
Questões de Segurança em Engenharia de Software (QSES)
Mestrado em Segurança Informática
Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Eduardo R. B. Marques, edrdo@dcc.fc.up.pt

Buffer overflow
vulnerabilities

mailto:edrdo@dcc.fc.up.pt?subject=

Introduction

What is a buffer overflow?
CWE-119 - Improper Restriction of Operations within the
Bounds of a Memory Buffer

“The software performs operations on a memory buffer, but it
can read from or write to a memory location that is outside of
the intended boundary of the buffer. “

This is a general definition for buffer overflow, that makes no
distinction for:

the type of operation: read or write
the memory area: stack, heap, … (Q: heap? stack?)
the position of invalid memory position relative to buffer:
before (“underflow”) or after (proper “overflow”)
the reason for invalid access: iteration, copy, pointer
arithmetic

A number of CWEs are specific instances of CWE-119 (next).
3

https://cwe.mitre.org/data/definitions/119.html

Specific types of buffer overflow

CWE-120: Buffer Copy without Checking Size of Input
('Classic Buffer Overflow’)
CWE-121 — Stack-Based Buffer Overflow — “[…] the buffer
being overwritten is allocated on the stack […]”
CWE-122 — Heap-Based Buffer Overflow — “[…] the buffer that
can be overwritten is allocated in the heap portion of memory […]“
CWE-123: Write-what-where Condition - “ability to write an
arbitrary value to an arbitrary location, often as the result of a
buffer overflow”.
CWE-124: Buffer Underwrite ('Buffer Underflow’)
CWE-125: Out-of-bounds Read
CWE-126: Buffer Over-read
CWE-127: Buffer Under-read

4

https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/127.html

Memory address space of a process

“Text” section = code (.text section in the ELF
format)
Global data sections

global variables (e.g. .data section in ELF for
initialized variables, .bss for non-initialized varialbes)
constants (.rodata in ELF)
resolution of dynamic symbols (.plt and .got in ELF)
…

Heap
dynamically allocated memory
grows “upwards”

Stack
contains stack frames, one per active function,
grows “downwards”
each stack frame is used to hold data for a function
activation
in multithreaded programs each thread has its
independent stack and program counter

5

stack

heap

global data sections

text section (code)

free memory

low
(0x00…00)

high
(0xFF..FF)

libc_start

main

someFunc

https://refspecs.linuxbase.org/elf/elf.pdf

The C language

Buffer overflows are normally associated with the C
language and “relatives” (C++ and Objective-C).
These languages are used for for implementing software
such as:

Operating system kernels and utilities — Linux, Windows,
MacOS, …
Core building blocks of the Internet — Apache, Webkit,
OpenSSL, …
Embedded system programming—Arduino, ROS,micro-
controller programming in general, …
VMs/runtime systems for other languages — Java, Python,
PHP, …

6

Popularity of C and C++

C and C++, together with Java, have been taking in the top 3/4 positions
in the TIOBE index for programming language popularity for many years

The rankings are derived from search engine query statistics for programming
languages.7

https://www.tiobe.com/tiobe-index/

“Popularity” of buffer overflows

8

reported
vulnerabilities

per year for CWE-119

Source: NIST NVD

https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&search_type=all&cwe_id=CWE-119

“Popularity” of buffer overflows (2)

9

Source: NIST NVD

nearly 20 %
in 2016

roughly
10 % on average

2007-2019

% of total
for CWE-119

https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&search_type=all&cwe_id=CWE-119

C and memory safety

C and memory safety
C makes it “easy” to access memory in invalid and
unchecked manner

No bounds-checking in access to buffers / pointers.
Arbitrary pointer arithmetic/casts are allowed
Dynamic memory allocation is explicitly managed by the programmer.
The effect of acessing invalid memory has no defined semantics
(including null-pointer accesses).

Lack of memory safety in a program may result in:
Program crash — “segmentation faults”, when protected memory is
accessed.
Corruption of stack and/or heap, even beyond “logical program
data” (e.g. stack return address, frame pointer, heap internal data, …)
Non-deterministic behavior — sensitivity to runtime conditions, choice
of compiler and code generation options

11

 char name[32];
 char email[32];
 printf("Enter your name: ");
 gets(name);
 printf("Enter your email: ");
 gets(email);
 printf("Name: %s Email: %s\n", name, email);

Stack overflow example

Variables may be allocated contiguously in the stack (or nearby in the general
case)
gets reads an arbitrary number of bytes until a newline, ‘\0’ or EOF is found.
In this case, second gets call may overflow the capacity of email.

12

Enter your name: Eduardo
Enter your email: very_long_email_I_guess@dcc.fc.up.pt
Name: p.pt Email: very_long_email_I_guess@dcc.fc.up.pt

stack overflow (5 bytes) ! email (32) name (32)

“p.pt\0”

 char name[32];
 char email[32];
 strcpy(name, argv[1]);
 strcpy(email, argv[2]);
 printf("Name: %s Email: %s\n", name, email);

Stack overflow example (2)

The strcpy function copies data onto destination
buffer until ‘\0’ is found.

13

./stack_overflow Eduardo very_long_email_I_guess@dcc.fc.up.pt
Name: p.pt Email: very_long_email_I_guess@dcc.fc.up.pt

stack overflow (5 bytes) ! email (32) name (32)

“p.pt\0”

Stack overflow (3) - off-by-one error

A particular execution may print 20, not 15 as expected. A small re-arrangement of
variable declarations may lead to other results, but not 15 anyway. The code does
not print 15, because the second for loop has an “off-by-one” error: i goes from 0
up to N=5, not N-1=4 ! The expected behavior is undefined. Analogous programs
written in memory-safe languages would throw a runtime exception signalling the
invalid array access (e.g. ArrayIndexOutBoundsException in Java).
There is a stack overflow in the access to number, given that local variables are
allocated in the stack. Let’s see how using the GNU debugger (gdb) …

14

#include <stdio.h>
#define N 8
int main(int argc, char** argv) {
 int sum = 0;
 int numbers[N]; // fill as { 1, 2, 3, 4, 5 }
 for (int i=0; i < N; i++)
 numbers[i] = i+1;
 for (int i = 0; i <= N; i++)
 sum += numbers[i];
 printf("Sum=%d\n", sum);
 return 0;
}

Stack overflow — off-by-one error

In this execution: position 5 of numbers corresponds to the address
of i !
In the last iteration of the buggy for loop, i = 5, so the program will
add (5+1) to sum, obtaining 15+6 = 2115

$ gcc -g stack_overflow.c -o stack_overflow
$ gdb ./stack_overflow
(gdb) br 8
Breakpoint 1 at 0x40056e: file stack_corruption.c, line 8.
(gdb) r
. . .

Breakpoint 1, main (argc=1, argv=0x7fffffffde08) at
stack_overflow.c:8
8 for (int i = 0; i <= N; i++)
(gdb) p &i
$1 = (int *) 0x7fffffffdd14
(gdb) p &sum
$2 = (int *) 0x7fffffffdd1c
(gdb) p numbers
$3 = {1, 2, 3, 4, 5}
(gdb) p &numbers
$4 = (int (*)[5]) 0x7fffffffdd00

(gdb) p &numbers[5] - &i
$5 = 0

sum 0x7fffffffdd14

number[0]
number[1]
number[2]
number[3]
number[4]

i 0x7fffffffdd00

Heap memory management

Dynamically-allocated memory must be explicitly
managed by the programmer

no garbage collection
In C: malloc and variants (calloc/realloc) + free are functions
the programmer must use to explictly manipulate the heap.
C++ does have the built-in new and delete operators, but these
are really equivalent to malloc and free in memory terms

16

Heap-allocated memory programming
errors

Use-after-free: NO ! Pointer a should not be used after being freed up, it
becomes a dangling reference.
Free-after-use: YES ! On the other hand b is not freed up at the end, we
will have a memory leak (allocated but not freed up).
Double-free: NO! It is also incorrect to free a twice.
Q: what to expect from the execution?

17

 int n; unsigned char *a, *b;
 n = . . .;
 a = (char*) malloc(n); // allocate memory for a
 memset(a, 'x', n); // set all positions to 'x'
 free(a); // free memory
 // a is now a dangling reference (to freed up memory)
 b = (char*) malloc(2*n); // allocate memory for b
 printf("a == b ? %s\n", a == b ? "yes" : "no");
 memset(b, 'X', 2*n); // set all positions to 'X'
 memset(a, 'x', n); // use dangling reference, set to ‘x’
 free(a); // double free! (and what about b?)
 // free(b) - not done - memory leak!

Heap-allocated memory:
dangling references & memory leaks (2)

In this execution, both calls to malloc yield a pointer to the same
memory segment (the segment is reused after being freed up for a)
Hence a and b end up referring to the same memory segment. Using
the dangling reference (a) will necessarily corrupt the memory pointed
to by b.

18

$./dangling_reference_example 9
a - line 19 > 78 78 78 78 78 78 78 78 78
a == b ? yes
a - line 25 > 00 00 00 00 00 00 00 00 78
b - line 25 > 00 00 00 00 00 00 00 00 78 00 00 00 00 00 00 00 00 00
a - line 27 > 58 58 58 58 58 58 58 58 58
b - line 27 > 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
a - line 29 > 78 78 78 78 78 78 78 78 78
b - line 29 > 78 78 78 78 78 78 78 78 78 58 58 58 58 58 58 58 58 58
a - line 31 > 00 00 00 00 00 00 00 00 78
b - line 31 > 00 00 00 00 00 00 00 00 78 58 58 58 58 58 58 58 58 58

Numerical overflow example

Integer overflow
malloc takes size_t (unsigned long) arguments, 64-bit unsigned integers, n is 64-bit
signed integer, the argument conversion causes an overflow
malloc cannot allocate UINT_MAX=2^63-1 bytes, hence it returns NULL

Several vulnerabilities in the example program:
argc / argv[1] not checked — program crashes without arguments

atol used to parse argv[1] : will return 0 on a parse error, strtol should be used instead
and if conversion is succesful (as in the example), bounds for n are not verified

19

…
int main(int argc, char** argv) {
 long n = atol(argv[1]);
 printf("Allocating %lu (%lx) bytes for n=%ld (%lx)\n",
 (size_t) n, (size_t) n, n, n);
 char* buffer = (char*) malloc(n);
 printf("Allocated buffer: %p\n”, buffer);
 free(buffer);
 return 0;
}
$./integer_overflow -1
Allocating 18446744073709551615 (ffffffffffffffff) bytes for n=-1 (ffffffffffffffff)
Allocated buffer: 0x0

NULL pointer access example

Dereferencing a NULL pointer is undefined behavior, but what do
you expect / prefer from this code? Crash or no crash?
NULL is actually 0 (only a matter of programming style to use NULL)

20

#include <stdio.h>

typedef struct {
 int data;
} Foo;

int flawed_function(Foo* pointer) {
 int v = pointer -> data; // dereference before check
 if (pointer == NULL) // actual check
 return -1;
 return v;
}

int main(int argc, char** argv) {
 printf("result = %d\n", flawed_function(NULL)); // What to expect?
 return 0;
}

NULL pointer access example (2)

Compiling the program without optimisation leads to a
segmentation fault. The execution is trapped due to
access to an invalid memory segment.
Compiling the program with optimisation leads to a
“normal” execution without crash !
Why so? We must look at the generated code.

21

$ gcc null_pointer_example.c -o null_pointer_example_no_opt
$./null_pointer_example_no_opt
Segmentation fault (core dumped)

$ gcc null_pointer_example.c -O2 —o null_pointer_example_with_opt
$./null_pointer_example_with_opt
-1

Using gcc 6.3 on Linux x86_64 without code optimisation:

Now enabling optimisation level 2 (-O2):

NULL pointer access example(3)

Since flawed_function is small in size, GCC decides to inline its (intermediate
representation) code within main. Given that the argument is NULL, pointer-
>data is undefined behavior, hence a C compiler can do whatever it pleases.
GCC decides to treat v=pointer->data is dead code since according to the
data flow -1 should be returned! Under that assumption the result must “logically”
be -1 !
Variations:

Using -O2 -fno-inline we get the segmentation fault instead!
Other GCC versions may handle it differently - check the Compiler Explorer site22

int flawed_function(Foo* pointer) {
 int v = pointer -> data; // dereference before check
 if (pointer == NULL) // actual check
 return -1;
 return v;
}

int main(int argc, char** argv) {
 printf("result = %d\n", flawed_function(NULL)); // What to expect?
 return 0;
}

int main(int argc, char** argv) {
 printf(“%d\n", -1);
 return 0;
}

subq $8, %rsp
movl $-1, %esi
movl $.LC1, %edi
xorl %eax, %eax
call printf

becomes “equivalent” togcc -O2 generated code

https://godbolt.org/

Stack-smashing
attacks

Function call

Let us describe how function calls are generally handled. Details may differ according to
calling conventions and compilation options (e.g. for code protection or optimisation).

PC = program counter, the address of the currently execution instruction
SP = stack pointer, the address of the current stack location
FP = frame pointer, the base address for the currently executing function

24

f() {
 . . .
 r = g(a1, a2, …, an);
 next_instr;
}

g(...) {
 . . .
 return … ;
}

PC

<top>
…
…

 <frame for f> FP

SP

Function calls - initiation by caller

Calling function proceeds by:
1) Passing arguments through registers and/or the stack. For
instance in Linux x86_64 arguments (up to some limit) are passed
through registers, in x86_32 only the stack is used in most calls.
2) Pushing the return address onto the stack, i.e., the address of the
instruction after the call (current PC + some offset).
3) Branching to the called function, changing PC.25

f() {
 . . .
 r = g(a1, a2, …, an);
 next_instr;
}

g(...) {
 . . .
 return … ;
}

<RA>
<arguments>
<frame for f>

SP

PC

FP

On entry, called function proceeds by:
1) Pushing the current FP (the callee’s) frame pointer onto the stack.
2) Setting FP to the current stack pointer.
3) Updating SP such that the necessary space is allocated for local
variables/intermediate values as needed.26

SP

FP

f() {
 . . .
 r = g(a1, a2, …, an);
 next_instr;
}

g(...) {
 . . .
 return … ;
}

PC

Function calls - initiation by callee

<extra space>
<caller FP>

<RA>
<arguments>
<frame for f>

On return, the callee proceeds by:
1) Seting stack to current FP
2) Popping (restores) the frame pointer from the stack (calle)
3) Pops the return address (calee) and returns to it (callee).
Some calling conventions push the return value (if any) onto the stack, others
use a register .

27

f() {
 . . .
 r = g(a1, a2, …, an);
 next_instr;
}

g(...) {
 . . .
 return … ;
}

PC

Function calls - return sequence

<unused>
<extra space>
<caller FP>

<RA>
<arguments>
<frame for f>

Simple x86_64 example

Relevant x86_64 registers in this example:
%rip — program counter

%rsp — stack pointer

%rbp — frame pointer

%rsi and %rdi are used to pass arguments (the stack is not used for arguments in this
case)

28

int main(int argc, char** argv) {
 long r = foo(5, 2);
 printf("%ld\n", r);
 return 0;
}

long foo(long a, long b) {
 long s = a + b,
 d = a - b;
 return s * d;
}

PC=%rbi

Simple example — call initiation

main:

Uses registers pass both arguments. %esi and %edi are
shorthand for the lower 32 bits of the %rdi and %rsi general-
purpose registers [values 5 and 2 fit on 32-bits]
The call instructions then places the RA on the stack, and
updates the PC (%rip) to foo.

29

int main(int argc, char** argv) {
 long r = foo(5, 2);
 printf("%ld\n", r);
 return 0;
}

int foo(long a, long b) {
 long s = a + b,
 d = a - b;
 return s * d;
}

main:
 ...

movl $2, %esi
movl $5, %edi
call foo

 …

foo:
 pushq %rbp
 movq %rsp, %rbp
 movq %rdi, -24(%rbp)
 movq %rsi, -32(%rbp)

%rip

Simple example — call initiation (2)

foo:

Saves the FP (%rbp) onto the stack (%rsp), before resetting it
to the current SP (%rbp).
Pushes the arguments (%rdi and %rsi) onto the stack for
convenience in later processing.

30

int main(int argc, char** argv) {
 long r = foo(5, 2);
 printf("%ld\n", r);
 return 0;
}

long foo(long a, long b) {
 long s = a + b,
 d = a - b;
 return s * d;
}

main:
 ...

movl $2, %esi
movl $5, %edi
call foo

 …

foo:
 pushq %rbp
 movq %rsp, %rbp
 movq %rdi, -24(%rbp)
 movq %rsi, -32(%rbp)

Simple example —return sequence

On return, foo:
Places the result on %rax — imulq …, %rax

Pops the FP (of main) from the stack — popq %rbp
Pops the return address from the stack and returns — ret

31

int main(int argc, char** argv) {
 long r = foo(5, 2);
 printf("%ld\n", r);
 return 0;
}

long foo(long a, long b) {
 long s = a + b,
 d = a - b;
 return s * d;
}

main:
 ...

movl $2, %esi
movl $5, %edi
call foo

 …

foo:
 …
 imulq -16(%rbp), %rax
 popq %rbp
 ret

Simple example — illustration with gdb

32

Breakpoint 1, main (argc=1,
argv=0x7fffffffe5f8) at stack_test.c:
10
10 long r = foo(5, 2);
(gdb) p $rbp
$1 = (void *) 0x7fffffffe510
(gdb) p $rsp
$2 = (void *) 0x7fffffffe4f0
(gdb) p $rip
$3 = (void (*)()) 0x400574 <main+15>
(gdb) s

Breakpoint 2, foo (a=5, b=2)
at stack_test.c:4
4 long s = a + b,
(gdb) p $rbp
$4 = (void *) 0x7fffffffe4e0
(gdb) p $rsp
$5 = (void *) 0x7fffffffe4e0
(gdb) p $rip
$6 = (void (*)()) 0x400539 <foo+12>
(gdb) p *(void**) $rbp
$7 = (void *) 0x7fffffffe510
(gdb) p *(void**) ($rbp+8)
$8 = (void *) 0x400583 <main+30>
(gdb) n
5 d = a - b;
(gdb) n
6 return s * d;
(gdb) p $rip
$9 = (void (*)()) 0x40055a <foo+45>
(gdb) ret
Make foo return now? (y or n) y

#0 0x0000000000400583 in main (argc=1,
 argv=0x7fffffffe5f8) at stack_test.c:
10
10 long r = foo(5, 2);
(gdb) p $rip
$10 = (void (*)()) 0x400583 <main+30>
(gdb) p $rbp
$11 = (void *) 0x7fffffffe510

return address

saved
FP

Stack smashing attacks — assumptions

Let us assume for now that;
we can perform a buffer overflow on the stack without
any protection in place
we can place executable code on the stack
memory addresses are predictable

Provided the program has a vulnerability of “interest”, we
can think of a stack-smashing attack.
Idea — overflow the stack frame of a function such that:

malicious code is placed on the stack, and the return
address is changed to point to it
hence, on function return, the malicious code gets
executed

33

A simple example

Simple “hello” program that:
 calls a gets operation to read a string onto buffer name
then prints “Hello <username>\n” using 3 printf calls

34

#include <stdio.h>
int main(int argc, char**argv) {
 char name[128];
 printf(“What’s your name?\n”);
 gets(name);
 printf(“Hello %s!\n”, name);
 return 0;
}

$./hello.bin
What's your name?
Eduardo
Hello Eduardo

normal execution

A simple example (2)

Compiler warns us that the gets “is dangerous and
should not be used”!

35

#include <stdio.h>
int main(int argc, char**argv) {
 char name[128];
 printf(“What’s your name?\n”);
 gets(name);
 printf(“Hello %s!\n”, name);
 return 0;
}

hello.o: In function `main':
hello.c:(.text+0x1a): warning: the `gets' function is
dangerous and should not be used.

compiler warning!

A simple example (2)

gets call easily leads to a buffer overflow
gets will read input until a newline (‘\n’), doing so without internal
information of the size of the input buffer; gets receives a pointer to the
buffer, not the buffer length information
the buffer overflow may causes a crash (“segmentation fault”)

36

What's your name?
1234567890123456789012345678901234567890
Hello 12345678901234567890…12345678901234567890
Segmentation fault (core dumped)

execution with crash

#include <stdio.h>
int main(int argc, char**argv) {
 char name[128];
 printf(“What’s your name?\n”);
 gets(name);
 printf(“Hello %s!\n”, name);
 return 0;
}

Stack smashing attack — outline

Call to gets may be exploited with malicious input that:
fills the buffer with code with a NOP sled (sequence of NOPs) plus “shell
code” to open a system shell
NOP sled is useful because we may only know the whereabouts of name
approximately.
modifies the return address of main to jump to the NOP sled and then in
sequence execute the “shell code” instructions.

Shell code? Easy to obtain online.
Challenge: overwrite the RA with the address of name var (or
approximately) ?

37

name Saved FP return address

padding modified RAshell codeNOP sled

Some famous attacks

Morris Worm (1990)
“Accidental” attack caused DoS brought down
much of the (then-small) Internet

More info here: “The Internet Worm Program:
An Analysis”, E. H. Spafford (page 9 for stack-
based overflow details)
Named after Robert T. Morris, convicted at
the time. He is now a professor at MIT !

Other famous attacks:
Code Red worm
SQL Slammer

Interesting historical account (until 2009):
“Memory Corruption Attacks The (almost)
Complete History”, Haron Meer, Black Hat USA
2010

38

http://www.computerhistory.org/timeline/networking-the-web/#169ebbe2ad45559efbc6eb35720646a8
http://spaf.cerias.purdue.edu/tech-reps/823.pdf
http://spaf.cerias.purdue.edu/tech-reps/823.pdf
https://pdos.csail.mit.edu/~rtm/
http://www.caida.org/research/security/code-red/coderedv2_analysis.xml
https://en.wikipedia.org/wiki/SQL_Slammer
https://media.blackhat.com/bh-us-10/whitepapers/Meer/BlackHat-USA-2010-Meer-History-of-Memory-Corruption-Attacks-wp.pdf
https://media.blackhat.com/bh-us-10/whitepapers/Meer/BlackHat-USA-2010-Meer-History-of-Memory-Corruption-Attacks-wp.pdf
https://media.blackhat.com/bh-us-10/whitepapers/Meer/BlackHat-USA-2010-Meer-History-of-Memory-Corruption-Attacks-wp.pdf

Example shell code

Size: only 30 bytes.
Carefully crafted not to contain null (0) values. Q: Why?
Source (my comments in bold): http://shell-storm.org/shellcode/files/
shellcode-603.php39

 // Goal is to execute execve("/bin/sh", [“/bin/sh”, 0], 0)
 // We need to set rax = 0x3b, rsi = [“/bin/sh”, 0], rdx = 0
 section .text
 global _start
 _start:
 xor rdx, rdx # rdx = 0 (3rd parameter)
 mov qword ‘//bin/sh’, rbx # prepare 1st argument
 shr $0x8, %rbx # shift 8 bits => “/bin/sh\0”
 push rbx # push “/bin/sh\0” to the stack
 mov rsp, rdi # get it on rdi (1st parameter)
 push rax # push 0 (2nd array argument referenced by rsi)
 push rdi # push “/bin/sh\0” (1st array argument)
 mov rsp, rsi # point rsi (2nd argument) to the stack pointer
 mov $0x3b,al # low 8 bits of rax - code for execve syscall
 syscall

4831d248bb2f2f62696e2f736848c1eb08534889e750574889e6b03b0f05

http://shell-storm.org/shellcode/files/shellcode-603.php
http://shell-storm.org/shellcode/files/shellcode-603.php

Other attacks
Successful attack may depend on the absence of memory
protections we will refer to next:

NX/DEP protection data — the stack is executable
Stack protections (canaries) being disabled!
ASLR disabled — addresses are predictable on every run

return-to-libc attacks:
when stack is not executable, try to change return address to interesting libc
code, e.g. a call to system
Easy on some platforms that only use the stack to pass arguments (e.g.
Linux/x86-32)

ROP chains
ROP chains manipulate the stack (but do no execute code on it) to execute
small code fragments (“gadgets”) in a chain with malicious purpose.
Gadgets are collected from code that is marked as executable, for instance
glibc fragments.

40

ROP chains — illustration

Source: “An introduction to the Return Oriented Programming and ROP chain
generation”, J. Salwan, Univ. Bordeaux
See also: “Return-Oriented Programming: Systems, Languages, and
Applications”, Roemer et al., ACM TISSEC, 201241

http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
https://dl.acm.org/citation.cfm?id=2133377
https://dl.acm.org/citation.cfm?id=2133377

Variation

CWE-134: “Use of Externally-Controlled Format String” , commonly known as
format-string vulnerability! We introduce a “format string” for name! The
printf call looks up the arguments for “print-out” even if there are really none,
causing memory to be dumped and possibly overwritten.
Information disclosure of memory contents itself may be helpful for stack-smashing
attack.
But printf may also write onto the stack (%n modifier) — see for instance
“Exploiting Format String Vulnerabilities”, by “scut” and “team teso”, 200142

#include <stdio.h>
int main(int argc, char**argv) {
 char name[32];
 gets(name);
 printf(“Hello “);
 printf(name);
 printf(“\n”);
 return 0;
}

execution leaking information in the stack
What's your name?
%p %p %p
Hello 0x400720 0x7ffff7dd59e0 0x206f6c6c

https://cwe.mitre.org/data/definitions/134.html
https://crypto.stanford.edu/cs155old/cs155-spring08/papers/formatstring-1.2.pdf

Handling buffer
overflows

memory protections

Memory protections

Prevention of buffer overflows
Use of stack canaries
Data execution prevention /non-executable flag (DEP/NX)
Address Space Layout Randomization (ASLR)

44

Canaries

Stack corruption detection
Protect the stack with a canary value.
On return, canary is checked causing termination if value differs.

It does not protect against local variable overriding!
Mechanism can be defeated if canary is known or can be guessed

Canary is constant :) or generated with a PRNG that is weak or whose seed can be
guessed. Cryptographic-strength PRNG makes this harder

… or if attacker finds a way to determine the canary’s position and read
its value from the stack.
Performance overhead

extra code required per function call, even if compiler tries to be smart / developer
has a choice of options, e.g. e.g. GCC has several -fstack-protector-XXXX flavors
(see next slide)

There are memory protections that can enabled for the heap too, e.g, also in
GCC

45

canary

return address

frame pointer (RBP)

local
variables

https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Instrumentation-Options.html#index-fstack-protector
https://www.gnu.org/software/libc/manual/html_node/Heap-Consistency-Checking.html
https://www.gnu.org/software/libc/manual/html_node/Heap-Consistency-Checking.html

Stack protections — GCC
Our examples have been compiled so far using the -fno-stack-
protector switch, that disables stack canaries.

Older GCC versions (e.g. tested on 5.3) doesn’t really require the switch,
as it does not emit code for stack canaries. Recent versions (e.g. 7.3) do
so by default. Recent versions of the clang compiler also do.

Some GCC stack protection settings (also typically accepted in
clang):

-fstack-protector: stack protection added for “vulnerable objects”,
including “functions that call alloca and functions with buffers larger than
8 bytes” (from the GCC 7.3 manual)
-fstack-protector-strong: “includes additional functions to be
protected”, e.g. “those that have local array definitions”
-fstack-protector-all: protects all functions
-fstack-protector-explicit: “only protects those functions which
have the stack_protect attribute.

46

Example stack protection code generated
by GCC (5.3)

47

main:
 # On entry
 pushq %rbp
 movq %rsp, %rbp
 subq $144, %rsp
 movq %fs:40, %rax # Canary value onto rax
 movq %rax, -8(%rbp) # pushed onto the stack
 ...
 # On exit
 movq -8(%rbp), %rdx # pops canary location
 xorq %fs:40, %rdx # compare with original value
 je .L3
 call __stack_chk_fail # stack check failed
.L3:
 leave # normal return
 ret

gcc -fstack-protector …

Data execution prevention (DEP)

Our code has also been compiled with the -z
execstack switch, passed on to the GNU program linker
(ld)

This lets data the stack and heap segments be executable.
The NX (non-executable) bit is set for these memory segments.

Provided canaries can be defeated, return-to-libc / ROP
attacks are feasible.

48

Address-space layout randomisation
(ASLR)

ASLR
OS randomly arrange positions of key areas in the memory
layout (stack, heap, data, code) including library code.
Addresses of variables, functions are different on every run of a
program.
This applies to a program but also possibly linked libraries to
libc address functions.

We disabled ASLR (in Linux) by setting the value in /
proc/sys/kernel/randomize_va_space to 0.
Adversary cannot rely on fixed memory layout, but it may
use leaks and gamble on relative addresses (e.g. for stack
data).

49

Control flow integrity
Canaries/NX-bits/ASLR are mechanisms for trying to detect /
defeat control-flow hijack.
Control flow integrity seeks to ensure that the control flow
of a program is (really) as expected:

Functions: if f calls g at instruction I then when g returns
execution resumes (the PC is restored) in f at instruction I+1.
More generally: each control branch taken during program
execution (not just function calls/returns) corresponds to the
program’s intended behavior.

CFI schemes work by:
determining possible branches statically, e.g., according to
individuaul procedure CFGs, call-graphs.
instrumenting code to verify branches during execution are as
expected

50

Control flow integrity (2)

CFI instrumentation scheme - overview:

Maintain a “shadow stack” to monitor control flow through CFI IDs.

Branch target locations have associated CFI IDs.

Branch instructions push the ID of their target onto the “shadow stack”,
that is checked at the branch target.

51

From: “Control Flow Integrity: Principles, Implementations, and Applications”, M. Abadi et al. , CCS 2005

https://users.soe.ucsc.edu/~abadi/Papers/cfi-tissec-revised.pdf

Other protections

“Fortified” source code in libraries
Idea: fortify security-sensitive library calls.
We ’ l l h a v e a b r i e f l o o k a t G C C / G L I B C ’s
_FORTIFY_SOURCE flag.

Runtime sanitizers — useful during development
Idea: monitor program execution to detect errors and
possibly trap execution.
Two example gcc/clang sanitizer plugins: Undefined
Behavior Sanitizer, and Address Sanitizer

52

The glibc _FORTIFY_SOURCE flag

We may employ glibc’s _FORTIFY_SOURCE.
During compilation:

Signals buffer overflows over variables with size known at compile-time.

During execution:
Performs runtime checks that also try to detect buffer overflows.

Let us take a look at an example from “Enhance application
security with FORTIFY_SOURCE”, Siddharth Sharma, Red Hat
blogs

53

https://access.redhat.com/blogs/766093/posts/1976213
https://access.redhat.com/blogs/766093/posts/1976213

glibc’s _FORTIFY_SOURCE flag (2)

54

 // Known size for both source and destination
 char buffer[5];
 . . .
 strcpy(buffer,”deadbeef");

$ gcc -D_FORTIFY_SOURCE=1 -O fortify_test.c -o fortify_test
In file included from /usr/include/string.h:635:0,
 from fortify_test.c:9:
In function 'strcpy',
 inlined from 'main' at fortify_test.c:16:3:
/usr/include/bits/string3.h:110:10: warning: call to
__builtin___strcpy_chk will always overflow destination buffer
 return __builtin___strcpy_chk (__dest, __src, __bos
(__dest));

In this example the buffer overflow is detected at compile-time, given that the
size of involved buffers and data contents can be deduced. The buffer overflow
is also signalled during execution.

$./fortify_test
Buffer Contains: `???? , Size Of Buffer is 5
*** buffer overflow detected ***: ./fortify_test terminated
======= Backtrace: =========
/lib64/libc.so.6(+0x77de5)[0x7ffff7a92de5]

gcc’s FORTIFY_SOURCE flag (3)

55

 char buffer[5]; // known size
 strcpy(buffer, argv[1]); // argv[1] size not known

$ gcc -D_FORTIFY_SOURCE=1 -O fortify_test2.c -o fortify_test2

$./fortify_test2 abcd

$./fortify_test2 abcde
*** buffer overflow detected ***: ./fortify_test2 terminated
======= Backtrace: =========
/lib64/libc.so.6(+0x77de5)[0x7ffff7a92de5]
/lib64/libc.so.6(__fortify_fail+0x37)
. . .
./fortify_test2[0x400499]

In this example there are no warnings at compile-time, given that the size of the program
argument string is only known at runtime.

But the size of the destination buffer is known, hence the buffer overflow can be detected at
runt ime. Under the hood The strcpy(buffer,argv[1]) cal l is replaced by
strcpy_chk(buffer, argv[1], 5)

Undefined Behavior Sanitizer

UBSan is a gcc/clang plugin for detecting undefined behavior
during execution of a program.

enabled using -fsanitize=undefined switch during compilation
undefined behavior errors are reported during execution, but program
execution is also halted if -fno-sanitize-recover is specified
during compilation

The array overflow example we saw previously is now signalled.
56

 int sum = 0;
 int numbers[N];

 for (int i = 0; i <= N; i++)
 sum += numbers[i];

stack_overflow.c:9:12: runtime error: index 5 out of bounds for type 'int [5]'
SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior stack_overflow.c:9:12 in
Abort trap: 6

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

Undefined Behavior Sanitizer (2)

UBSan is a gcc/clang plugin for detecting undefined behavior during execution of a
program.

enabled using -fsanitize=undefined switch during compilation
undefined behavior errors are reported during execution, but program execution is also halted
if -fno-sanitize-recover is specified during compilation

The null-pointer dereference example we saw previously now always halts
(regardless of whether optimisation is turned on or off).

57

int flawed_function(Foo* pointer) {
 int v = pointer -> data; // dereference before check
 if (pointer == NULL) // actual check
 return -1;
 return v;
}
int main(int argc, char** argv) {
 printf("result = %d\n", flawed_function(NULL)); // What to expect?
 return 0;
}

null_pointer_deref.c:8:22: runtime error: member access within null
pointer of type 'Foo'
SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior
null_pointer_deref.c:8:22 in
Abort trap: 6

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

Address Sanitizer

AddressSanitizer is a runtime memory error detector.

58

 int n; unsigned char *a, *b;
 n = . . .;
 a = (char*) malloc(n); // allocate memory for a
 memset(a, 'x', n); // set all positions to 'x'
 free(a); // free memory
 // a is now a dangling reference (to freed up memory)
 b = (char*) malloc(2*n); // allocate memory for b
 printf("a == b ? %s\n", a == b ? "yes" : "no");
 memset(b, 'X', 2*n); // set all positions to 'X'
 memset(a, 'x', n); // use-after-free
 free(a); // double free! (and what about b?)

==17390==ERROR: AddressSanitizer: heap-use-after-free on
address 0x6020000000d0 at pc 0x000106cf1fa6 bp 0x7ffee8f0def0
sp 0x7ffee8f0dee8

https://github.com/google/sanitizers/wiki/MemorySanitizer

Handling buffer
overflows

secure programming

Secure programming

Secure programming techniques
Argument validation / defensive programming
Avoid inherently dangerous API calls / use safe variants of
those, in particular string manipulation functions in C
Manage dynamically allocated (heap) memory correctly
…

Established advice for secure programming
SEI CERT C Coding Standard

Validation: Use code reviewing tools and testing to find
vulnerabilities and fix them

60

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard

Insecure API calls
Examples of C functions involving string manipulation

For input/ouput: gets scanf fscanf
General string manipulation: strcpy strcat sprintf

Some of these calls have bounded-length variants
A length argument indicates the maximum amount of memory to
consider
Examples: fgets strncpy snprintf

Bounded-length variants are not entirely safe, e.g.
No guarantee of null-termination for the target buffer (e.g.
strncpy).
Undefined behavior when buffers overlap.
Some “safe” variants of string operations counter for these cases
(see next slide).

61

C11 - ISO/IEC TR 24731

A safer set functions in C11 - ISO/IEC TR 24731
Further reference:

“On Implementation of a Safer C Library, ISO/IEC TR 24731”, Laverdière-Papineau et al., 2006
“Security Development Lifecycle (SDL) Banned Function Calls”, Michael Howard, Microsoft
Developer Network

62

From: http://en.cppreference.com/w/c/string/byte/strncpy

https://arxiv.org/abs/0906.2512
https://arxiv.org/abs/0906.2512
https://msdn.microsoft.com/en-us/library/bb288454.aspx

Safe string manipulation functions

Insecure ⟹ (more) secure:
strcat ⟹ strlcat
strcpy, strncpy ⟹ strlcpy (note: strncpy does not ensure NULL
termination)
strncat ⟹ strlcat
strncpy ⟹ strlcpy
sprintf ⟹ snprintf
vsprintf ⟹ vsnprintf
gets ⟹ fgets

Microsoft library versions
strcpy_s, strncpy_s (eq. to strlcpy), strcat_s

63

SEI CERT C — a few examples

64

STR07-C

MEM00-C

FIO20-C

https://www.securecoding.cert.org/confluence/display/c/STR07-C.+Use+the+bounds-checking+interfaces+for+string+manipulation
https://www.securecoding.cert.org/confluence/display/c/MEM00-C.+Allocate+and+free+memory+in+the+same+module,+at+the+same+level+of+abstraction
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3226

C/C++ source code analysis

Historical tools — limited “grep-like” analysis, but security-
oriented:

RATS (Rough Auditing Tool For Security) for C, C++, Perl, PHP,
Python. “As its name implies, the tool performs only a rough analysis
of source code.”
FlawFinder: “a simple program that examines C/C++ source code
and reports possible security weaknesses […] is not a sophisticated
tool. It is an intentionally simple tool, but people have found it useful.”

Modern, more powerful C/C++/Objective-C analysers
Clang Static Analyzer
Facebook Infer
Sonar Source C/C++ (commercial)

SonarSource makes plugins for other mainstream languages free for use in
the community edition though

65

https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://dwheeler.com/flawfinder/
https://clang-analyzer.llvm.org/
https://fbinfer.com/
https://www.sonarsource.com/products/codeanalyzers/sonarcfamilyforcpp.html

RATS/Flawfinder

Even if FlawFinder / RATS perform rough analysis, their generated
reports include:

The location of the problems
Description of the potential vulnerability and corresponding CWE reference
Suggestion for change in the code

66

Clang static analyzer - screenshots

67

