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Introduction



What is a buffer overflow?
CWE-119 - Improper Restriction of Operations within the 
Bounds of a Memory Buffer

“The software performs operations on a memory buffer, but it 
can read from or write to a memory location that is outside of 
the intended boundary of the buffer. “

This is a general definition for buffer overflow, that makes no 
distinction for:

the type of operation: read or write
the memory area: stack, heap, …  (Q: heap? stack?)
the position of invalid memory position relative to buffer: 
before (“underflow”) or after (proper “overflow”)
the reason for invalid access: iteration, copy, pointer 
arithmetic 

A number of CWEs are specific instances of CWE-119 (next).
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https://cwe.mitre.org/data/definitions/119.html


Specific types of buffer overflow

CWE-120: Buffer Copy without Checking Size of Input 
('Classic Buffer Overflow’)
CWE-121 — Stack-Based Buffer Overflow — “[…] the buffer 
being overwritten is allocated on the stack […]”
CWE-122 — Heap-Based Buffer Overflow — “[…] the buffer that 
can be overwritten is allocated in the heap portion of memory […]“
CWE-123: Write-what-where Condition - “ability to write an 
arbitrary value to an arbitrary location, often as the result of a 
buffer overflow”.
CWE-124: Buffer Underwrite ('Buffer Underflow’)
CWE-125: Out-of-bounds Read
CWE-126: Buffer Over-read
CWE-127: Buffer Under-read
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https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/127.html


Memory address space of a process

“Text” section = code (.text section in the ELF 
format)
Global data sections

global variables (e.g. .data section in ELF for 
initialized variables, .bss for non-initialized varialbes)
constants (.rodata in ELF)
resolution of dynamic symbols (.plt and .got in ELF)
…

Heap 
dynamically allocated memory 
grows “upwards”

Stack 
contains stack frames, one per active function,  
grows “downwards” 
each stack frame is used to hold data for a function 
activation
in multithreaded programs each thread has its 
independent stack and program counter
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https://refspecs.linuxbase.org/elf/elf.pdf


The C language

Buffer overflows are normally associated with the C 
language and “relatives” (C++ and Objective-C).
These languages are used for for implementing software 
such as:

Operating system kernels and utilities — Linux, Windows, 
MacOS, …
Core building blocks of the Internet — Apache, Webkit, 
OpenSSL, …
Embedded system programming—Arduino, ROS,micro-
controller programming in general, …
VMs/runtime systems for other languages — Java, Python, 
PHP, …
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Popularity of C and C++

C and C++, together with Java, have been taking in the top 3/4 positions 
in the TIOBE index for programming language popularity for many years

The rankings are derived from search engine query statistics for programming 
languages.7

https://www.tiobe.com/tiobe-index/


“Popularity” of buffer overflows
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# reported 
vulnerabilities

per year for CWE-119

Source:  NIST NVD

https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&search_type=all&cwe_id=CWE-119


“Popularity” of buffer overflows (2)
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Source:  NIST NVD

nearly 20 %
in 2016

roughly
10 % on average

2007-2019

% of total
for CWE-119

https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&search_type=all&cwe_id=CWE-119


C and memory safety



C and memory safety
C makes it “easy” to access memory in invalid and 
unchecked manner 

No bounds-checking in access to buffers / pointers.
Arbitrary pointer arithmetic/casts are allowed
Dynamic memory allocation is explicitly managed by the programmer. 
The effect of acessing invalid memory has no defined semantics 
(including null-pointer accesses).

Lack of memory safety in a program may result in:
Program crash — “segmentation faults”, when protected memory is 
accessed.
Corruption of stack and/or heap, even beyond  “logical program 
data” (e.g. stack return address, frame pointer, heap internal data, …)
Non-deterministic behavior — sensitivity to runtime conditions, choice 
of compiler and code generation options
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  char name[32];
  char email[32];
  printf("Enter your name: ");
  gets(name);
  printf("Enter your email: ");
  gets(email);
  printf("Name: %s Email: %s\n", name, email);

Stack overflow example

Variables may be allocated contiguously in the stack (or nearby in the general 
case) 
gets reads an arbitrary number of bytes until a newline, ‘\0’ or EOF is found.
In this case, second gets call may overflow the capacity of email.
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Enter your name: Eduardo
Enter your email: very_long_email_I_guess@dcc.fc.up.pt
Name: p.pt Email: very_long_email_I_guess@dcc.fc.up.pt

stack overflow (5 bytes) ! email (32) name (32)

“p.pt\0”



  char name[32];
  char email[32];
  strcpy(name, argv[1]);
  strcpy(email, argv[2]);
  printf("Name: %s Email: %s\n", name, email);

Stack overflow example (2)

The  strcpy  function copies data onto destination 
buffer until ‘\0’ is found.
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./stack_overflow Eduardo very_long_email_I_guess@dcc.fc.up.pt
Name: p.pt Email: very_long_email_I_guess@dcc.fc.up.pt

stack overflow (5 bytes) ! email (32) name (32)

“p.pt\0”



Stack overflow (3) - off-by-one error

A particular execution may print 20, not 15  as expected. A small re-arrangement of 
variable declarations may lead to other results, but not 15  anyway. The code does 
not print 15, because the second for loop has an “off-by-one” error: i goes from 0 
up to N=5, not N-1=4 !  The expected behavior is undefined. Analogous programs 
written in memory-safe languages would throw a runtime exception signalling the 
invalid array access (e.g. ArrayIndexOutBoundsException in Java).
There is a stack overflow in the access to number, given that local variables are 
allocated in the stack.  Let’s see how using the GNU debugger (gdb) …
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#include <stdio.h>
#define N 8
int main(int argc, char** argv) {
  int sum = 0;
  int numbers[N]; // fill as { 1, 2, 3, 4, 5 }
  for (int i=0; i < N; i++) 
    numbers[i] = i+1;
  for (int i = 0; i <= N; i++) 
    sum += numbers[i];
  printf("Sum=%d\n", sum);
  return 0;
}



Stack overflow — off-by-one error

In this execution: position 5 of numbers  corresponds to the address 
of i ! 
In the last iteration of the buggy for loop,  i = 5, so the program will 
add (5+1) to sum, obtaining 15+6 = 2115

$ gcc -g stack_overflow.c -o stack_overflow
$ gdb ./stack_overflow
(gdb) br 8
Breakpoint 1 at 0x40056e: file stack_corruption.c, line 8.
(gdb) r
. . .

Breakpoint 1, main (argc=1, argv=0x7fffffffde08) at 
stack_overflow.c:8
8   for (int i = 0; i <= N; i++) 
(gdb) p &i
$1 = (int *) 0x7fffffffdd14
(gdb) p &sum
$2 = (int *) 0x7fffffffdd1c
(gdb) p numbers
$3 = {1, 2, 3, 4, 5}
(gdb) p &numbers
$4 = (int (*)[5]) 0x7fffffffdd00

(gdb) p &numbers[5] - &i
$5 = 0

sum 0x7fffffffdd14

number[0]
number[1]
number[2]
number[3]
number[4]

i 0x7fffffffdd00 



Heap memory management

Dynamically-allocated memory must be explicitly 
managed by the programmer

no garbage collection
In C: malloc and variants (calloc/realloc) + free are functions 
the programmer must use to explictly manipulate the heap.
C++ does have the built-in new and delete operators, but these 
are really equivalent to malloc and free in memory terms
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Heap-allocated memory programming 
errors

Use-after-free: NO ! Pointer a should not be used after being freed up, it 
becomes a dangling reference. 
Free-after-use: YES ! On the other hand b is not freed up at the end, we 
will have a memory leak (allocated but not freed up).
Double-free: NO! It is also incorrect to free a twice.
Q: what to expect from the execution? 
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  int n;  unsigned char *a, *b;
  n =  . . .;
  a = (char*) malloc(n);   // allocate memory for a
  memset(a, 'x', n);       // set all positions to 'x'
  free(a);                 // free memory
  // a is now a dangling reference (to freed up memory)
  b = (char*) malloc(2*n);  // allocate memory for b
  printf("a == b ? %s\n", a == b ? "yes" : "no");
  memset(b, 'X', 2*n);       // set all positions to 'X'
  memset(a, 'x', n);         // use dangling reference, set to ‘x’
  free(a);                   // double free! (and what about b?)
  // free(b) - not done - memory leak!



Heap-allocated memory:
dangling references & memory leaks (2)

In this execution, both calls to malloc  yield a pointer to the same 
memory segment (the segment is reused after being freed up for a) 
Hence a and b end up referring to the same memory segment. Using 
the dangling reference (a) will necessarily corrupt the memory pointed 
to by b.
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$ ./dangling_reference_example 9
a - line 19 >  78 78 78 78 78 78 78 78 78
a == b ? yes
a - line 25 >  00 00 00 00 00 00 00 00 78
b - line 25 >  00 00 00 00 00 00 00 00 78 00 00 00 00 00 00 00 00 00
a - line 27 >  58 58 58 58 58 58 58 58 58
b - line 27 >  58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
a - line 29 >  78 78 78 78 78 78 78 78 78
b - line 29 >  78 78 78 78 78 78 78 78 78 58 58 58 58 58 58 58 58 58
a - line 31 >  00 00 00 00 00 00 00 00 78
b - line 31 >  00 00 00 00 00 00 00 00 78 58 58 58 58 58 58 58 58 58



Numerical overflow example

Integer overflow
malloc takes size_t (unsigned long) arguments, 64-bit unsigned integers, n is 64-bit 
signed integer, the argument conversion causes an overflow
malloc cannot allocate UINT_MAX=2^63-1 bytes, hence it returns NULL

Several vulnerabilities in the example program:
argc / argv[1] not checked — program crashes without arguments 

atol used to parse argv[1] : will return 0 on a parse error, strtol should be used instead
and if conversion is succesful (as in the example), bounds for n are not verified
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…
int main(int argc, char** argv) {
  long n = atol(argv[1]);
  printf("Allocating %lu (%lx) bytes for n=%ld (%lx)\n", 
         (size_t) n, (size_t) n, n, n);
  char* buffer = (char*) malloc(n);
  printf("Allocated buffer: %p\n”, buffer);
  free(buffer);
  return 0;
}
$ ./integer_overflow  -1
Allocating 18446744073709551615 (ffffffffffffffff) bytes for n=-1 (ffffffffffffffff)
Allocated buffer: 0x0



NULL pointer access example

Dereferencing a NULL  pointer is undefined behavior, but what do 
you expect / prefer from this code? Crash or no crash?
NULL is actually 0 (only a matter of programming style to use NULL)
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#include <stdio.h>

typedef struct {
  int data;  
} Foo;

int flawed_function(Foo* pointer) {
  int v = pointer -> data; // dereference before check
  if (pointer == NULL) // actual check
    return -1;
  return v; 
}

int main(int argc, char** argv) {
  printf("result = %d\n", flawed_function(NULL)); // What to expect?
  return 0;
}



NULL pointer access example (2)

Compiling the program without optimisation leads to a 
segmentation fault. The execution is  trapped due to 
access to an invalid memory segment.
Compiling the program with optimisation leads to a 
“normal” execution without crash ! 
Why so? We must look at the generated code.

21

$ gcc null_pointer_example.c -o null_pointer_example_no_opt
$ ./null_pointer_example_no_opt 
Segmentation fault (core dumped)

$ gcc null_pointer_example.c -O2 —o null_pointer_example_with_opt
$ ./null_pointer_example_with_opt 
-1

Using gcc 6.3 on Linux x86_64 without code optimisation:

Now enabling optimisation level 2 (-O2):



NULL pointer access example(3)

Since flawed_function is small in size, GCC decides to inline its (intermediate 
representation) code within main. Given that the argument is NULL, pointer-
>data is undefined behavior, hence a C compiler can do whatever it pleases. 
GCC  decides to treat v=pointer->data  is dead code since according to the 
data flow -1 should be returned! Under that assumption the result must “logically” 
be -1 !
Variations:

Using -O2 -fno-inline we get the segmentation fault instead!
Other GCC versions may handle it differently - check the Compiler Explorer site22

int flawed_function(Foo* pointer) {
  int v = pointer -> data; // dereference before check
  if (pointer == NULL) // actual check
    return -1;
  return v; 
}

int main(int argc, char** argv) {
  printf("result = %d\n", flawed_function(NULL)); // What to expect?
  return 0;
}

int main(int argc, char** argv) {
  printf(“%d\n", -1);
  return 0;
}

subq $8, %rsp
movl $-1, %esi
movl $.LC1, %edi
xorl %eax, %eax
call printf

becomes “equivalent” togcc -O2 generated code

https://godbolt.org/


Stack-smashing
attacks



Function call

Let us describe how function calls are generally handled. Details may differ according to 
calling conventions and compilation options (e.g. for code protection or optimisation).

PC = program counter, the address of the currently execution instruction
SP = stack pointer, the address of the current stack location
FP = frame pointer, the base address for the currently executing function
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f() {
  . . .
  r = g(a1, a2, …, an);
  next_instr;
}   

g( ... ) { 
  . . . 
  return … ;
} 

PC

<top>
…
…

  <frame for f>    FP

SP



Function calls - initiation by caller

Calling function proceeds by:
1) Passing arguments through registers and/or the stack. For 
instance in Linux x86_64 arguments (up to some limit) are passed 
through registers, in x86_32 only the stack is used in most calls.
2) Pushing the return address onto the stack, i.e., the address of the 
instruction after the call (current PC + some offset).
3) Branching to the called function, changing PC.25

f() {
  . . .
  r = g(a1, a2, …, an);
  next_instr;
}   

g( ... ) { 
  . . . 
  return … ;
} 

<RA>
<arguments>
<frame for f>

SP

PC

FP



On entry, called function proceeds by:
1) Pushing the current FP (the callee’s) frame pointer onto the stack.
2)  Setting FP to the current stack pointer.
3) Updating SP such that the necessary space is allocated for local 
variables/intermediate values as needed.26

SP

FP

f() {
  . . .
  r = g(a1, a2, …, an);
  next_instr;
}   

g( ... ) { 
  . . . 
  return … ;
} 

PC

Function calls - initiation by callee

<extra space>
<caller FP>

<RA>
<arguments>
<frame for f>



On return, the callee proceeds by:
1) Seting stack to current FP
2) Popping (restores) the frame pointer from the stack (calle)
3) Pops the return address (calee) and returns to it (callee).
Some calling conventions push the return value (if any) onto the stack, others 
use a register .
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f() {
  . . .
  r = g(a1, a2, …, an);
  next_instr;
}   

g( ... ) { 
  . . . 
  return … ;
} 

PC

Function calls - return sequence

<unused>
<extra space>
<caller FP>

<RA>
<arguments>
<frame for f>



Simple x86_64 example

Relevant x86_64 registers in this example:
%rip — program counter

%rsp — stack pointer

%rbp — frame pointer

%rsi  and %rdi  are used to pass arguments (the stack is not used for arguments in this 
case)
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int main(int argc, char** argv) {
  long r = foo(5, 2);
  printf("%ld\n", r);
  return 0;
}

long foo(long a, long b) {
  long s = a + b, 
       d = a - b;
  return s * d;
}

PC=%rbi



Simple example — call initiation

main:

Uses registers pass both arguments. %esi  and %edi  are 
shorthand for the lower 32 bits of the %rdi and %rsi general-
purpose registers [values 5 and 2 fit on 32-bits]
The call  instructions then places the RA on the stack, and 
updates the PC (%rip) to foo.
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int main(int argc, char** argv) {
  long r = foo(5, 2);
  printf("%ld\n", r);
  return 0;
}

int foo(long a, long b) {
  long s = a + b, 
       d = a - b;
  return s * d;
}

main:
  ... 

movl $2, %esi
movl $5, %edi
call foo

  … 

foo:
  pushq  %rbp
  movq %rsp, %rbp
  movq %rdi, -24(%rbp)
  movq %rsi, -32(%rbp)

%rip



Simple example — call initiation (2)

foo:

Saves the FP  (%rbp) onto the stack (%rsp), before resetting it 
to the current SP (%rbp).
Pushes the arguments ( %rdi  and %rsi  ) onto the stack for 
convenience in later processing.
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int main(int argc, char** argv) {
  long r = foo(5, 2);
  printf("%ld\n", r);
  return 0;
}

long foo(long a, long b) {
  long s = a + b, 
       d = a - b;
  return s * d;
}

main:
  ... 

movl $2, %esi
movl $5, %edi
call foo

  … 

foo:
  pushq  %rbp
  movq %rsp, %rbp
  movq %rdi, -24(%rbp)
  movq %rsi, -32(%rbp)



Simple example —return sequence

On return, foo:
Places the result on %rax — imulq …, %rax

Pops the FP (of main) from the stack — popq %rbp
Pops the return address from the stack and returns — ret
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int main(int argc, char** argv) {
  long r = foo(5, 2);
  printf("%ld\n", r);
  return 0;
}

long foo(long a, long b) {
  long s = a + b, 
       d = a - b;
  return s * d;
}

main:
  ... 

movl $2, %esi
movl $5, %edi
call foo

  … 

foo:
  …
  imulq -16(%rbp), %rax
  popq %rbp
  ret



Simple example — illustration with gdb
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Breakpoint 1, main (argc=1, 
argv=0x7fffffffe5f8) at stack_test.c:
10
10   long r = foo(5, 2);
(gdb) p $rbp
$1 = (void *) 0x7fffffffe510
(gdb) p $rsp
$2 = (void *) 0x7fffffffe4f0
(gdb) p $rip
$3 = (void (*)()) 0x400574 <main+15>
(gdb) s

Breakpoint 2, foo (a=5, b=2) 
at stack_test.c:4
4   long s = a + b, 
(gdb) p $rbp
$4 = (void *) 0x7fffffffe4e0
(gdb) p $rsp
$5 = (void *) 0x7fffffffe4e0
(gdb) p $rip
$6 = (void (*)()) 0x400539 <foo+12>
(gdb) p *(void**) $rbp
$7 = (void *) 0x7fffffffe510
(gdb) p *(void**) ($rbp+8) 
$8 = (void *) 0x400583 <main+30>
(gdb) n
5        d = a - b;
(gdb) n
6   return s * d;
(gdb) p $rip
$9 = (void (*)()) 0x40055a <foo+45>
(gdb) ret
Make foo return now? (y or n) y

#0  0x0000000000400583 in main (argc=1, 
    argv=0x7fffffffe5f8) at stack_test.c:
10
10   long r = foo(5, 2);
(gdb) p $rip
$10 = (void (*)()) 0x400583 <main+30>
(gdb) p $rbp
$11 = (void *) 0x7fffffffe510

return address

saved
FP



Stack smashing attacks — assumptions

Let us assume for now that;
we can perform a buffer overflow on the stack without  
any protection in place
we can place executable code on the stack
memory addresses are predictable

Provided the program has a vulnerability of “interest”, we 
can think of a stack-smashing attack.
Idea — overflow the stack frame of a function such that:

malicious code is placed on the stack, and the return 
address is changed to point to it
hence, on function return, the malicious code gets 
executed
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A simple example

Simple “hello” program that:
 calls a gets operation to read a string onto buffer name
then prints “Hello <username>\n” using 3 printf calls
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#include <stdio.h>
int main(int argc, char**argv) {
  char name[128];
  printf(“What’s your name?\n”);
  gets(name);
  printf(“Hello %s!\n”, name);
  return 0;
}

$ ./hello.bin 
What's your name?
Eduardo
Hello Eduardo

normal execution



A simple example (2)

Compiler warns us that the  gets “is dangerous and 
should not be used”!
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#include <stdio.h>
int main(int argc, char**argv) {
  char name[128];
  printf(“What’s your name?\n”);
  gets(name);
  printf(“Hello %s!\n”, name);
  return 0;
}

hello.o: In function `main':
hello.c:(.text+0x1a): warning: the `gets' function is 
dangerous and should not be used.

compiler warning!



A simple example (2)

gets call easily leads to a buffer overflow
gets will read input until a newline (‘\n’), doing so without  internal 
information of the size of the input buffer; gets receives a pointer to the 
buffer, not the buffer length information
the buffer overflow may causes a crash (“segmentation fault”) 
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What's your name?
1234567890123456789012345678901234567890
Hello 12345678901234567890…12345678901234567890
Segmentation fault (core dumped)

execution with crash

#include <stdio.h>
int main(int argc, char**argv) {
  char name[128];
  printf(“What’s your name?\n”);
  gets(name);
  printf(“Hello %s!\n”, name);
  return 0;
}



Stack smashing attack — outline

Call to gets may be exploited with malicious input that:
fills the buffer with code with a NOP sled (sequence of NOPs) plus “shell 
code” to open a system shell
NOP sled is useful because we may only know the whereabouts of name 
approximately.
modifies the return address of main to jump to the NOP sled and then in 
sequence execute the “shell code” instructions.

Shell code? Easy to obtain online. 
Challenge: overwrite the RA with the address of name  var (or 
approximately) ? 

37

name Saved FP return address

padding modified RAshell codeNOP sled



Some famous attacks 

Morris Worm (1990) 
“Accidental” attack caused DoS brought down 
much of the (then-small) Internet

More info here: “The Internet Worm Program: 
An Analysis”, E. H. Spafford (page 9 for stack-
based overflow details)
Named after Robert T. Morris, convicted  at 
the time. He is now a professor at MIT !

Other famous attacks:
Code Red worm
SQL Slammer

Interesting historical account (until 2009): 
“Memory Corruption Attacks The (almost) 
Complete History”, Haron Meer, Black Hat USA 
2010
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http://www.computerhistory.org/timeline/networking-the-web/#169ebbe2ad45559efbc6eb35720646a8
http://spaf.cerias.purdue.edu/tech-reps/823.pdf
http://spaf.cerias.purdue.edu/tech-reps/823.pdf
https://pdos.csail.mit.edu/~rtm/
http://www.caida.org/research/security/code-red/coderedv2_analysis.xml
https://en.wikipedia.org/wiki/SQL_Slammer
https://media.blackhat.com/bh-us-10/whitepapers/Meer/BlackHat-USA-2010-Meer-History-of-Memory-Corruption-Attacks-wp.pdf
https://media.blackhat.com/bh-us-10/whitepapers/Meer/BlackHat-USA-2010-Meer-History-of-Memory-Corruption-Attacks-wp.pdf
https://media.blackhat.com/bh-us-10/whitepapers/Meer/BlackHat-USA-2010-Meer-History-of-Memory-Corruption-Attacks-wp.pdf


Example shell code

Size: only 30 bytes.
Carefully crafted not to contain null (0) values. Q: Why?
Source (my comments in bold): http://shell-storm.org/shellcode/files/
shellcode-603.php39

   // Goal is to execute execve("/bin/sh", [“/bin/sh”, 0], 0)
   // We need to set rax = 0x3b, rsi = [“/bin/sh”, 0], rdx = 0
   section .text
            global _start
    _start:
            xor     rdx, rdx    # rdx = 0  (3rd parameter)
            mov     qword ‘//bin/sh’, rbx # prepare 1st argument
            shr     $0x8, %rbx  # shift 8 bits => “/bin/sh\0”
            push    rbx         # push “/bin/sh\0” to the stack
            mov     rsp, rdi    # get it on rdi (1st parameter)
            push    rax         # push 0 (2nd array argument referenced by rsi)
            push    rdi         # push “/bin/sh\0” (1st array argument)
            mov     rsp, rsi    # point rsi (2nd argument) to the stack pointer
            mov     $0x3b,al    # low 8 bits of rax - code for execve syscall 
            syscall

4831d248bb2f2f62696e2f736848c1eb08534889e750574889e6b03b0f05

http://shell-storm.org/shellcode/files/shellcode-603.php
http://shell-storm.org/shellcode/files/shellcode-603.php


Other attacks
Successful attack may depend on the absence of memory 
protections we will refer to next:

NX/DEP protection data — the stack is executable
Stack protections (canaries) being disabled!
ASLR disabled — addresses are predictable on every run 

return-to-libc attacks:
when stack is not executable, try to change return address to interesting libc 
code, e.g. a call to system 
Easy on some platforms that only use the stack to pass arguments (e.g. 
Linux/x86-32)

ROP chains
ROP chains manipulate the stack (but do no execute code on it) to execute 
small code fragments (“gadgets”)  in a chain with malicious purpose.
Gadgets are collected from code that is marked as executable, for instance 
glibc fragments.
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ROP chains — illustration

Source: “An introduction to the Return Oriented Programming and ROP chain 
generation”, J. Salwan, Univ. Bordeaux
See also: “Return-Oriented Programming: Systems, Languages, and 
Applications”, Roemer et al., ACM TISSEC, 201241

http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
https://dl.acm.org/citation.cfm?id=2133377
https://dl.acm.org/citation.cfm?id=2133377


Variation

CWE-134: “Use of Externally-Controlled Format String”  , commonly known as 
format-string vulnerability!  We introduce a “format string” for name!  The 
printf  call looks up the arguments for “print-out”  even if there are really none, 
causing memory to be dumped and possibly overwritten.
Information disclosure of memory contents itself may be helpful for stack-smashing 
attack.
But printf may also write onto the stack (%n modifier) — see for instance 
“Exploiting Format String Vulnerabilities”, by “scut” and “team teso”, 200142

#include <stdio.h>
int main(int argc, char**argv) {
  char name[32];
  gets(name);
  printf(“Hello “);
  printf(name);
  printf(“\n”);
  return 0;
}

execution leaking information in the stack
What's your name?
%p %p %p
Hello 0x400720 0x7ffff7dd59e0 0x206f6c6c

https://cwe.mitre.org/data/definitions/134.html
https://crypto.stanford.edu/cs155old/cs155-spring08/papers/formatstring-1.2.pdf
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Memory protections

Prevention of buffer overflows
Use of stack canaries 
Data execution prevention /non-executable flag (DEP/NX)
Address Space Layout Randomization (ASLR)
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Canaries

Stack corruption detection
Protect the stack with a canary value. 
On return, canary is checked causing termination if value differs.

It does not protect against local variable overriding!
Mechanism can be defeated if canary is known or can be guessed

Canary is constant :) or generated with a PRNG that is weak or whose seed can be 
guessed. Cryptographic-strength PRNG makes this harder 

… or if attacker finds a way to determine the canary’s position and read 
its value from the stack.
Performance overhead

extra code required per function call, even if compiler tries to be smart / developer 
has a choice of options, e.g. e.g. GCC has several -fstack-protector-XXXX flavors 
(see next slide)

There are memory protections that can enabled for the heap too, e.g, also in 
GCC
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canary

return address

frame pointer (RBP)

local  
variables

https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Instrumentation-Options.html#index-fstack-protector
https://www.gnu.org/software/libc/manual/html_node/Heap-Consistency-Checking.html
https://www.gnu.org/software/libc/manual/html_node/Heap-Consistency-Checking.html


Stack protections — GCC
Our examples have been compiled so far using the -fno-stack-
protector switch, that disables stack canaries.

Older GCC versions (e.g. tested on 5.3) doesn’t really require the switch, 
as it does not emit code for stack canaries. Recent versions (e.g. 7.3) do 
so by default. Recent versions of the clang compiler also do.

Some GCC stack protection settings (also typically accepted in 
clang):

-fstack-protector: stack protection added for “vulnerable objects”, 
including “functions that call alloca and functions with buffers larger than 
8 bytes” (from the GCC 7.3 manual)
-fstack-protector-strong: “includes additional functions to be 
protected”, e.g.  “those that have local array definitions”
-fstack-protector-all: protects all functions
-fstack-protector-explicit: “only protects those functions which 
have the stack_protect attribute.
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Example stack protection code generated 
by GCC (5.3)
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main:
  # On entry
  pushq   %rbp
  movq    %rsp, %rbp
  subq    $144, %rsp
  movq    %fs:40, %rax    # Canary value onto rax
  movq    %rax, -8(%rbp)  # pushed onto the stack
  ... 
  # On exit
  movq    -8(%rbp), %rdx  # pops canary location
  xorq    %fs:40, %rdx    # compare with original value
  je      .L3
  call    __stack_chk_fail # stack check failed
.L3:
  leave # normal return
  ret

gcc -fstack-protector …



Data execution prevention (DEP)

Our code has also been compiled with the -z 
execstack switch, passed on to the GNU program linker 
(ld)

This lets data the stack and heap segments  be executable. 
The NX (non-executable) bit is set for these memory segments.

Provided canaries can be defeated, return-to-libc / ROP 
attacks are feasible.
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Address-space layout randomisation 
(ASLR)

ASLR 
OS randomly arrange positions of key areas in the memory 
layout (stack, heap, data, code) including library code.
Addresses  of variables, functions are different on every run of a 
program.
This applies to a program but also possibly linked libraries to 
libc address functions.

We disabled ASLR (in Linux) by setting the value in /
proc/sys/kernel/randomize_va_space to 0.
Adversary cannot rely on fixed memory layout, but it may 
use leaks and gamble on relative addresses (e.g. for stack 
data).
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Control flow integrity
Canaries/NX-bits/ASLR are mechanisms for trying to detect / 
defeat control-flow hijack.
Control flow integrity seeks to ensure that the control flow 
of a program is (really) as expected:

Functions: if f  calls g at instruction I  then when g returns 
execution resumes (the PC is restored) in f at instruction I+1.
More generally: each control branch taken during program 
execution (not just function calls/returns) corresponds to the 
program’s intended behavior.

CFI schemes work by:
determining possible branches statically, e.g., according to 
individuaul procedure CFGs, call-graphs.
instrumenting code to verify branches during execution are as 
expected
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Control flow integrity (2)

CFI instrumentation scheme - overview:

Maintain a “shadow stack” to monitor control flow through CFI IDs.

Branch target locations have associated CFI IDs.

Branch instructions push the ID of their target onto the “shadow stack”, 
that is checked at the branch target.
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From:  “Control Flow Integrity: Principles, Implementations, and Applications”, M. Abadi et al. , CCS 2005

https://users.soe.ucsc.edu/~abadi/Papers/cfi-tissec-revised.pdf


Other protections

“Fortified” source code in libraries
Idea: fortify security-sensitive library calls.
We ’ l l h a v e a b r i e f l o o k a t G C C / G L I B C ’s 
_FORTIFY_SOURCE flag.

Runtime sanitizers — useful during development
Idea: monitor program execution to detect errors and 
possibly trap execution. 
Two example gcc/clang sanitizer plugins: Undefined 
Behavior Sanitizer, and Address Sanitizer
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The glibc _FORTIFY_SOURCE flag

We may employ glibc’s _FORTIFY_SOURCE.
During compilation:

Signals buffer overflows over variables with size known at compile-time.

During execution:
Performs runtime checks that also try to detect buffer overflows.

Let us take a look at an example from “Enhance application 
security with FORTIFY_SOURCE”,   Siddharth Sharma, Red Hat 
blogs
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https://access.redhat.com/blogs/766093/posts/1976213
https://access.redhat.com/blogs/766093/posts/1976213


glibc’s _FORTIFY_SOURCE flag (2)
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  // Known size for both source and destination
  char buffer[5]; 
  . . .
  strcpy(buffer,”deadbeef");

$ gcc -D_FORTIFY_SOURCE=1 -O fortify_test.c -o fortify_test
In file included from /usr/include/string.h:635:0,
                 from fortify_test.c:9:
In function 'strcpy',
    inlined from 'main' at fortify_test.c:16:3:
/usr/include/bits/string3.h:110:10: warning: call to 
__builtin___strcpy_chk will always overflow destination buffer
   return __builtin___strcpy_chk (__dest, __src, __bos 
(__dest));

In this example the buffer overflow is detected at compile-time, given that the 
size of involved buffers and data contents can be deduced. The buffer overflow 
is also signalled during execution.

$ ./fortify_test
Buffer Contains: `???? , Size Of Buffer is 5
*** buffer overflow detected ***: ./fortify_test terminated
======= Backtrace: =========
/lib64/libc.so.6(+0x77de5)[0x7ffff7a92de5]



gcc’s FORTIFY_SOURCE flag (3)

55

  char buffer[5]; // known size
  strcpy(buffer, argv[1]); // argv[1] size not known

$ gcc -D_FORTIFY_SOURCE=1 -O fortify_test2.c -o fortify_test2

$ ./fortify_test2 abcd

$ ./fortify_test2 abcde
*** buffer overflow detected ***: ./fortify_test2 terminated
======= Backtrace: =========
/lib64/libc.so.6(+0x77de5)[0x7ffff7a92de5]
/lib64/libc.so.6(__fortify_fail+0x37)
. . .
./fortify_test2[0x400499]
 

In this example there are no warnings at compile-time, given that the size of the program 
argument string is only known at runtime.

But the size of the destination buffer is known, hence the buffer overflow can be detected at 
runt ime. Under the hood The strcpy(buffer,argv[1])  cal l is replaced by 
strcpy_chk(buffer, argv[1], 5)



Undefined Behavior Sanitizer

UBSan is a gcc/clang plugin for detecting undefined behavior 
during execution of a program.

enabled using -fsanitize=undefined switch during compilation
undefined behavior errors are reported during execution, but program 
execution is also halted if  -fno-sanitize-recover  is specified 
during compilation

The array overflow example we saw previously is now signalled.
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  int sum = 0;
  int numbers[N];

  for (int i = 0; i <= N; i++) 
    sum += numbers[i];

stack_overflow.c:9:12: runtime error: index 5 out of bounds for type 'int [5]'
SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior stack_overflow.c:9:12 in 
Abort trap: 6

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html


Undefined Behavior Sanitizer (2)

UBSan is a gcc/clang plugin for detecting undefined behavior during execution of a 
program.

enabled using -fsanitize=undefined switch during compilation
undefined behavior errors are reported during execution, but program execution is also halted 
if -fno-sanitize-recover is specified during compilation

The null-pointer dereference example we saw previously now always halts 
(regardless of whether optimisation is turned on or off).
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int flawed_function(Foo* pointer) {
  int v = pointer -> data; // dereference before check
  if (pointer == NULL) // actual check
    return -1;
  return v; 
}
int main(int argc, char** argv) {
  printf("result = %d\n", flawed_function(NULL)); // What to expect?
  return 0;
}

null_pointer_deref.c:8:22: runtime error: member access within null
pointer of type 'Foo'
SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior 
null_pointer_deref.c:8:22 in 
Abort trap: 6

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html


Address Sanitizer

AddressSanitizer is a runtime memory error detector.
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  int n;  unsigned char *a, *b;
  n =  . . .;
  a = (char*) malloc(n);   // allocate memory for a
  memset(a, 'x', n);       // set all positions to 'x'
 free(a);                 // free memory
  // a is now a dangling reference (to freed up memory)
  b = (char*) malloc(2*n);  // allocate memory for b
  printf("a == b ? %s\n", a == b ? "yes" : "no");
  memset(b, 'X', 2*n);       // set all positions to 'X'
  memset(a, 'x', n);    // use-after-free
  free(a);                   // double free! (and what about b?)

==17390==ERROR: AddressSanitizer: heap-use-after-free on 
address 0x6020000000d0 at pc 0x000106cf1fa6 bp 0x7ffee8f0def0 
sp 0x7ffee8f0dee8

https://github.com/google/sanitizers/wiki/MemorySanitizer
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Secure programming

Secure programming techniques 
Argument validation / defensive programming
Avoid inherently dangerous API calls / use safe variants of 
those, in particular string manipulation functions in C
Manage dynamically allocated (heap) memory correctly
…

Established advice for secure programming
SEI CERT C Coding Standard

Validation: Use code reviewing tools and testing to find 
vulnerabilities and fix them 
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https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard


Insecure API calls 
Examples of C functions involving string manipulation

For input/ouput: gets scanf fscanf
General string manipulation: strcpy strcat sprintf

Some of these calls have bounded-length variants 
A length argument indicates the maximum amount of memory to 
consider
Examples: fgets strncpy snprintf

Bounded-length variants are not entirely safe, e.g.
No guarantee of null-termination for the target buffer (e.g. 
strncpy).
Undefined behavior when buffers overlap.
Some “safe” variants of string operations counter for these cases 
(see next slide).
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C11 - ISO/IEC TR 24731

A safer set  functions in C11 - ISO/IEC TR 24731
Further reference: 

“On Implementation of a Safer C Library, ISO/IEC TR 24731”, Laverdière-Papineau  et al., 2006
“Security Development Lifecycle (SDL) Banned Function Calls”, Michael Howard, Microsoft 
Developer Network 
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From: http://en.cppreference.com/w/c/string/byte/strncpy

https://arxiv.org/abs/0906.2512
https://arxiv.org/abs/0906.2512
https://msdn.microsoft.com/en-us/library/bb288454.aspx


Safe string manipulation functions

Insecure ⟹ (more) secure:
strcat ⟹ strlcat 
strcpy, strncpy ⟹ strlcpy (note: strncpy does not ensure NULL 
termination)
strncat ⟹ strlcat 
strncpy ⟹ strlcpy 
sprintf ⟹ snprintf 
vsprintf ⟹ vsnprintf 
gets ⟹ fgets 

Microsoft library versions
strcpy_s, strncpy_s (eq. to strlcpy),  strcat_s
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SEI CERT C — a few examples
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STR07-C

MEM00-C

FIO20-C

https://www.securecoding.cert.org/confluence/display/c/STR07-C.+Use+the+bounds-checking+interfaces+for+string+manipulation
https://www.securecoding.cert.org/confluence/display/c/MEM00-C.+Allocate+and+free+memory+in+the+same+module,+at+the+same+level+of+abstraction
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3226


C/C++ source code analysis

Historical tools — limited “grep-like” analysis, but security-
oriented:

RATS (Rough Auditing Tool For Security) for C, C++, Perl, PHP, 
Python. “As its name implies, the tool performs only a rough analysis 
of source code.”
FlawFinder: “a simple program that examines C/C++ source code 
and reports possible security weaknesses […] is not a sophisticated 
tool. It is an intentionally simple tool, but people have found it useful.”

Modern, more powerful C/C++/Objective-C analysers
Clang Static Analyzer
Facebook Infer
Sonar Source C/C++  (commercial)

SonarSource makes plugins for other mainstream languages free for use in 
the community edition though

65

https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://dwheeler.com/flawfinder/
https://clang-analyzer.llvm.org/
https://fbinfer.com/
https://www.sonarsource.com/products/codeanalyzers/sonarcfamilyforcpp.html


RATS/Flawfinder

Even if FlawFinder / RATS perform rough analysis, their  generated 
reports include:

The location of the problems
Description of the potential vulnerability and corresponding CWE reference
Suggestion for change in the code
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Clang static analyzer - screenshots
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