduardo&user_token=64e7a89cf687e5b53c4115f899ec438b HTTP/1.1
Proxy-Connection: keep-alive
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_4) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/
 apng,*/*;q=0.8
Referer: http://127.0.0.1:8081/vulnerabilities/xss_r/
Accept-Language: en-GB,en-US;q=0.9,en;q=0.8
Cookie: PHPSESSID=lhtuupa7c6jl5v3ekdjp63nv56; security=impossible
Host: 127.0.0.1:8081

POST http://127.0.0.1:8081/login.php HTTP/1.1
Content-Length: 88
. . .
Referer: http://127.0.0.1:8081/login.php
Accept-Language: en-GB,en-US;q=0.9,en;q=0.8
Cookie: PHPSESSID=lhtuupa7c6jl5v3ekdjp63nv56; security=impossible
Host: 127.0.0.1:8081

username=admin&password=password&Login=Login&user_token=ddafd9974dfb2b686c99fa1b36e2
823d

GET request —
arguments are encoded

in URL

POST request —
arguments are encoded

in the request body

POST
request

Browser id

Cookie stored in
browser

Referrer URL

browser
web

server

http://127.0.0.1:8081/vulnerabilities/xss_r/?

HTTP replies

5

HTTP/1.1 200 OK
Date: Mon, 15 Oct 2018 14:44:24 GMT
Server: Apache/2.4.10 (Debian)
Expires: Tue, 23 Jun 2009 12:00:00 GMT
Cache-Control: no-cache, must-revalidate
Pragma: no-cache
Vary: Accept-Encoding
Content-Length: 1567
Content-Type: text/html;charset=utf-8

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd">

<html >
. . .
</html>

data (HTML in this case

HTTP version id + status code + info message

browser web
server

Content description

Vulnerabilities

We will look at the following types of vulnerability that are web-application
specific (this list is far from exhaustive):

Cookie related vulnerabilities
Cross-Site Request Forgery (CSRF)
Cross-Site Scripting (XSS)

Injection vulnerabilities discussed before (like SQLi or OS command
injection) are also very common in web applications, but not specific to them.

6

web
server

request
browser

app
reply

databaseuser

HTTP/HTTPS
link

adversary

Running example

To illustrate some of the concepts and vulnerabilities we
will make use of:

DVWA again as an example of vulnerable application and
different strategies for enforcing security, and the SonarCloud
analysis of the DVWA source code
ZAP: the OWASP Zed Attack Proxy to inspect HTTP traffic,
passively probe for vulnerabilities, or for active pen-testing
attacks.

7

DVWAZAP
browser

https://dvwa.co.uk
https://sonarcloud.io/dashboard?id=QSES_DVWA
https://sonarcloud.io/dashboard?id=QSES_DVWA
https://zaproxy.org
http://www.dvwa.co.uk/
https://zaproxy.org

Cookie-related
vulnerabilities

Cookies

HTTP is stateless
Session = set of request-reply interactions possibly using the same connection (or not)
HTTP does not maintain state however => it merely echoes request headers issued by
browser/web server.

State is typically maintained through cookies. These are issued by the web server
and stored by the browser. Some common uses are:

authentication cookies, also called session cookies — identifying logged-on users and
the corresponding session
tracking cookies — used to track users as they navigate the web
maintaining info regarding user interactions (e.g. shopping baskets)

Other mechanisms such as the URL query string or hidden form fields may be
used to maintain state, but are typically less convenient and prone to ad-hoc logic.

9

web
serverbrowser

app
request

reply

HTTP/HTTPS

Cookies Cookies → Info

Cookie setup

Server: emits cookie, a key-value pair with possible additional atributes.
Client: stores it and transmits it in subsequent connections to the same
server (Cookie header in the fragment above).
In the example: key = PHPSESSID , value = eib49g3fajovj3165e0uvv2gn1
and an attributes is set : path = /

10

HTTP/1.1 302 Found
Date: Mon, 15 Oct 2018 14:44:24 GMT
Server: Apache/2.4.10 (Debian)
Set-Cookie: PHPSESSID=eib49g3fajovj3165e0uvv2gn1; path=/
. . .

Cookie to set

Name: PHPSESSID
Value: eib49g3fajovj3165e0uvv2gn1

Attributes: path=/

GET http://localhost:8081/login.php HTTP/1.1
. . .
Cookie: PHPSESSID=eib49g3fajovj3165e0uvv2gn1; security=impossible
Host: localhost:8081

subsequent GET request
includes cookie

Cookie definition

Server in this case indicates that the cookie
is named 1P_JAR and has value 2018-10-15-15
has an expiration time (MaxAge attribute can also be used):

 it is set using Expires “14-Nov-2018 15:42:07 GMT” — the cookie will not be
deleted once the browser exits — so this is a persistent cookie ;

 cookies without expiration time are deleted once a browser session is
terminated and are called session cookies

 servers can send an expiration time in the past to delete the cookie

should be sent for any requests specified by the domain/path setting, i.e.,
“.google.pt" + “/“ in this case. This will match “<ANY>.google.pt/<ANY>

Reference — RFC 2965 (HTTP State Management Mechanism)
11

Set-Cookie: 1P_JAR=2018-10-15-15;
 Expires=Wed, 14-Nov-2018 15:42:07 GMT;
 Path=/;
 Domain=.google.pt

http://google.pt
https://tools.ietf.org/html/rfc6265

Cookie definition (cont.)

The special Secure and HttpOnly attributes have no
associated values.
Secure: forces cookie to be transmitted using only secure
encrypted channels, i.e. HTTPS is allowed but HTTP is
not.
HttpOnly: does not expose the cookie other than through
HTTP(S) interactions. In particular, this means that
Javascript code in web pages cannot access the cookie
through the Document Object Model (DOM).

12

Set-Cookie: Name=Value; … etc … ;
 Secure; HttpOnly

Attack surface

Cookies may :
… be predictable (e.g. session ids)
… contain/leak confidential data (e.g. passwords)
… be persistent with a large expiration time
… be read and modified by Javascript if HttpOnly flag is not set
… may be intercepted by a “man-in-the-middle” on a HTTP
connection if the secure flag is not set

This may help a number of attacks
Session hi-jacking (next)
Cross-site request forgery attacks (also discussed in this class)

13

Session hijacking
Basic scenario:

Adversary steals an authentication cookie, with a long (enough) expiration
time.
Adversary may then impersonate a legitimate user (spoofing).
… and materialize other threats afterwards.

How can the cookie be stolen?
A human may access your PC and the web browser data.
MITM attacks are feasible if cookie is sent over plain HTTP (allowed when
secure flag not set). More complex MIM attacks are also possible, e.g. DNS
cache poisoning may allow adversary to impersonates host of interest, letting
a browser send cookies for the site’s domain willingly.
By exploiting vulnerabilities on the browser or server side that leak the cookie
information (e.g. injection of Javascript code that reads the cookie value).
By predicting the actual value of the cookie. An authentication cookie should
be produced by a high quality random number generator and sufficiently long.

14

Session hijacking story — Twitter
In 2013, Twitter used an authentication cookie that facilitated session
hijacking:

The cookie persisted even after user logged out and did not expire.
So the same cookie value was used in every session for the same user.
More details ; other similar vulnerabilities here and here

If an adversary stole an authentication cookie once, it could
impersonate the user at stake indefinitely.
Vulnerability instantiates CWE-539 — Information Exposure Through
Persistent Cookies and CWE-384 - Session Fixation
Defenses

Cookie should be deleted after user logs off. This deals with session fixation.
Regarding persistency, application may use session cookies (non-
persistent). This compromises usability though, since user must log in again
after closing the browser.
Limited persistency is a common compromise by having an expiration time
set.

15

https://packetstormsecurity.com/files/119773/twitter-cookie.txt
https://github.com/jupyterhub/jupyterhub/issues/1491
https://github.com/plataformatec/devise/issues/3031
https://cwe.mitre.org/data/definitions/539.html
https://cwe.mitre.org/data/definitions/384.html

Session hijacking story — Firesheep
Firesheep (2010)

A Firefox extension that sniffs traffic in WiFi networks (in particular public WiFi networks!)
Vulnerability classes explored - CWE-614: “Sensitive Cookie in HTTPS Session Without
'Secure' Attribute”
Login typically encrypted using HTTPS, but authentication cookie subsequently transmitted
over plain HTTP. Session hijacking could then proceed at will for Facebook, Twitter, ….

Preventions — by design:
Security-sensitive cookies should be set with the Secure attribute; they should not
allowed to be transmitted over HTTP.
In many cases, such as for session id cookies, the HttpOnly attribute should also be
used to avoid data leaks through the DOM.
Sites should use HTTPS uniformly.

Some mitigations
Extensions like HTTPS Everywhere may be used to transforms HTTP onto HTTPS
requests.
VPNs generally protect against sniffing/lack of encryption (FireSheep illustrates well that
one should generally beware of public WiFi networks).

16

https://codebutler.com/2010/10/24/firesheep/
https://cwe.mitre.org/data/definitions/614.html
https://www.eff.org/https-everywhere

Some CWE vulnerability classes …

CWE-1004: Sensitive Cookie Without 'HttpOnly' Flag
Cookies without HttpOnly flag are accessible by scripts in a web
page through the DOM.
Cookies with HttpOnly flag are only handled by the browser.

CWE-315: Cleartext Storage of Sensitive Information in a
Cookie

in particular usernames and passwords !

CWE-565: Reliance on Cookies without Validation and
Integrity Checking

17

https://cwe.mitre.org/data/definitions/1004.html
https://cwe.mitre.org/data/definitions/315.html
https://cwe.mitre.org/data/definitions/565.html

Detecting possible cookie vulnerabilities —
static analysis

Check the SonarCloud issues in detail here
18

https://sonarcloud.io/project/issues?id=QSES_DVWA&open=AW1uMBj07pPUWOLukiFx&resolved=false&types=SECURITY_HOTSPOT

Detecting possible cookie vulnerabilities —
pen-testing

19

Secure cookie programming

Cookie attributes can be set programatically …
20

Cookie privilege = new Cookie(key, value);
privilege.setHttpOnly(true);
privilege.setSecure(true);
privilege.setMaxAge(3600);
response.addCookie(privilege);

(Java fragment)

(PHP function prototype
for setcookie and example usage)

setcookie("dvwaSession", $cookie_value, time()+3600, "/vulnerabilities/
weak_id/", $_SERVER['HTTP_HOST'], true, true);

Bad cookie usage may be “obvious” but
can be missed by automated detection !

In this fragment from a Java application (Java Vulnerable Lab), cookies are set
with sensitive information like the user name and his password and in plain-text
(an instance of CWE-315 — Cleartext Storage of Sensitive Information in a
Cookie). This is a design flaw.
Static-analysis and pen-testing tools will not detect context-dependent
vulnerabilities such as this one. They may at most signal this to be security-
sensitive, and note the lack of the Secure and HttpOnly flags.
Defense in this case: we should definitely not store these items in cookies, the
use of plain-text format makes matter even worse. Session id should map to an
user name in the server internal logic, and indicate that user is principle
authenticated.

21

Cookie username = new Cookie("username", user);
Cookie password = new Cookie("password", pass);
response.addCookie(username);
response.addCookie(password);

http://www.apple.com

Cross-site
scripting (XSS)

23 http://cwe.mitre.org/data/definitions/79.html

http://cwe.mitre.org/data/definitions/79.html

XSS attacks and the SOP

Common attack pattern
Malicious input is supplied to a web application server encoding
an executable script (e.g. through malicious link in email).
The server includes the script in the dynamic generation of a
web page, possibly immediately (reflected XSS) or later
(stored XSS).
Browser renders the page and executes the script.

XSS and the Same Origin Policy (SOP)
SOP dictates that only scripts received from the same origin as
the web page have access to the web page’s DOM data.
XSS attacks “conform” to the SOP, since malicious content is
loaded from the same origin.

24

Reflected XSS

Malicious code delivered to an user through a link e.g. embedded in an
email, web page, …
Server reply “reflects” malicious script that is executed on the victim’s
browser.

25

adversary victim server

1. link with
embedded
malicious script 2. request

browser app

3. reply includes
malicious script

Stored XSS

Malicious script stored by adversary exploiting a server-
side vulnerability, then propagated to client browsers.

26

adversary

1. adversary
causes
malicious script
to be stored by
application

2. request

victim browser serverapp3. reply includes
malicious script

4. browser
executes malicious

script

Reflected XSS — DVWA example

Example above
DVWA set with low security level
Manual test illustrated, but CSRF-style malicious link could be easily crafted
(note that a GET request is used).

27

echo '<pre>Hello ' . $_GET['name'] . '</pre>';

request

browser

response

browser

server

Stored XSS — DVWA example

Script stored in the database and echoed back by the
server for execution in the browser in subsequent visits.

28

$query = "INSERT INTO guestbook (comment, name)
 VALUES ('$message', '$name');";
$result = mysql_query($query)

request

browser

subsequent
request by browser

server
stores script

$query = "SELECT name, comment FROM guestbook";
while($row = mysqli_fetch_row($result)) {
 …
}

Famous XSS attack — Samy XSS worm

Samy attack on MySpace — a few quotes from “Ajax prepares
for battle on the dark side”, by Quinn Norton, Guardian, 2006

“Samy created Ajax code on his MySpace site that ran
automatically when anyone looked at his profile. Because Ajax can
interact with pages users never see, his code pressed all the relevant
buttons to add Samy to the victim's friends, and added the words
"but most of all, samy is my hero" to their page. Finally, the code
pasted itself into the victim's profile, so that any MySpace user
viewing the victim's page would have their page infected. MySpace
users were unaware their computers were doing anything unusual.”
“The code - strictly speaking, a cross-site scripting worm - spread
exponentially. Within 24 hours Samy had a million emails from
MySpace users "wanting" to be his friend and to whom he was their
"hero". MySpace was forced to shut down and make changes to
stop Samy's code spreading. The MySpace Worm, as it came to be
called, served as an alarming example of what malicious hackers could
do, even if they only had access to your browser.”

29

http://samy.pl/popular/
https://www.theguardian.com/media/2006/mar/09/newmedia.technology
https://www.theguardian.com/media/2006/mar/09/newmedia.technology

Other XSS attacks
Hackers still exploiting eBay’s stored XSS vulnerabilities in 2017,
Paul Mutton, NetCraft.com, 2017

"All of the attacks stem from the fact that eBay allowed
fraudsters to include malicious JavaScript in auction
descriptions.”

Email attack exploits vulnerability in Yahoo site to hijack accounts,
Lucian Constantin, PCWorld, 2013

“The same-origin policy is usually enforced per domain. […]
However, depending on the cookie settings, subdomains
can access session cookies set by their parent domains.
This appears to be the case with Yahoo, where the user remains
logged in regardless of what Yahoo subdomain they visit,
including developer.yahoo.com.
“The rogue JavaScript code […] forces the visitor's browser
to call developer.yahoo.com with a specifically crafted URL
[…]”

30

https://news.netcraft.com/archives/2017/02/17/hackers-still-exploiting-ebays-stored-xss-vulnerabilities-in-2017.html
http://www.apple.com

Prevention by input validation and output
encoding

Preventing XSS — Server side
Input validation: disallow/sanitise malicious input using conventional
techniques, e.g. “escape” functions.
Output encoding: server sanitizes data before sending it, employing similar
techniques.
DVWA example: high / impossible security levels in DVWA use the
htmlspecialchars PHP function to escape HTML both for input sanitization and
output encoding.

31

$message = htmlspecialchars($message);
$name = htmlspecialchars($name);

<script> <script>

https://secure.php.net/manual/en/function.htmlspecialchars.php

DOM-based XSS

Malicious code may also be delivered in several forms: untrusted
Javascript library, email links, etc
Even if server interaction may play some role in serving the
adversary’s purpose, DOM-based XSS takes effect directly on
the client by manipulating the DOM model — malicious code
need not be emitted by the server.

32

adversary victim

1. malicious link

browser

2. browser executes
malicious code

serverapp

server request

server reply

DOM — Document Object Model

The Document-Object model (DOM) is a tree-abstraction for documents:
an HTML (but also XML, XHTML, SVG, …) document is treated as a tree structure
where in each node is an object representing a part of the document.
tree nodes can be visited, created/added/deleted, and have associated attributes like
event handlers and styles.
A W3C standard until 2004, now maintained by the WHATWG group — check the live
document for the current DOM specification.
Browsers represents HTML document in an internal structure similar to the DOM - major browsers
use the WebKit Webcore component for that purose33

Image source: W3 Schools
Firefox DOM Inspector

https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
http://webkit.org
https://www.w3schools.com/js/js_htmldom.asp

Javascript DOM API — outlook
A brief overview of some of the functionality in the Javascript DOM API
… accessible through document, the top-level object that represents
the DOM:

Basic attributes:
title referrer URL hash cookie readyState

Page elements:
head body forms scripts links

getElementById(elementId)

querySelector(cssSelector)

Modification methods:
write(anything) writeln(anything): append output to the
document
createElement() createEvent() execCommand()
addEventListener()

A wide attack surface for malicious scripts!
34

https://www.w3schools.com/jsref/dom_obj_document.asp

DOM-based XSS — simple example

Query string associated to HTML page. No server
interaction for triggering the exploit.
Anchor ‘#’ (i.e., document.hash instead of document.URL)
also exploitable in similar35

<script>
 // Get malicious input from query string and unescape it
 var pos = document.URL.indexOf("evil=")+9;
 var evilScript=document.URL.substring(pos,document.URL.length);
 // Make it take effect
 document.write(unescape(evilScript));
</script>

queryStringAttack.html?evil=<script>. . . </script>

Malicious script

Code injection possible using:

DOM-based XSS — another example

HTML 5 introduced local browser storage of key-value pairs (like
cookies), an extra attack surface.

One more facility to store sensitive or malicious data that can be controlled
programatically. Above: a “predictable” usage example from w3schools …
(!) How can it go wrong?

WebSQL and IndexedDB also allow structured databases, though the
adoption of one or the other has not been peaceful (both out of HTML 5).
Firefox only supports IndexedDB, Safari and Google also support
WebSQL.

Extra attack-surface: CSS-based vulnerabilities
CSS Exfil

Microsoft Internet Explorer Cascading Style Sheets Remote Code
Execution Vulnerability36

// Store
localStorage.setItem("lastname", "Smith");
// Retrieve
document.getElementById("result").innerHTML = localStorage.getItem("lastname");

https://www.mike-gualtieri.com/posts/stealing-data-with-css-attack-and-defense
https://tools.cisco.com/security/center/viewAlert.x?alertId=19468
https://tools.cisco.com/security/center/viewAlert.x?alertId=19468

XSS types compared

Source: Unraveling some of
the Mysteries around DOM-
based XSS by Dave
Wichers, AppSec USA 2012

37

https://www.owasp.org/images/c/c5/Unraveling_some_Mysteries_around_DOM-based_XSS.pdf
https://www.owasp.org/images/c/c5/Unraveling_some_Mysteries_around_DOM-based_XSS.pdf
https://www.owasp.org/images/c/c5/Unraveling_some_Mysteries_around_DOM-based_XSS.pdf

Cross-site
request forgery

(CSRF)

CSRF — general description

CWE-352 - Cross-Site Request Forgery (CSRF)
“The web application does not, or can not, sufficiently verify whether a well-
formed, valid, consistent request was intentionally provided by the user who
submitted the request.”

Most common attack pattern:
User has an authenticated session for a web application.
Adversary tricks user into executing some malicious action, e.g. by clicking
a link sent by email or provided in a web site controlled by the adversary.
Malicious actions are executed in the server as if intended by the user.

39

adversary logged-on
user server

malicious
action

browser app
malicious

link

https://cwe.mitre.org/data/definitions/352.html

XSS vs CSRF

XSS
Trust relation: client trusts the server
Attacker tries to affect what the server sends to the client / what
runs on the client.

CSRF
Trust relation: server trusts the client
Attacker tries to affect what the client sends to the server / runs
on the server.

40

Example CSRF attacks — Gmail, 2010

GMail Service CSRF Vulnerability (2010)
“GMail is vulnerable to CSRF attacks in the "Change
Password" functionality. The only token for authenticate
the user is a session cookie, and this cookie is sent
automatically by the browser in every request.”
“An attacker can create a page that includes requests
to the "Change password" functionality of GMail and
modify the passwords of the users who, being
authenticated, visit the page of the attacker.”
“The attack is facilitated since the "Change Password"
request can be realized across the HTTP GET method.”
[it suffices to craft a malicious link with an appropriate
query string]

41

http://www.securiteam.com/securitynews/5ZP010UQKK.html

CSRF example — DVWA

Security levels:
low: no protections, a simple malicious link may be used to change the
password
medium: HTTP request header Referrer; Referrer link may also be forged
by an adversary. Alternatively, malicious link can however be accomplished
by exploiting a XSS vulnerability (hint: try the message forum; more
discussion on this next).
high: automatically generated anti-CSRF token included in hidden form
field - token is attached to session but not the request itself however …
“impossible”: anti-CSRF token + request for current password confirmation

42

As in the Gmail example, the password change
functionality is at stake.

Some CSRF mitigations
Allow only POST requests

GET requests allows a CSRF attack through a simple link.
POST requests may anyway be trivially defined for instance by HTML forms that are
presented to the user.

HTTP Referer field is used to indicate origin of request. A basic protection is to
check it on the server side. The value may be absent however, frequently with
the good motivation of preventing user tracking or leaking data to untrusted sites.

<meta name=“referrer"> in HTML header or the Referrer-Policy HTTP
header may inhbit it.
Most browsers may be configured to omit the referrer information for cross-site requests.
A common referrer policy is to hide the information when making HTTP requests from
content loaded through HTTPS.
Note: due to a typo in the original HTTP specification, the header is called Referer rather
than Referrer.

Hardened application logic: re-authentication or 2FA schemes for critical
operations.
Use of synchronization tokens (next).

43

Anti-CSRF token in DVWA

Expected value of anti-CRSF token is checked first. Operation does not
proceed on a token mismatch.
The token gets regenerated with a new value once operation is complete.
Javascript / XSS-based exploit possible - check here for an example44

<form action="#" method=“GET">
 . . .
 <input type='hidden' name='user_token'
 value='d842e88752fd9991fb4dbcfa35649ae4' />
</form>

// Check Anti-CSRF token
checkToken($_REQUEST['user_token'],
 $_SESSION['session_token'], 'index.php');

// Do the passwords match?
if($pass_new == $pass_conf) {
 . . .
}
// Regenerate Anti-CSRF token
generateSessionToken();

https://hd7exploit.wordpress.com/2017/05/27/dvwa-csrf-high-level/
view-source:http://localhost:8081/vulnerabilities/csrf/%23

Anti-CSRF token in DVWA (cont.)

The generation function is in itself weak (it would not be appropriate for session ids
for example):

MD5 is a weak cryptographic-hash function.
the uniqid() PHP function is predictable and does not in fact guarantee a unique ID - “[it]
gets an unique identifier based on the current time in microseconds“ and “does not
guarantee uniqueness of return value”.

However, since DVWA regenerates the token after each request and the id is based
on the scale of micro-seconds, it is hard to predict it quickly enough (1 million
possibilities per second). 45

function generateSessionToken() { # Generate a brand new (CSRF) token

 if(isset($_SESSION['session_token'])) {
 destroySessionToken();
 }

 $_SESSION['session_token'] = md5(uniqid());

}

https://www.php.net/manual/en/function.uniqid.php

Synchronizer token pattern
Synchronizer Token Pattern

State changing operation uses a token (different from the session id), generated
through a cryptographically-secure random generator by the server, and that is
unique per session (server associates token to the session id).
Token value is embedded in the web page or within a cookie.
Token mismatch in a future request inhibits state-changing operation.

For enhanced security:
Token can be regenerated after each request (as in DVWA) or at least have a short
expiration time.
Use different tokens per request/operation rather than for the entire session. This
may hinder usability though (e.g. Back button reverts to a page with a invalid token).

The synchronizer token pattern requires a state to be maintained explicitly.
Stateless alternatives exist:

Encrypted-token scheme (check is based on sucessful decryption).
“Double-submit” cookie: generate nonce and include it both in the response body
and in a header field.

46

CSRF: further reference

Barth et al., “Robust Defenses for Cross-Site Request
Forgery”, CCS’08
OWASP Cross-Site Request Forgery Prevention

47

https://seclab.stanford.edu/websec/csrf/csrf.pdf
https://seclab.stanford.edu/websec/csrf/csrf.pdf
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.md

