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Software testing

Testing
Observe if software meets the expected behavior when 
executed.
Does not guarantee absence of bugs, in fact it seeks to expose 
them.
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How important is testing? 

Testing is the standard approach for ensuring that 
software has a high level of reliability. 
No (serious) SDLC process goes without testing.3

Image source: History of software testing, blog article, Ashish Singh, 2012 

http://ashishqa.blogspot.pt/2012/12/history-of-software-testing.html
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Figure 1.2. Software development activities and testing levels – the “V
Model”.

whether the software does what the users want. Acceptance testing must involve
users or other individuals who have strong domain knowledge.

The architectural design phase of software development chooses components
and connectors that together realize a system whose specification is intended to
meet the previously identified requirements. System testing is designed to determine
whether the assembled system meets its specifications. It assumes that the pieces
work individually, and asks if the system works as a whole. This level of testing usu-
ally looks for design and specification problems. It is a very expensive place to find
lower-level faults and is usually not done by the programmers, but by a separate
testing team.

The subsystem design phase of software development specifies the structure and
behavior of subsystems, each of which is intended to satisfy some function in the
overall architecture. Often, the subsystems are adaptations of previously developed
software. Integration testing is designed to assess whether the interfaces between
modules (defined below) in a given subsystem have consistent assumptions and com-
municate correctly. Integration testing must assume that modules work correctly.
Some testing literature uses the terms integration testing and system testing inter-
changeably; in this book, integration testing does not refer to testing the integrated
system or subsystem. Integration testing is usually the responsibility of members of
the development team.

The detailed design phase of software development determines the structure and
behavior of individual modules. A program unit, or procedure, is one or more con-
tiguous program statements, with a name that other parts of the software use to
call it. Units are called functions in C and C++, procedures or functions in Ada,
methods in Java, and subroutines in Fortran. A module is a collection of related
units that are assembled in a file, package, or class. This corresponds to a file in
C, a package in Ada, and a class in C++ and Java. Module testing is designed to
assess individual modules in isolation, including how the component units interact
with each other and their associated data structures. Most software development
organizations make module testing the responsibility of the programmer.
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                  From: “Introduction to Software Testing”, Amman & Offutt



How “mature” should testing be?

Beizer’s scale for test process maturity
Level 0: “There’s no difference between testing and 
debugging.”   

Question: What is debugging?

Level 1: “The purpose of testing is to show that the software 
works.”
Level 2: “The purpose of testing is to show that the software 
doesn’t work.”
Level 3: “The purpose of testing is not to prove anything 
specific, but to reduce the risk of using the software.”
Level 4: “Testing is a mental discipline that helps all IT 
professionals develop higher quality software.”
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Base concepts & 
terminology in 

software testing



Test case
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Test case (cont.)
Test case inputs: the input values necessary to complete a particular 
execution of the SUT.

The data supplied by to the SUT (e.g. method arguments).
The pre-state (starting state) of the SUT (if stateful).

Expected outputs: the expected values for the test case if and only if 
the program satisfies its intended behavior.

The data produced by the SUT in response to the input (e.g. function return 
values).
The post-state of the SUT (if stateful).

Test failure: expected outputs != observed outputs
Prefix values/actions:  inputs/commands necessary to put the SUT or 
its environment into the appropriate state before execution e.g. 
database setup.
Postfix values/actions :  inputs/commands necessary to  reset the 
SUT or its environment after execution e.g. database teardown.
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A simple bug

There is a simple “bug” in numZero…
Where is the bug location in the source code ? How would you fix it?
If the bug is location is reached, how does it corrupt program state? Does it 
always corrupt program state ?
If program state is corrupted, does numZero fail ? How? 

The term “bug” is ambiguous  however … are we referring to the 
source code or to outcome of a failed execution ? We need clear 
terminology. 
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  public static int numZero(int[] x) {
    // Effects: if x == null throw NullPointerException 
    // else return the number of occurrences of 0 in x
1    int count = 0;
2    for (int i = 1; i < x.length; i++) 
3      if (x[i] == 0) 
4        count++;
5    return count;
  }



Example test cases for numZero

test 
case

test case 
values (x)

expected values actual execution failure?

1 null NullPointerException NullPointerException No

2 { } 0 0 No

3 { 1,2,3 } 0 0 No

4 {1,0,1,0} 2 2 No

5 {0,1,2,0} 2 1 Yes10

  public static int numZero(int[] x) {
    // Effects: if x == null throw NullPointerException 
    // else return the number of occurrences of 0 in x
1    int count = 0;
2    for (int i = 1; i < x.length; i++) 
3      if (x[i] == 0) 
4        count++;
5    return count;
  }



Fault, Error, Failure [Falta,Erro, Falha]

Fault: a defect in source code [the location of the bug]
i = 1 in the code [should be fixed to i = 0]  

Error: erroneous program state caused by execution of the defect [semantic effect of 
the bug]

i becomes 1 (array entry 0 is not ever read)  

Failure: propagation of erroneous state to the program outputs 
[manifestation of the bug]

The output value for  x = { 0, 1, 0 } is 1 instead of the expected value 2.
Failure happens as long as x.length > 0 && x[0] = 0
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  public static int numZero(int[] x) {
    // Effects: if x == null throw NullPointerException 
    // else return the number of occurrences of 0 in x
1    int count = 0;
2    for (int i = 1; i < x.length; i++) 
3      if (x[i] == 0) 
4        count++;
5    return count;
  }



State representation - convention

We will represent program states using the notation 
<var=v1,...,varN=vN, PC=program counter>

Example sequence of states in the execution of 
numZero({0,1,2,0})

1: < x={0,1,2,0}, PC=[int count=0 (l1)] >

2: < x={0,1,2,0}, count=0, PC=[i=1 (l2)] >

3:  <  x={0,1,2,0},  count=0,i=1,PC=[i<x.length 
(l2)] >

4:  <  x={0,1,2,0},  count=0,i=1,PC=[if(x[i]==0) 
(l3)] >

...

<x={0,1,2,0}, count=1, PC=[return count;(l5)] >
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Error state - convention
We will use the convention: an error state is the first different state in 
execution in comparison to an execution to the state sequence of 
what would be the correct program.
If we had i=0 the execution of numZero({0,1,2,0}) would begin 
with states:

1: < x={0,1,2,0}, PC=[int count=0 (l1)] >

2: < x={0,1,2,0}, count=0, PC=[i=0 (l2)] >

3: < x={0,1,2,0}, count=0,i=0,PC=[i<x.length (l2)] > ...

Instead we have 
1: < x={0,1,2,0}, PC=[int count=0 (l1)] >

2: < x={0,1,2,0}, count=0, PC=[i=1 (l2)] >

3: < x={0,1,2,0}, count=0,i=1,PC=[i<x.length (l2)] > ...

The first error state is 2: < x={0,1,2,0}, count=0, PC=[i=1 
(l2)] > 

13



The RIP Conditions for test failure 

Reachability
The fault in the source code is reached during execution.

Infection
The program state enters in an error state, affected by the 
execution of the faulty code.

Propagation
The errors in program state are propagated to the ouputs.

14



numZero:  execution w/error and failure 
reachability + infection + propagation

Considering an execution where x = { 0, 1, 2, 0}
Error:  <x={0,1,2,0},  i=1,  count=0,  PC=  if  ...,l3>  
deviates from expected internal state <x={1,0,2,0}, 
i=0,count=1,PC =[if ..., l3]>

And failure:  numZero({0,1,2,0})  will return 1 rather than 2.

15

  public static int numZero(int[] x) {
    // Effects: if x == null throw NullPointerException 
    // else return the number of occurrences of 0 in x
1    int count = 0;
2    for (int i = 1; i < x.length; i++) 
3      if (x[i] == 0) 
4        count++;
5    return count;
  }



numZero:  execution w/error but no failure 
reachability + infection but no propagation

Considering an execution where x = { 1, 0, 2, 0}
Error:  <x={1,0,2,0},  i=1,  count=0,  PC=  if  ...,l3>  
deviates from expected internal state <x={1,0,2,0}, 
i=0,count=1,PC =[if ..., l3]>

No Failure!  numZero({1,0,2,0})  will return 2 as expected.
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  public static int numZero(int[] x) {
    // Effects: if x == null throw NullPointerException 
    // else return the number of occurrences of 0 in x
1    int count = 0;
2    for (int i = 1; i < x.length; i++) 
3      if (x[i] == 0) 
4        count++;
5    return count;
  }



More terminology
Test set: a set of test cases.  We will use notation T for a test 
set.
Test requirement : requirement that should be satisfied by a 
test set.  Test requirements normally come in sets. We use 
notation TR for the set of test requirements.
Coverage criterion: A coverage criterion C is a rule or 
collection of rules that define a set of test requirements TR(C) 
to be satisfied by a test set.
Coverage level: the percentage of test requirements that are 
satisfied by a test set.  We say T satisfies C if the coverage 
level of TR(C) by T is 100 %. 
Infeasible requirement: requirement that cannot be satisfied 
by any test case. If there are infeasible test requirements, the 
coverage level will never be 100%.

17



Structural coverage criteria

Line coverage (LC): cover every line in the SUT.
TR(LC) = { line 1, line 2, line 3, line 4, line 5 }

Instruction coverage (IC):  cover every instruction in the SUT.
TR(IC) = { I1, I2, I3, I4, I5, I6, I7 }

Branch coverage (BC): cover every instruction, and including 
all cases at choice points (if, switch-case, etc).

TR(BC) = { NPE-B1, B1, !B1, B2, !B2 }
18

  public static int numZero(int[] x) {
    // Effects: if x == null throw NullPointerException 
    // else return the number of occurrences of 0 in x
1    int count = 0; /* I1 */
2    for (int i = 1 /* I2 */; i < x.length /* I3,B1 */; i++ /* I4 */) 
3      if (x[i] == 0) /* I5,B2 */
4        count++; /* I6 */
5    return count; /* I7 */
  }



LC, IC, BC for numZero
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  public static int numZero(int[] x) {
    // Effects: if x == null throw NullPointerException 
    // else return the number of occurrences of 0 in x
1    int count = 0; /* I1 */
2    for (int i = 1 /* I2 */; i < x.length /* I3,B1 */; i++ /* I4 */) 
3      if (x[i] == 0) /* I5,B2 */
4        count++; /* I6 */
5    return count; /* I7 */
  }

test 
case

test case values 
(x)

expected 
values

exec. 
result

test 
fails?

LC IC BC

t1 null NPE NPE no 1 2 i1 i2 i3 NPE-B1 

t2 { } 0 0 no 1 2 5 i1 i2 i3 i7 !B1

t3 {1,2} 0 0 no 1 2 3 5 All except i6 B1, !B1, !B2

t4 {0,0 } 2 1 yes All All B1, !B1, B2

t5 {1,1,0} 1 0 no All All B1, !B1, B2, !B2



LC, IC, BC for numZero 
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T (test set) LC level IC level BC level

{ t1 } 40 % (2/5) 42 % (3/7) 20 % (1/5)

{ t1, t2 } 60 % (3/5) 57 % (4/7) 40 % (2/5)

{ t2, t3 } 80 % (4/5) 85 % (6/7) 60 % (3/5)

{ t4 } 100 % (5/5) 100 % (7/7) 60 % (3/5)

{ t1, t5} 100 % (5/5) 100 % (7/7) 100 % (5/5)

test 
case

test case values 
(x)

expected 
values

exec. 
result

test 
fails?

LC IC BC

t1 null NPE NPE no 1 2 i1 i2 i3 NPE-B1

t2 { } 0 0 no 1 2 5 i1 i2 i3 i7 !B1

t3 {1,2} 0 0 no 1 2 3 5 All except i6 B1, !B1, !B2

t4 {0,0} 2 1 yes All All B1, !B1, B2

t5 {1,1,0} 1 0 no All All B1, !B1, B2, !B2



LC, IC, BC for numZero 
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test 
case

test case values 
(x)

expected 
values

exec. 
result

test 
fails?

LC IC BC

t1 null NPE NPE no 1 2 i1 i2 i3 NPE-B1

t2 { } 0 0 no 1 2 5 i1 i2 i3 i7 !B1

t3 {1,2} 0 0 no 1 2 3 5 All except i6 B1, !B1, !B2

t4 {0,0} 2 1 yes All All B1, !B1, B2

t5 {1,1,0} 1 0 no All All B1, !B1, B2, !B2

T (test set) LC level IC level BC level

{ t1 } 40 % (2/5) 42 % (3/7) 20 % (1/5)

{ t1, t2 } 60 % (3/5) 57 % (4/7) 40 % (2/5)

{ t2, t3 } 80 % (4/5) 85 % (6/7) 60 % (3/5)

{ t4 } 100 % (5/5) 100 % (7/7) 60 % (3/5)

{ t1, t5} 100 % (5/5) 100 % (7/7) 100 % (7/7)

100 % coverage for all criteria 
but bug is not  exposed!!!  

t1 and t5 do not fail



Criteria subsumption

Criteria Subsumption: A coverage criterion C1 subsumes 
C2 if and only if every test set that satisfies criterion C1 
also satisfies C2.
For instance:

instruction coverage subsumes line coverage 
branch coverage subsumes instruction coverage

The inverse is not true. In the previous slide: 
If count++ appeared in the same line as if (x[i] == 0), 
test case  t3 would cover all lines but not all instructions 
(instruction i6  is not be executed by t3). 
Test t4 covers all instructions, but not all branches.
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xUnit testing



xUnit — historical perspective

xUnit: the general designation of a variety of unit testing 
frameworks, with an overall structurure and functionality inspired 
by SUnit.

SUnit is a testing library for the SmallTalk language developed by 
Kent Beck in 1998 (Kent Beck is one of the authors of the 
influential “Manifesto for Agile Software Development”.)
Kent Beck and Erich Gamma (one of the author of the “Gang of 
Four” book) applied the same concepts to a Java library called 
JUnit, that to this day is the most popular testing library for Java. 
The success of JUnit inspired several xUnit frameworks for other 
languages, e.g., just to name a few: Google Test (C / C++), NUnit 
(C#),  unittest (Python), PHPUnit (PHP). Many others exist, for 
languages and/or frameworks, for instance see Wikipedia’s “List of 
unit testing frameworks”.
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http://sunit.sourceforge.net/
https://agilemanifesto.org/
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://github.com/google/googletest
https://nunit.org/
https://docs.python.org/3/library/unittest.html
https://phpunit.de
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks


xUnit — concepts
Test (case)

Specification of an individual test. 
“Four-phase test” is the common test programming pattern: setup > 
exercise SUT >  verify > teardown.

Test execution
Execution of a single test. 

Test fixture
Setup and teardown actions, necessary to setup the initial state of a 
SUT (before a test runs) and tear-it down (after a test runs).

Test suite
Set of tests that can run in any order and share the same test fixture.

Test runner
Program that runs test suites. 

25

http://xunitpatterns.com/Four%20Phase%20Test.html


Four-phase test pattern

26

Source: xunitpatterns.com — 
companion site to “XUnit test 
patterns - Refactoring Test Code” 
book by G. Meszaros (Addison 
Wesley Signature Series curated by 
Martin Fowler) 

http://xunitpatterns.com


JUnit — example 
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import static org.junit.Assert.*;
import static qses.ArrayOperations.numZero;
import org.junit.Test;

public class ArrayOperationsNumZeroTest {

@Test
public void testNumZeroEmptyArray() {

int x[] = {}; // zero-sized array
int n = numZero(x);
assertEquals("0 zeros",  0, n);

}

@Test 
public void testNumZeroArrayWithNoZeros() {

int[] x = { 1,2, 3 };
int n = numZero(x);
assertEquals("0 zeros in an array with no zeros", 0, n);

}
  ...

test class

test method   
has @Test annotation 
- one per test case -

another test 
method/case  

imports



JUnit - test methods

Test design atterns 
Setup + execute SUT + verify expected results (+ teardown) 
Use assertion methods provided by JUnit to verify expected results
Use assertion messages together with assertion methods to give an 
indication of what went worn 

“Four-phase test”, “Assertion Method”, and “Assertion Message” patterns [see 
also G. Meszaros, pages 358-372]28

@Test 
public void testNumZeroArrayWithNoZeros() {

  int[] x = { 1,2, 3 };

  int n = numZero(x);

  assertEquals("0 zeros in an array with no zeros", 0, n);
}
  ...

1) setup test case values

2) execute SUT

3) assert expected vs.  test outputs
expected

exec. output

http://xunitpatterns.com/Four%20Phase%20Test.html
http://xunitpatterns.com/Assertion%20Method.html
http://xunitpatterns.com/Assertion%20Message.html


JUnit assertions

Full list at http://junit.org/junit4/javadoc/latest/index.html
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Method Checked condition

assertEquals(msg,expected,value)
assertNotEquals(msg,expected,value)

 value.equals(expected)
!value.equals(expected)

assertTrue(msg, value) 
assertFalse(msg, value)

value == true
value == false

assertNull(msg, expression)
assertNotNull(msg, expression)

value == null
value != null

assertArrayEquals(msg, vexp, vVal) Arrays vExp and vVal have the same 
contents.

assertSame(msg, expected, value)
value == expected 

(exactly the same object reference)

http://junit.org/junit4/javadoc/latest/index.html


JUnit: setup/teardown
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  @BeforeClass 
  public static void globalSetup() { 
    // executed once before all test
    ... 
  }
  @AfterClass 
  public static void globalTeardown() { 
    // executed once after all tests
    ...
  }
  @Before
  public void perTestSetup() { 
    // executed every time before each test
    ...
  }
  @After
  public static void perTestTeardown() { 
    // executed every time after each test
    ...
  }



Beyond basic 
coverage criteria



Testing approaches

Related questions :
What are good tests?
What are meaningul inputs?
What (coverage) criteria should be used to derive them?

Line/instruction/branch coverage
Easy to understand and measure through program instrumentation,
The most common metrics for coverage assessment in practice. 
Fragile however in the sense of possibly conveying a false notion 
regarding the quality of inputs/tests and their ability to expose bugs.

We will briefly look at a few approaches that go further … 
Graph-based coverage, input space partitioning, mutation testing, 
property-based testing

32



Graph-based coverage
Basic approach

Model the SUT as a graph. 
The execution of a test case corresponds to a path in the graph.
Coverage criteria specify requirements as sets of paths that  must be 
covered by test paths.

Graphs as models for:
individual procedures — control flow graphs (discussed next)
interacting units — call graphs
 finite-state machine abstractions of software

Structural vs. data-flow based coverage
Structural: takes into account only structure of the graph (example 
application next)
Data-flow based: also account for data usage in association to nodes/edges 
(we won’t cover this)

33
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Node and edge coverage (NC, EC)

Node coverage (NC)
Test requirements: cover every node (all graph paths up of length 0)

TR(NC) = set of nodes in the graph

Edge coverage (EC): cover every edge.
Test requirements: cover every edge (all paths up to length 1)

TR(EC) = set of edges in the graph

EC subsumes NC. Why?
34

1

2 3

4 5

TR(NC) = { [1], [2], [3], [4], [5] } 

TR(EC) = { [1,2], [1,3], [1,4], [2,4], [4,2], [4,5] } 

T1 = { [1,3], [1,2,4,5] } satisfies NC, but not EC 

T2 = { [1,3], [1,2,4,5],[1,4,2,4,5] }  
satisfies both NC and EC



Control flow graph (CFG)

A control flow graph (CFG) can be used to represent the 
control flow of a piece of (imperative) source code.

Nodes represent basic blocks - sequences of instructions that 
always execute together in sequence. 
Edges represent control flow between basic blocks.
The entry node corresponds to a method’s entry point.
Final nodes correspond to exit points, e.g. in Java: return or 
throw instructions.
Decision nodes represent choices in control flow - e.g. in Java: 
due to if, switch-case blocks or condition tests for loops.

35



Example

➡ Basic blocks (nodes)
➡ 1:  if  (v  == 

null) 

➡ 2: throw ...; 

➡ 3: n=0; i=0; 

➡ 4: i < v.length; 

➡ 5: v[i] == c; 

➡ 6: n++;

➡ 7: i++;36

  public static int occurrences(char[] v, char c) {
    if (v == null) {
      throw new IllegalArgumentException();
    }
    int n = 0;
    for (int i=0; i < v.length; i++) {
      if (v[i] == c) {
        n++;
      }
    }
    return n;
  }

➡ Control flow (edges) 

➡ 1 ! 2,   1 ! 3
➡ 3 ! 4 
➡ 4 ! 5,   4 ! 8
➡ 5 ! 6,   5 ! 7
➡ 6 ! 7
➡ 7 ! 4

➡ Entry node 

➡ 1

➡ Decision nodes 

➡ 1, 4, 5

➡ Exit nodes 

➡ 2, 8



CFG for occurrences()
1

32

7

8

v == null ¬ v == null

n = 0
i = 0

¬ i < v.length
    return n;

5i++

4

6

i < v.length

throw ...

v[i] == c

¬ v[i] == c

n++

➡ Basic blocks (nodes) 

➡ 1:  if  (v  == 
null) 

➡ 2: throw ...; 

➡ 3: n=0; i=0; 

➡ 4: i < v.length; 

➡ 5: v[i] == c; 

37

➡ Control flow (edges) 

➡ 1 ! 2,   1 ! 3
➡ 3 ! 4 
➡ 4 ! 5,   4 ! 8
➡ 5 ! 6,   5 ! 7
➡ 6 ! 7
➡ 7 ! 4
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t test case values 
(v,c)

exp.
values test path covered 

nodes
covered
edges

t1 (null, ‘a’) IAE [1,2] 1 2 [1,2]

t2 ({‘a’}, ‘a’) 1 [1,3,4,5,6,7,4,8] 1 3 4 
5 6 7 8

[1,3][3,4][4,5][5,6]
[6,7][7,4][4,8]

t3 ({‘x’,’a’}, ‘a’) 1 [1,3,4,5,7,4,5,6,7,8] 1 3 4 
5 6 7 8

[1,3][3,4][4,5][5,6]
[6,7][7,4][5,7][4,8]

1

32

7

8

v == null ¬ v == null

n = 0
i = 0

¬ i < v.length
    return n;

5i++

4

6

i < v.length

throw ...

v[i] == c

¬ v[i] == c

n++

Node coverage 

TR(NC) =  {  [1], [2],[3],[4], [5],[6],[7],[8] } 

NC satisfied by { t1, t2 } or {t1, t3}

Edge coverage 

TR(EC) =  TR(NC) ∪ {  
  [1,2],[1,3],[3,4],[4,5],[4,8], [5,6],[5,7][6,7],[7,4] 
} 

EC satisfied by { t1, t3 } but not by {t1,t2}.



Beyond node/edge coverage
Edge-pair coverage (EPC) - cover all paths up to length 2

EPC subsumes NC and EPC

NC, EC, EPC are instances of the general criterion: cover 
all paths up to length k  

NC for k=0; EC for k=1; EPC for k=2;

As we increase k we approximate ... Complete-Path-
Coverage (CPC)

CPC: Cover all possible paths.
The number of paths may be infinite or very large e.g., code with 
loops (CFGs with cycles) - CPC generally not applicable.
In practice, instead of “increasing k”, we should try to pick a 
subset of “relevant” paths in the graph, e.g., criteria like Prime 
Path Coverage [Amman & Offutt].
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Mutation testing 

40

  public static int numZero(int[] x) {
    int count = 0;
    for (int i = 0; i < x.length; i++) 
      if (x[i] == 0) 
        count++;
    return count;
  }

  public static int numZero(int[] x) {
    int count = 0;
    for (int i = 1; i < x.length; i++) 
      if (x[i] == 0) 
        count++;
    return count;
  }

Introduce “faults” 
by mutating the code. 

What’s the point?



The premise for mutation testing 

Fundamental premise of mutation testing

 “if the software contains a fault, there will usually 
be a set of mutants that can only be killed by a 
test case that also detects the fault” [provided we 
consider a rich set of mutation operators], Ammann and 
Offutt

sensitivity to mutations (killing mutants)

≃
sensitivity to faults (exposing failures) 

41



“Testing the tests”
Suppose you have a test set T for program P (maybe 
derived applying some coverage criteria C, manually or 
automatically). 
Program-based mutation testing helps answering the 
following key question: 

How “good” is T (and C)? 
For m ∈ M  (the set of all mutants), if  T is “good”  then a 
test in T should kill m.
If no test in T kills a mutant m, then T should be 
reformulated (one may also question the choice of C )... 
Program-based mutation is many times taken as the 
“golden standard” of coverage criteria, given its 
potential to subsume other testing criteria.
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Killing the mutants …

i =1  is a mutation of i = 0 ; the code obtained by changing i=0 to i=1 is 
called a mutant of numZero.
We say a test kills the mutant if the mutant yields different outputs from 
the original code.

Considering x={1,0,0} the mutant is not killed; 2 is the return 
value of the method for both the original code and the mutant. 
Considering x={0,1,0}  the mutant is killed; the result is 1 
rather than 2.43

  public static int numZero(int[] x) {
    int count = 0;
    for (int i = 1; i < x.length; i++) 
      if (x[i] == 0) 
        count++;
    return count;
  }



  public static 
  int min(int x, int y) {
    int v;
    if (x < y)
      v = x;
    else
      v = y;
    return v;
  }

  public static 
  int min(int x, int y) {
    int v;

    if (x >= y)
      v = x;
    else
      v = y;
    return v;
  }

  public static 
  int min(int x, int y) {
    int v;

    if (x <= y)
      v = x;
    else
      v = y;
    return v;
  }

  public static 
  int min(int x, int y) {
    int v;
    if (x < y)
      v = x;
    else

      v = -y;
    return v;
  }

Example 2

Which mutants will be  
killed by tests: 
(t1) (x,y) = (0,0)  
(t2) (x,y) = (0,1)  
(t3) (x,y) = (2,1)  

Observe that m2 can not 
be killed. Why not?

m1

m2

m3

original
code

mutants
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x y min m1 m2 m3

t1 0 0 0 0 0 0

t2 0 1 0 1 0 0

t3 2 1 1 2 1 -1

t1 kills none of the mutants.
t2 kills m1.
t3 kills m1 and m3.

Observe that m2 will always yield 
the same result as the original 
code. Thus it cannot be killed.  It is 
a func t iona l ly equ iva len t 
mutant.
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  public static 
  int min(int x, int y) {
    int v;

    if (x >= y)
      v = x;
    else
      v = y;
    return v;
  }

  public static 
  int min(int x, int y) {
    int v;

    if (x <= y)
      v = x;
    else
      v = y;
    return v;
  }

  public static 
  int min(int x, int y) {
    int v;
    if (x < y)
      v = x;
    else

      v = -y;
    return v;
  }

m1

m2

m3

mutants



Mutation operators from PIT
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http://pitest.org

http://pitest.org


Mutation operators from PIT (2)
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http://pitest.org

http://pitest.org


Mutation operators and effectiveness

Mutants to avoid … 
stillborn mutant (i.e., dead at birth): mutant is not syntactically valid 
functionally-equivalent mutant: no test can kill it
trivial mutant: almost every test can kill it

For effectiveness, a mutation operator should:
always define a syntactically valid transformation (generate no 
stillborn mutants)
generate functionally-equivalent and trivial mutants with low 
probability 
mimic typical programmer mistakes
not be subsumed by another operator i.e., tests that kill mutants 
created by the other operator also kill the ones generated by this 
one (or a large fraction of them) 
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Mutation testing - coverage

Mutation operator o: takes a program P and yields a set of 
mutants of p, o(p).
Let O be the set of mutation operators and M be the set of all 
mutants generated using O i.e., M =  { m | m ∈ o(p), o  ∈ O } 
Killing mutants

We say a test t kills m ∈ M iff the output of t for m differs 
from the output of t for P.

Mutation coverage = percentage of mutants in M  killed by 
at least one test. 
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Mutation testing tools - basics

A MT tool has a built-in set of mutation operators. The set 
of mutants for the SUT is generated in automated manner 
according to the mutation operators.
A test set in context is ran against the mutants. As soon as 
a mutant from the set is killed, it is typically not exercised 
by further tests. 
If the mutation coverage is not satisfactory, the test set is 
typically revised and/or increased with further test cases.

Obs: The strategies for both mutant generation and test 
selection/execution can be quite elaborate in technical terms.
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Property-based testing

Approach:
Specify properties to check instead of inputs !
A great number of test cases are generated automatically, in line with the specification. 
If a property fails for a certain input, try to find the minimal input that violates the 
property, a process designated as shrinking.
Original formulation: “QuickCheck: a lightweight tool for random testing of Haskell 
programs”, Koen Claessen and John Hughes, Proc. ICFP, 2000.  Other property-based 
testing frameworks: scalacheck (Scala/Java), Hypothesis (Python), Java 
(QuickTheories), …51

Image source:   
“Better than unit tests”, M. Nygard

https://dl.acm.org/citation.cfm?id=1988046
https://dl.acm.org/citation.cfm?id=1988046
https://www.scalacheck.org/
https://hypothesis.readthedocs.io/
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 @Test 
  public void testTEAWithFixedKey() {
    TEA obj = new TEA("0123456789ABCDEF".getBytes());
    qt()
    .forAll(byteArrays(integers().between(1,256), 
            bytes(Byte.MIN_VALUE, Byte.MAX_VALUE, (byte) 0)))
    .describedAs(data -> Arrays.toString(data))
    .check( data -> Arrays.equals(data, obj.decrypt(obj.encrypt(data))));
  }

 @Test
  public void testForAnyKey() {   
    Gen<Byte> anyByte = bytes(Byte.MIN_VALUE, Byte.MAX_VALUE, (byte) 0);
    Gen<byte[]> keyGen = byteArrays(constant(16), anyValue)
                        .describedAs(Arrays::toString);
    Gen<byte[]> dataGen = byteArrays(integers().between(1, 100), 
anyValue).describedAs(Arrays::toString);
    
    qt()
    .forAll(keyGen,dataGen)
    .check( (key,data) ->  {
      TEA tea = new TEA(key);
      return Arrays.equals( tea.decrypt(tea.encrypt(data)), data);
    });
  }

fixed encryption key, but generator 
used for data (random byte array 
with length between 1 and 256)

Property: ∀data, decrypt(encrypt(data)) = data

variable key also

Validation of a Tiny Encryption Algorithm (TEA) implementation using 
QuickTheories (for Java 8)

http://www.winterwell.com/software/TEA.php
https://github.com/ncredinburgh/QuickTheories


QuickTheories (example 2)

53

 @Test 
  public void testValidPasswordNoPunct() {

  Gen<Byte> lo = bytes( (byte)'a',  (byte)'z', (byte)'a');
  Gen<Byte> up = bytes( (byte)'A',  (byte) 'Z', (byte)'A');
  Gen<Byte> digit = bytes( (byte) '0', (byte) '9', (byte)'0');

     Gen<Byte> combined = lo.mix(up,50).mix(digit,25); 
     Gen<byte[]> arrGen = byteArrays(integers().between(10, 20), combined);
     Gen<String> strGen = arrGen.map(ba -> new String(ba));

  qt()
    .withFixedSeed(0)
    .forAll(strGen)
    .assuming(s -> s.chars().anyMatch(Character::isLowerCase))
    .assuming(s -> s.chars().anyMatch(Character::isUpperCase))
    .assuming(s -> s.chars().anyMatch(Character::isDigit))
    .check(CHECKER::isPasswordOK);

  }



Input space partitioning (ISP)

Base approach: identify relevant classes of input values 
and derive test cases from it.
Step 1. Identify the input parameters for the SUT.
Step 2. Model the input domain by defining one or more 
characteristics in the input domain. Each characteristic 
defines blocks that partition the input space. 
Step 3. Apply some criterion over characteristic of the 
input domain, defining a set of test requirements.
Step 4. Derive test inputs (test cases).
Also known as equivalence partitioning.

54



Input domain (D): the set of possible values for the input 
parameters.  
A characteristic q for D is a partition of D. It defines  blocks b1 ,
… , bn such that :

∀ i,j : i≠j  bi ∩ bj = ∅       (blocks are disjoint)
D = b1 ∪ ... ∪ bn             (blocks cover the entire input domain)

Q : the set of characteristics we consider to derive test 
requirements.

ISP - definitions

D b1
b2

b3
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ISP - guidelines

Meaningful characteristics: Each characteristic should 
represent a meaningful feature for the input domain. 
Distinctive blocks: blocks of a characteristic should be 
reasonably aligned with distinctive values for it, e.g., consider:

“common use” values
boundary values
“invalid use” values
relevant relations between input parameters

Subdomains: if necessary break down domain into sub-domains 
E.g. first partition into “valid” and “invalid” values, then define 
characteristics for each of these domains, or sub-partition them further 
if convenient.
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isPasswordOK example
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  /**
   * Test if password is OK.
   * @param password The password
   * @return  <code>true</code> is password is OK.
   */
  boolean isPasswordOK(String password);



isPasswordOK example (2)

Null vs non-null characteristic
Breaks domain into “null” sub-domain and “non-null” subdomain 

For the “non-null” subdomain we may consider:
l = Length of password 
U = # upper-case characters
L = # lower-case characters
D = # digits
P = # punctuation characters
I = # invalid symbols
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isPasswordOK example (3)

Possible blocks for the length characteristic (l)
l < 10,  10 <= l <= 20, l  > 20 (3 blocks)
The blocks must define a partition. Thus, the block values do 
not intersect and we cannot rule out any possible value of L.
A more fine-grained choice could consider l=10 and l=20 blocks 
to force testing of boundary values for length.

A possible choice of blocks for the X = U, L, D, and I 
characteristics

X=0, X > 0 (2 blocks each)

Finally, for P (the punctuation characters)
P = 0, P = 1, P > 1 
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isPasswordOK example (4)

Input “Ab1234567890” fits in the following blocks:
10 <= l <= 20 (the length is 12)
U > 0

L > 0

D > 0

P = 0

I = 0

What are the blocks for “ABxy12!$?” ? 
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ISP coverage criteria
t-wise coverage (TWC)

Cover t blocks of different characteristics by at least one test 
case.  

Each Choice Coverage (ECC) [t=1]
Cover each block of each characteristic at least once.

Pair-wise Coverage (ECC)  [t=2]
Cover each block pair of two different characteristic at least 
once.

All-Combinations Coverage (ECC) [t = number of 
characteristics]

Cover each combinations of blocks of different characteristic at 
least once.
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ECC coverage for isPasswordOK

A few tests are enough, for instance:
“Ab1234567890” covers blocks 10 <= l <= 20, U > 0, 
L > 0, D > 0, P = 0, I = 0

“!@” covers blocks l < 10, U = 0, L = 0, D = 0, P 
= 1, I > 0

“!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!” 
covers blocks l > 20, U = 0, L = 0, D = 0, P > 1, 
I = 0
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PWC coverage for isPasswordOK

“Ab1234567890” will cover 15 block pairs (5 + 4 + 3 + 2 
+ 1)

(10 <= l <= 20, U > 0), (10 <= l <= 20, L > 0), 
(10 <= l <= 20, D > 0) (10 <= l <= 20, P = 0), 
(10 <= l <= 20, I = 0)

(U > 0, L > 0), (U > 0, D > 0), (U > 0, P = 0), 
(U > 0, I = 0)

(L > 0, D > 0), (L > 0, P = 0), (L > 0, I = 0), 

(D > 0, P = 0), (D > 0, I = 0)

(P =0, I = 0)

Covering all block pairs will require more test cases. 

63



ISP - test effort vs coverage

ECC
∑i=1, ..., |Q|  | Bi |  test requirements, at least maxi=1, ..., |Q| |Bi| tests. 
isPasswordOK:   >= 3 tests

PWC
∑i,j=1, ..., |Q|, i != j | Bi | . |Bj| requirements, at least  M2  tests for M = 
maxi=1, ..., |Q| |Bi |
isPasswordOK:   ~ 3 x 3 = 9 tests

ACoC
∏i=1, ..., |Q|  | Bi |  test requirements and as many tests required 
isPasswordOK: 3 x 2 x 2 x 2 x 2 x 3 = 144 tests
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Security-oriented
testing



Security testing

How does security testing differ from standard program 
testing?

Security features must be tested with regard to possible 
adversarial actions => guided by the requirements posed to 
security-minded code. 
Other features must be tested in respect to “unintended 
behavior” => guided by the possibility of common 
vulnerabilities in standard code

What are general recommended practices? How can 
standard or specific testing approaches help?
As an introductory discussion, let’s have a look at some of 
the activities in the BSIMM Security Testing touchpoint.
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https://www.bsimm.com/framework/software-security-development-lifecycle/software-security-testing.html


BSIMM - Security Testing

[ST1.1: 100] “Ensure QA supports edge/boundary value 
condition testing”

“The QA team goes beyond functional testing to perform basic 
adversarial tests and probe simple edge cases and boundary 
conditions, no attacker skills required.”

[ST1.3: 88] “Drive tests with security requirements and 
security features.”

“For the most part, security features can be tested in a fashion 
similar to other software features.”

Standard software testing practices apply. We will see 
a few important approaches in this sense.
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BSIMM - Security Testing (cont.)

“[ST3.4: 3] Leverage coverage analysis”
“Testers measure the code coverage of their security tests. 
Code coverage analysis drives increased security testing 
depth.”

“[ST2.5: 12] Include security tests in QA automation”
“Security tests run alongside functional tests as part of 
automated regression testing. In fact, the same automation 
framework houses both, and security testing is part of the 
routine.”

Again, standard software testing practices apply.
[ST2.5: 12] mentions regression testing ? Q: Are you 
familiar with it?

68



A note on regression testing

Regression testing: testing if updated software still 
behaves the same (in regard to unchanged requirements) 
after a change in its code (bug fix, new feature) or after  
integration with an updated version of an external 
component.
Ideally, a regression test suite is composed of a minimal 
set of “core tests” that always run in automated fashion 
whenever an update takes place. 
In a large code base, determining which tests should be 
part of (or removed from) the regression suite is not 
straightforward. Running regression test suites (if too big) 
for instance on every build may also be quite costly.
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BSIMM - Security Testing (cont.)
[ST2.1: 30] “Integrate black-box security tools into the QA 
process.”

“The organization uses one or more black-box security testing tools as 
part of the QA process. Such tools are valuable because they 
encapsulate an attacker’s perspective, albeit generically”.
Some commercial frameworks are mentioned in the text combining static/
dynamic analysis, pen-testing and fuzz testing.

[ST2.6: 13] Perform fuzz testing customized to application 
APIs.

“Test automation engineers or agile team members customize a fuzzing 
framework to the organization’s APIs.The fuzzing framework has a built-
in understanding of the application interfaces it calls into.”

Fuzz testing? A common practice in security-oriented testing, 
but not in standard program testing. We will see what it 
means.
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BSIMM - Security Testing (cont.)

“[ST3.3: 4] Drive tests with risk analysis results.”
“Testers use architecture analysis results to direct their 
work […] Adversarial tests like these can be developed 
according to risk profile, with high-risk flaws at the top of 
the list.”

“[ST3.5: 3] Begin to build and apply adversarial security 
tests (abuse cases).”

“Testing begins to incorporate test cases based on abuse cases”

These are important aspects mentioned earlier in the course. 
They require expertise and overall understanding of: 

the software architecture and design
the inherent attack surface
the SDLC process in place
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BSIMM testing activities — state of 
practice (2018)

Source: BSIMM 9 - Gary McGraw, Ph.D., Sammy Migues, and Jacob West 
“[the]  result of a multiyear study of real-world software security initiatives We present the BSIMM8 
model as built directly out of data observed in 109 software security initiatives” 
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20  |  Building Security in Maturity Model (BSIMM) Version 9

SSDL Touchpoints continued...</>

SECURITY TESTING (ST)

ACTIVITY DESCRIPTION ACTIVITY PARTICIPANT %

LEVEL 1

Ensure QA supports edge/boundary value condition testing. ST1.1 83.3

Drive tests with security requirements and security features. ST1.3 73.3

LEVEL 2

Integrate black-box security tools into the QA process. ST2.1 25.0

Share security results with QA. ST2.4 11.7

Include security tests in QA automation. ST2.5 10.0

Perform fuzz testing customized to application APIs. ST2.6 10.8

LEVEL 3

Drive tests with risk analysis results. ST3.3 3.3

Leverage coverage analysis. ST3.4 2.5

Begin to build and apply adversarial security tests (abuse cases). ST3.5 2.5

https://www.bsimm.com/download.html


Fuzzing
(fuzz testing)



Fuzzing
What is fuzzing ? 

Testing software with invalid and possibly malicious data, 
usually generated in semi-automatic manner.

What is the goal of fuzzing?
Evaluate program response to invalid input, rather than 
“common case” inputs used for plain functional testing.

Optimal response to invalid inputs:
a grafecul failure  — in line with the “Fail Safely” design 
principle. Nothing “unintended” or “bad” happens!

Vulnerable responses to invalid input  may include 
(possibly a combination of):

program crashes, memory corruption (e.g. buffer 
overflows). failure to detect the error in input
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Deriving inputs

Deriving inputs — essential techniques
Randomisation: generate random inputs, or introduze 
randomness during generation:
Mutation: mutate given inputs according to some criteria
Grammar-based generation: use a grammar to generate 
inputs
Hybrid approaches combining these are common.

Fuzz-testing process
Black-box: generate inputs and monitor execution result, 
blindly.
White-box: guide input generation according to feedback from 
execution + information regarding program structure.

75



Random input

No context of the software at stake or the type of input. 
Easy to implement, but will typically expose only shallow 
bugs
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$ head -c 15 /dev/urandom | xargs ping
ping: cannot resolve ?c?ׇD?\fN\016?=?;?: Unknown host



Mutation-based input generation

Start from valid inputs, mutate them according to some 
strategy for instance:

Applying randomisation, e.g., random bit flips.
More generally, applying mutation rules 
Mutation fragments may be domain-specific, e.g., contain shell-
code, SQL injection, etc.

Ability to expose bugs:  dependent on starting inputs and 
mutation expressiveness for the context at stake.
Example tools next: radamsa, ZAP fuzze, zzuf

77



Example tools — radamsa

Radamsa: a mutation-based input generator
Mutates given inputs, randomly applying pre-defined 
mutation rules and patterns.
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$ echo 192.168.106.103 | radamsa --count 10 --seed 0
-107.167.106.103
192.168.8407971865571866.-9�5154737306362663942413194069
191.1A1.1A1.106.1
192.129.18.106.103
192.168.0.103
192.170141183460.106.1802311213346089.104
-3402823669209.106.168.106.16.103
192093846346337460765704.192.65704.-1.?-18446744073709518847
192.106.0
191.168.106.103
$ echo 192.168.106.103 | radamsa --count 1 --seed 0 | xargs ping
ping: invalid option -- 1

https://gitlab.com/akihe/radamsa


Example tools — radamsa (2)

Example mutations and mutation patterns (listed with 
radamsa  --list)
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$ ./radamsa --list
Mutations (-m)
  ...
  bd: drop a byte
  bf: flip one bit
  bi: insert a random byte
  ...
  sr: repeat a sequence of bytes
  sd: delete a sequence of bytes
  ld: delete a line
  ...
  ls: swap two lines
  ...
  num: try to modify a textual number
  xp: try to parse XML and mutate it
  ...
Mutation patterns (-p)
  od: Mutate once
  nd: Mutate possibly many times
  bu: Make several mutations closeby once



ZAP fuzzer 
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Select part of the input to “fuzz 
with”, in this case the “1” value that 
is part of the HTTP request header

Select “fuzz set” of replacements 
for the chosen input, in this case 
strings likely to trigger SQLi, if a 
vulnerability of this kind exists

Several test cases will be 
considered for execution, each 

replacing ‘1’ by potentially 
malicious input 

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project


Example programs - zzuf

zzuf automates the fuzzing process by transparently fuzzing read 
from files or from the network.

Mutations are introduced randomly according to a specifed bit fuzzing ratio.
The target program runs in batch mode for a specified number of trials / seeds.
It has been sucessfull in uncovering bugs in real-world programs.

81

zzuf -r 0.02 -s 1:3 cat ./silly_program.c

J'a|cl}de <st?i?.h>

inu`main(int avgc, char*? argw) {
   int l = 0;
  whidE("fgfgets*buf,sizeof(Buf-, f) != NULL- {
    pryntf(btf?;
  }  dclose(f);
  retezn 0;J}

#include |stdio.h

i|t main(int aRfc, ch`r** argv) {
  ahar buf[128};

https://github.com/samhocevar/zzuf
http://caca.zoy.org/wiki/zzuf/bugs


Example programs - zzuf (2)
In this case zzuf transparently mutates data from the network (use of 
the -n switch).
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$ zzuf -r 0.02 -s 1 -n curl http://www.dcc.fc.up.pt/~edrdo/aulas/qses/index.html
 % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   328    0   328    0     0     60      0 --:--:--  0:00:05 --:--:--     0
HT?P'1.1 200 OK
D?te: Wmd, 1"dec 2018 1=;42:36 GMt
fips PHP/54*1>?2.4.6"(CentO[)0OrenSSL/1.0.k
L?st/Modif?ed: WeD, 12 Dec 0q8$!5:40:54 GMT
Etag: "07-57bd?86197e5a"
Acce`t-Ranges: bxtus
ConteNt-Lmngth: 71
Cltent-Type: |ext.html

8html>?<rody>

ZZUF!|est(resource -- QSS 0018/2019

</body>
       </html>

  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100    71  100    71    0     0    220      0 --:--:-- --:--:-- --:--:--  1145
<html>
<body>

ZZUF test resource -- QSES 2018/2019

</body>
</html> Normal execution

“Fuzzed” execution



Grammar-based input generation

Generate inputs using a grammar.
Grammar rules may express possible deviations.
Combination with mutation: alternatively, valid inputs may be 
generated using a grammar, and then mutated. 
This approach can be more systematic, is potentially able to 
generate more relevant inputs, and account for complex 
combinations of input fragments.

Example tool illustrated next: blab 
A few others of the same kind: ABNFfuzzer gramfuzz
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https://github.com/aoh/blab
https://github.com/nradov/abnffuzzer
https://d0c-s4vage.github.io/gramfuzz/


Example tools - blab

Blab: a grammar-based black-box fuzzer
Inputs generated according to grammar. In this example 
the grammar generates only valid IP addresses.
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$ blab ip_address.blab -n 10 —s 0
4.4.4.104
5.148.205.94
0.237.230.95
0.140.232.252
178.81.250.6
252.252.252.8
135.159.123.250
204.5.172.8
177.188.21.213
0.78.204.240

output = ip_address "\n"
ip_address = octet "." octet "." octet "." octet
octet = [0-9] | [1-9][0-9] | “1” [0-9][0-9] | “2” [0-4][0-9] | “25” [0-5]

ip_address.blab

https://github.com/aoh/blab


Example tools - blab (2)

In this variation we allow the possibility of malformed IP IP 
addresses. 

85

$ blab fuzzed_ip_address.blab -n 10 -s 0
40.4.40.40
143.696.528.100
137.013.61.242
7.433.5.522
113.277.743.145
123.6.119.235
740.810.87.801
221.077.43.319
079.737.507.518
947.479.245.947

output = fuzzed_ip_address "\n"
fuzzed_ip_address = octet "." octet "." octet "." octet
octet = normal_octet | fuzzed_octet
normal_octet = [0-9] | [1-9][0-9] | “1” [0-9][0-9] | “2” [0-4][0-9] | “25” [0-5]
fuzzed_octet = [0-9]{3} 

fuzzed_ip_address.blab



Generate, then mutate

Generation and mutation can be combined, e.g., blab + 
radamsa.
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$ blab fuzzed_ip_address.blab -n 5 -s 0 | tee generated.txt
40.4.40.40
143.696.528.100
137.013.61.242
7.433.5.522
113.277.743.145
$ radamsa --count 1 --seed 22 generated.txt -p nd=10
3321759348573678331568.4.40.40
143.696.528.100
1.013.61.0
7.65535.9223372036854775803.522
113.280.743.145



Black-box fuzzing

Simplest approach — “black box” fuzzing
Repeatedly feed the program with fuzzed inputs, 
without consideration for the program structure.
Observe program responses and assert that program 
fails gracefully / nothing “bad” happens (crashes, 
memory corruption etc).

Looking for bugs — possible strategies
Instrument the program with runtime sanitizers to 
monitor abnormal program execution (undefined 
behavior, buffer overflows, etc)
Inspect exit codes (e.g. SIGSEV = 139 — segmentation 
fault),  program output, etc
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White-box fuzzing
Idea

Monitor (instrumented) program state during execution and observe 
which changes to input cause new program states to be explored. 
The information is used to generate new inputs, trying to avoid inputs 
that repeat the same program paths.  

The goal is to explore the state-space of the program as 
extensively as possible / increase code coverage.

The execution is automatic, but can be time-consuming given that 
many executions of the program under test will be triggered.
Tools can derive inputs randomly or (with better results) through 
mutations of a pre-defined set of inputs that are accepted by the 
program.

Example tools:
AFL, libFuzzer, SAGE
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http://lcamtuf.coredump.cx/afl/
http://llvm.org/docs/LibFuzzer.html
https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf


libFuzzer / AFL

libFuzzer, AFL
The fuzzers are employed by ClusterFuzz and Google’s OSS-
Fuzz project (“continuous fuzzing of open source software”)
Employ program instrumentation/monitoring coupled with input 
mutation techniques that are guided by runtime coverage 
information.
The fuzzers are quite more effective if supplied with an initial 
corpus of input samples that are representative of the program 
execution.
Normally used in combination with sanitizers to uncover bugs, 
e.g. AddressSanitizer.
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https://google.github.io/clusterfuzz/
https://github.com/google/oss-fuzz/
https://github.com/google/oss-fuzz/


libFuzzer — example test

LLVMFuzzerTestOneInput: test entry point
data: fuzzed input from initial corpus or randomly 
generated90

extern char* escapeHTML(char* input);

int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
  if (size > 0) {
    // Ensure null termination
    char* buf = (char*) malloc(size+1);
    memcpy(buf, data, size);
    buf[size] = 0;

    // Call function to test
    char* edata = escapeHTML(buf);

    // Clean-up
    free(buf);
    free(edata);
  }
  return 0;
}



libFuzzer — example test (2)

Execution takes initial input samples (seeds dir) and derives more 
inputs (corpus d i r) . Bug is then eventual ly detected by 
AddressSanitizer.91

$ clang -g -fsanitize=address,fuzzer escapeHtml.c fuzzTest.c -o fuzzTest
$ ./fuzzTest corpus seeds
INFO: Seed: 1148001052
INFO: Loaded 1 modules   (13 inline 8-bit counters): 13 [0x5a5f70, 
0x5a5f7d), 
…
INFO: -max_len is not provided; libFuzzer will not generate inputs larger 
than 4096 bytes
INFO: seed corpus: files: 1 min: 73b max: 73b total: 73b rss: 27Mb
#2 INITED cov: 12 ft: 13 corp: 1/73b exec/s: 0 rss: 27Mb
…
=================================================================
==18004==ERROR: AddressSanitizer: heap-buffer-overflow on address 
0x602000004dd5 at pc 0x00000054f5ac bp 0x7ffc444e1990 sp 0x7ffc444e1988
…
artifact_prefix='./'; Test unit written to ./
crash-0ed93db39ee78666320ef6bf9145483c206743d4
Base64: 
JgAAALa2q6urq6urq21sJjwAAAAmPSYAJiY8AAAAAAAAACs8AAAAJiYmJiYmJiYmJiYmJiYma
AAAAAAAAAAAAAAAACs8JnRtDw==



Symbolic
execution



Symbolic execution

Approach:
Execute a program, treating some or all of the inputs as 
symbolic — actual values need not be specified.
When a branch condition that depends on symbolics input, 
follow each branch leading to a symbolic execution tree.
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Symbolic execution tree
Each node represents a symbolic execution state 
and is defined by:

the program counter (PC) 
set of (reachability) conditions over the symbolic inputs

Each path in the tree represents a set of possible 
executions with the same reachability conditions.

94

  int getSign(int x) {
    int r ;
    if (x == 0)
      r = 0;
    else if (x < 0)
      r = -1;
    else 

   r = 1;
    return r;
  }

[screenshot obtained using the KeY Symbolic Execution Debugger]

http://i12www.ira.uka.de/key/~key/eclipse/SED/tutorial.html


Major aspects
Automated verification

no need to specify concrete inputs as in testing — in fact we can use 
symbolic execution to generate test cases instead!
coverage can be guided by precise (boundary) conditions, unlike fuzz-testing

Path explosion …
The number of execution paths grows exponentially with respect to the 
number of inputs, control branches, … 
Mitigations: coverage criteria constraints, special techniques (e.g. partial 
order reduction to identify/merge equivalent states, exploration heuristics)

Environment interface (e.g., OS system calls, multi-threading):
Native execution (simple), but leads to non-deterministic side effects being 
propagated  down the execution tree (global execution may be not accurate / 
repeatable)
Approach: implement a set of primitives of interest through a symbolic 
execution layer
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A few symbolic execution tools

C / LLVM
Klee (discussed next) 
Cloud9
S2E

x86
angr
Triton

Java
Java Path Finder (JPF) - symbc module
KeY symbolic execution debugger
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https://klee.github.io/
http://cloud9.epfl.ch/
http://s2e.systems/
https://angr.io/
https://triton.quarkslab.com/
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
http://i12www.ira.uka.de/key/~key/eclipse/SED/tutorial.html


Klee

Features:
Symbolic execution of LLVM bytecode 
Bindings for POSIX runtime, libc, and uclibc (library calls can be 
executed symbolically)
Program arguments and standard input can be symbolic, there 
is also support for symbolic files

Fast start:
Online: http://klee.doc.ic.ac.uk/
Docker image: http://klee.github.io/docker/ (used in class)
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http://klee.doc.ic.ac.uk/
http://klee.github.io/docker/
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  char pass[MAX_PASSWORD_LEN+1];
  klee_make_symbolic(pass, sizeof(pass), "pass");
  isPasswordOK(pass);

pany.c

passwd.c
  int isPasswordOK(const char* pass) {
    …
    int len = strlen(password);
    …
  }

$ clang -emit-llvm -g -I $KLEE_SRC_ROOT/include -c testAnyString.c passwd.c
$ llvm-link testAnyString.bc passwd.bc -o testAnyString 

compilation

$ klee --max-time=60 --libc=uclibc ./testAnyString
…
KLEE: ERROR: /home/klee/klee_build/klee-uclibc/libc/string/strlen.c:22: memory 
error: out of bound pointer
KLEE: done: generated tests = 9

Klee execution

Klee test case inspection (for the error)

$ ktest-tool --write-ints --trim-zeros klee-last/test000002.ktest
ktest file : ‘klee-last/test000002.ktest'
args       : ['testAnyString']
num objects: 1
object    0: name: b'pass'
object    0: size: 13
object    0: data: b'\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01'
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  char pass[MAX_PASSWORD_LEN+1];
  klee_make_symbolic(pass, sizeof(pass), "pass");
  isPasswordOK(pass);

pany.c

passwd.c
  int isPasswordOK(const char* pass) {
    …
    int len = strlen(password);
    …
  }

$ clang -emit-llvm -g -I $KLEE_SRC_ROOT/include -c testAnyString.c passwd.c
$ llvm-link testAnyString.bc passwd.bc -o testAnyString 

compilation

$ klee --max-time=60 --libc=uclibc ./testAnyString
…
KLEE: ERROR: /home/klee/klee_build/klee-uclibc/libc/string/strlen.c:22: memory 
error: out of bound pointer
KLEE: done: generated tests = 9

Klee execution

Klee test case inspection (for the error)

$ ktest-tool --trim-zeros klee-last/test000002.ktest
ktest file : ‘klee-last/test000002.ktest'
args       : ['testAnyString']
num objects: 1
object    0: name: b'pass'
object    0: size: 13
object    0: data: b'\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01'

pass is marked 
as symbolic

strlen vulnerable 
to buffer overflow

klee execution detects 
buffer overflow / program crash 

this input value for pass 
is not null-terminated



In this case, klee finds no buffer overflow errors
In fact, no errors at all, we can add more assumptions of 
interest but also assertions
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  char pass[MAX_PASSWORD_LEN+1];
  klee_make_symbolic(pass, sizeof(pass), "pass");
  int len = klee_range(0, sizeof(pass)-1, "len");
  klee_assume(pass[len] == 0);
  isPasswordOK(pass);

pass is marked 
as symbolic

len is also symbolic — an integer 
with range between 0 and 

sizeof(pass)-1
Klee executes under the 

assumption that  
pass[len] == 0 

i.e.  that pass is null-terminated

pnulltermstring.c



Assumptions:
Password has valid length, and contains at least one lower case letter, one upper case letter, and one digit

Assertions
isPasswordOK should return 1.
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  #define LET_POS(var, cond) \
  int var = klee_range(0, len-1, #var); klee_assume(cond);

  char pass[MAX_PASSWORD_LEN+1];
  klee_make_symbolic(pass, sizeof(pass), "pass");
  int len = klee_range(MIN_PASSWORD_LEN, MAX_PASSWORD_LEN, "len");
  LET_POS(lpos, IS_LOWER(pass[lpos]));
  LET_POS(upos, IS_UPPER(pass[upos]) & (upos != lpos));
  LET_POS(dpos, IS_DIGIT(pass[dpos]) & (dpos != lpos) & (dpos != upos));
  klee_assume(pass[len] == 0);
  for (int i=0; i < len; i++) {
     if (i != dpos && i != lpos && i != upos) {
       char c = pass[i];
       klee_assume(  IS_DIGIT(c)
                   | IS_UPPER(pass[i])
                   | IS_LOWER(pass[i]));
     }
  }

  int ok = isPasswordOK(pass);
  klee_assert(ok); pvalidLUD.c



A few research highlights
Overview papers

Symbolic execution for software testing in practice: preliminary 
assessment, Cadar et al., ICSE’11
All You Ever Wanted to Know about Dynamic Taint Analysis and Forward 
Symbolic Execution (but Might Have Been Afraid to Ask) , Schwartz et al., 
SP’10

A few example applications / tools
KLEE: Unassisted and Automatic Generation of High-Coverage Tests for 
Complex Systems Programs, OSDI’08
SAGE: Whitebox Fuzzing for Security Testing, Godefroid et al, CACM’12 
Automatic Exploit Generation, Avgerinos et al., CACM, 2014 -
Checking Interaction-Based Declassification Policies for Android Using 
Symbolic Execution , Micinski et al., ESORICS’15
SAFELI – SQL Injection Scanner Using Symbolic Execution, Fu & Xian, 
TAV-WEB '08
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