
Questões de Segurança em Engenharia de Software (QSES)
Mestrado em Segurança Informática
Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Eduardo R. B. Marques, edrdo@dcc.fc.up.pt

Software testing

mailto:edrdo@dcc.fc.up.pt?subject=

Software testing

Testing
Observe if software meets the expected behavior when
executed.
Does not guarantee absence of bugs, in fact it seeks to expose
them.

2

How important is testing?

Testing is the standard approach for ensuring that
software has a high level of reliability.
No (serious) SDLC process goes without testing.3

Image source: History of software testing, blog article, Ashish Singh, 2012

http://ashishqa.blogspot.pt/2012/12/history-of-software-testing.html

Testing levels & the SDLC
introtest CUUS047-Ammann ISBN 9780521880381 November 8, 2007 17:13 Char Count= 0

6 Overview

Requirements
Analysis

Architectural
Design

Subsystem
Design

Detailed Design

Implementation Unit
Test

Module
Test

System
Test

Integration
Test

Acceptance
Test

Test

Design

Information

Figure 1.2. Software development activities and testing levels – the “V
Model”.

whether the software does what the users want. Acceptance testing must involve
users or other individuals who have strong domain knowledge.

The architectural design phase of software development chooses components
and connectors that together realize a system whose specification is intended to
meet the previously identified requirements. System testing is designed to determine
whether the assembled system meets its specifications. It assumes that the pieces
work individually, and asks if the system works as a whole. This level of testing usu-
ally looks for design and specification problems. It is a very expensive place to find
lower-level faults and is usually not done by the programmers, but by a separate
testing team.

The subsystem design phase of software development specifies the structure and
behavior of subsystems, each of which is intended to satisfy some function in the
overall architecture. Often, the subsystems are adaptations of previously developed
software. Integration testing is designed to assess whether the interfaces between
modules (defined below) in a given subsystem have consistent assumptions and com-
municate correctly. Integration testing must assume that modules work correctly.
Some testing literature uses the terms integration testing and system testing inter-
changeably; in this book, integration testing does not refer to testing the integrated
system or subsystem. Integration testing is usually the responsibility of members of
the development team.

The detailed design phase of software development determines the structure and
behavior of individual modules. A program unit, or procedure, is one or more con-
tiguous program statements, with a name that other parts of the software use to
call it. Units are called functions in C and C++, procedures or functions in Ada,
methods in Java, and subroutines in Fortran. A module is a collection of related
units that are assembled in a file, package, or class. This corresponds to a file in
C, a package in Ada, and a class in C++ and Java. Module testing is designed to
assess individual modules in isolation, including how the component units interact
with each other and their associated data structures. Most software development
organizations make module testing the responsibility of the programmer.

4
 From: “Introduction to Software Testing”, Amman & Offutt

How “mature” should testing be?

Beizer’s scale for test process maturity
Level 0: “There’s no difference between testing and
debugging.”

Question: What is debugging?

Level 1: “The purpose of testing is to show that the software
works.”
Level 2: “The purpose of testing is to show that the software
doesn’t work.”
Level 3: “The purpose of testing is not to prove anything
specific, but to reduce the risk of using the software.”
Level 4: “Testing is a mental discipline that helps all IT
professionals develop higher quality software.”

5

Base concepts &
terminology in

software testing

Test case

7

setup
(prefix

actions/values)

1
2

define
test case

values (inputs)

3

execute
software

under
test (SUT)

compare
test

outputs
vs

expected
values

4

teardown
(postfix

values/actions)

5

execution

failure success

Test case (cont.)
Test case inputs: the input values necessary to complete a particular
execution of the SUT.

The data supplied by to the SUT (e.g. method arguments).
The pre-state (starting state) of the SUT (if stateful).

Expected outputs: the expected values for the test case if and only if
the program satisfies its intended behavior.

The data produced by the SUT in response to the input (e.g. function return
values).
The post-state of the SUT (if stateful).

Test failure: expected outputs != observed outputs
Prefix values/actions: inputs/commands necessary to put the SUT or
its environment into the appropriate state before execution e.g.
database setup.
Postfix values/actions : inputs/commands necessary to reset the
SUT or its environment after execution e.g. database teardown.

8

A simple bug

There is a simple “bug” in numZero…
Where is the bug location in the source code ? How would you fix it?
If the bug is location is reached, how does it corrupt program state? Does it
always corrupt program state ?
If program state is corrupted, does numZero fail ? How?

The term “bug” is ambiguous however … are we referring to the
source code or to outcome of a failed execution ? We need clear
terminology.

9

 public static int numZero(int[] x) {
 // Effects: if x == null throw NullPointerException
 // else return the number of occurrences of 0 in x
1 int count = 0;
2 for (int i = 1; i < x.length; i++)
3 if (x[i] == 0)
4 count++;
5 return count;
 }

Example test cases for numZero

test
case

test case
values (x)

expected values actual execution failure?

1 null NullPointerException NullPointerException No

2 { } 0 0 No

3 { 1,2,3 } 0 0 No

4 {1,0,1,0} 2 2 No

5 {0,1,2,0} 2 1 Yes10

 public static int numZero(int[] x) {
 // Effects: if x == null throw NullPointerException
 // else return the number of occurrences of 0 in x
1 int count = 0;
2 for (int i = 1; i < x.length; i++)
3 if (x[i] == 0)
4 count++;
5 return count;
 }

Fault, Error, Failure [Falta,Erro, Falha]

Fault: a defect in source code [the location of the bug]
i = 1 in the code [should be fixed to i = 0]

Error: erroneous program state caused by execution of the defect [semantic effect of
the bug]

i becomes 1 (array entry 0 is not ever read)

Failure: propagation of erroneous state to the program outputs
[manifestation of the bug]

The output value for x = { 0, 1, 0 } is 1 instead of the expected value 2.
Failure happens as long as x.length > 0 && x[0] = 0

11

 public static int numZero(int[] x) {
 // Effects: if x == null throw NullPointerException
 // else return the number of occurrences of 0 in x
1 int count = 0;
2 for (int i = 1; i < x.length; i++)
3 if (x[i] == 0)
4 count++;
5 return count;
 }

State representation - convention

We will represent program states using the notation
<var=v1,...,varN=vN, PC=program counter>

Example sequence of states in the execution of
numZero({0,1,2,0})

1: < x={0,1,2,0}, PC=[int count=0 (l1)] >

2: < x={0,1,2,0}, count=0, PC=[i=1 (l2)] >

3: < x={0,1,2,0}, count=0,i=1,PC=[i<x.length
(l2)] >

4: < x={0,1,2,0}, count=0,i=1,PC=[if(x[i]==0)
(l3)] >

...

<x={0,1,2,0}, count=1, PC=[return count;(l5)] >

12

Error state - convention
We will use the convention: an error state is the first different state in
execution in comparison to an execution to the state sequence of
what would be the correct program.
If we had i=0 the execution of numZero({0,1,2,0}) would begin
with states:

1: < x={0,1,2,0}, PC=[int count=0 (l1)] >

2: < x={0,1,2,0}, count=0, PC=[i=0 (l2)] >

3: < x={0,1,2,0}, count=0,i=0,PC=[i<x.length (l2)] > ...

Instead we have
1: < x={0,1,2,0}, PC=[int count=0 (l1)] >

2: < x={0,1,2,0}, count=0, PC=[i=1 (l2)] >

3: < x={0,1,2,0}, count=0,i=1,PC=[i<x.length (l2)] > ...

The first error state is 2: < x={0,1,2,0}, count=0, PC=[i=1
(l2)] >

13

The RIP Conditions for test failure

Reachability
The fault in the source code is reached during execution.

Infection
The program state enters in an error state, affected by the
execution of the faulty code.

Propagation
The errors in program state are propagated to the ouputs.

14

numZero: execution w/error and failure
reachability + infection + propagation

Considering an execution where x = { 0, 1, 2, 0}
Error: <x={0,1,2,0}, i=1, count=0, PC= if ...,l3>
deviates from expected internal state <x={1,0,2,0},
i=0,count=1,PC =[if ..., l3]>

And failure: numZero({0,1,2,0}) will return 1 rather than 2.

15

 public static int numZero(int[] x) {
 // Effects: if x == null throw NullPointerException
 // else return the number of occurrences of 0 in x
1 int count = 0;
2 for (int i = 1; i < x.length; i++)
3 if (x[i] == 0)
4 count++;
5 return count;
 }

numZero: execution w/error but no failure
reachability + infection but no propagation

Considering an execution where x = { 1, 0, 2, 0}
Error: <x={1,0,2,0}, i=1, count=0, PC= if ...,l3>
deviates from expected internal state <x={1,0,2,0},
i=0,count=1,PC =[if ..., l3]>

No Failure! numZero({1,0,2,0}) will return 2 as expected.

16

 public static int numZero(int[] x) {
 // Effects: if x == null throw NullPointerException
 // else return the number of occurrences of 0 in x
1 int count = 0;
2 for (int i = 1; i < x.length; i++)
3 if (x[i] == 0)
4 count++;
5 return count;
 }

More terminology
Test set: a set of test cases. We will use notation T for a test
set.
Test requirement : requirement that should be satisfied by a
test set. Test requirements normally come in sets. We use
notation TR for the set of test requirements.
Coverage criterion: A coverage criterion C is a rule or
collection of rules that define a set of test requirements TR(C)
to be satisfied by a test set.
Coverage level: the percentage of test requirements that are
satisfied by a test set. We say T satisfies C if the coverage
level of TR(C) by T is 100 %.
Infeasible requirement: requirement that cannot be satisfied
by any test case. If there are infeasible test requirements, the
coverage level will never be 100%.

17

Structural coverage criteria

Line coverage (LC): cover every line in the SUT.
TR(LC) = { line 1, line 2, line 3, line 4, line 5 }

Instruction coverage (IC): cover every instruction in the SUT.
TR(IC) = { I1, I2, I3, I4, I5, I6, I7 }

Branch coverage (BC): cover every instruction, and including
all cases at choice points (if, switch-case, etc).

TR(BC) = { NPE-B1, B1, !B1, B2, !B2 }
18

 public static int numZero(int[] x) {
 // Effects: if x == null throw NullPointerException
 // else return the number of occurrences of 0 in x
1 int count = 0; /* I1 */
2 for (int i = 1 /* I2 */; i < x.length /* I3,B1 */; i++ /* I4 */)
3 if (x[i] == 0) /* I5,B2 */
4 count++; /* I6 */
5 return count; /* I7 */
 }

LC, IC, BC for numZero

19

 public static int numZero(int[] x) {
 // Effects: if x == null throw NullPointerException
 // else return the number of occurrences of 0 in x
1 int count = 0; /* I1 */
2 for (int i = 1 /* I2 */; i < x.length /* I3,B1 */; i++ /* I4 */)
3 if (x[i] == 0) /* I5,B2 */
4 count++; /* I6 */
5 return count; /* I7 */
 }

test
case

test case values
(x)

expected
values

exec.
result

test
fails?

LC IC BC

t1 null NPE NPE no 1 2 i1 i2 i3 NPE-B1

t2 { } 0 0 no 1 2 5 i1 i2 i3 i7 !B1

t3 {1,2} 0 0 no 1 2 3 5 All except i6 B1, !B1, !B2

t4 {0,0 } 2 1 yes All All B1, !B1, B2

t5 {1,1,0} 1 0 no All All B1, !B1, B2, !B2

LC, IC, BC for numZero

20

T (test set) LC level IC level BC level

{ t1 } 40 % (2/5) 42 % (3/7) 20 % (1/5)

{ t1, t2 } 60 % (3/5) 57 % (4/7) 40 % (2/5)

{ t2, t3 } 80 % (4/5) 85 % (6/7) 60 % (3/5)

{ t4 } 100 % (5/5) 100 % (7/7) 60 % (3/5)

{ t1, t5} 100 % (5/5) 100 % (7/7) 100 % (5/5)

test
case

test case values
(x)

expected
values

exec.
result

test
fails?

LC IC BC

t1 null NPE NPE no 1 2 i1 i2 i3 NPE-B1

t2 { } 0 0 no 1 2 5 i1 i2 i3 i7 !B1

t3 {1,2} 0 0 no 1 2 3 5 All except i6 B1, !B1, !B2

t4 {0,0} 2 1 yes All All B1, !B1, B2

t5 {1,1,0} 1 0 no All All B1, !B1, B2, !B2

LC, IC, BC for numZero

21

test
case

test case values
(x)

expected
values

exec.
result

test
fails?

LC IC BC

t1 null NPE NPE no 1 2 i1 i2 i3 NPE-B1

t2 { } 0 0 no 1 2 5 i1 i2 i3 i7 !B1

t3 {1,2} 0 0 no 1 2 3 5 All except i6 B1, !B1, !B2

t4 {0,0} 2 1 yes All All B1, !B1, B2

t5 {1,1,0} 1 0 no All All B1, !B1, B2, !B2

T (test set) LC level IC level BC level

{ t1 } 40 % (2/5) 42 % (3/7) 20 % (1/5)

{ t1, t2 } 60 % (3/5) 57 % (4/7) 40 % (2/5)

{ t2, t3 } 80 % (4/5) 85 % (6/7) 60 % (3/5)

{ t4 } 100 % (5/5) 100 % (7/7) 60 % (3/5)

{ t1, t5} 100 % (5/5) 100 % (7/7) 100 % (7/7)

100 % coverage for all criteria
but bug is not exposed!!!

t1 and t5 do not fail

Criteria subsumption

Criteria Subsumption: A coverage criterion C1 subsumes
C2 if and only if every test set that satisfies criterion C1
also satisfies C2.
For instance:

instruction coverage subsumes line coverage
branch coverage subsumes instruction coverage

The inverse is not true. In the previous slide:
If count++ appeared in the same line as if (x[i] == 0),
test case t3 would cover all lines but not all instructions
(instruction i6 is not be executed by t3).
Test t4 covers all instructions, but not all branches.

22

xUnit testing

xUnit — historical perspective

xUnit: the general designation of a variety of unit testing
frameworks, with an overall structurure and functionality inspired
by SUnit.

SUnit is a testing library for the SmallTalk language developed by
Kent Beck in 1998 (Kent Beck is one of the authors of the
influential “Manifesto for Agile Software Development”.)
Kent Beck and Erich Gamma (one of the author of the “Gang of
Four” book) applied the same concepts to a Java library called
JUnit, that to this day is the most popular testing library for Java.
The success of JUnit inspired several xUnit frameworks for other
languages, e.g., just to name a few: Google Test (C / C++), NUnit
(C#), unittest (Python), PHPUnit (PHP). Many others exist, for
languages and/or frameworks, for instance see Wikipedia’s “List of
unit testing frameworks”.

24

http://sunit.sourceforge.net/
https://agilemanifesto.org/
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://github.com/google/googletest
https://nunit.org/
https://docs.python.org/3/library/unittest.html
https://phpunit.de
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

xUnit — concepts
Test (case)

Specification of an individual test.
“Four-phase test” is the common test programming pattern: setup >
exercise SUT > verify > teardown.

Test execution
Execution of a single test.

Test fixture
Setup and teardown actions, necessary to setup the initial state of a
SUT (before a test runs) and tear-it down (after a test runs).

Test suite
Set of tests that can run in any order and share the same test fixture.

Test runner
Program that runs test suites.

25

http://xunitpatterns.com/Four%20Phase%20Test.html

Four-phase test pattern

26

Source: xunitpatterns.com —
companion site to “XUnit test
patterns - Refactoring Test Code”
book by G. Meszaros (Addison
Wesley Signature Series curated by
Martin Fowler)

http://xunitpatterns.com

JUnit — example

27

import static org.junit.Assert.*;
import static qses.ArrayOperations.numZero;
import org.junit.Test;

public class ArrayOperationsNumZeroTest {

@Test
public void testNumZeroEmptyArray() {

int x[] = {}; // zero-sized array
int n = numZero(x);
assertEquals("0 zeros", 0, n);

}

@Test
public void testNumZeroArrayWithNoZeros() {

int[] x = { 1,2, 3 };
int n = numZero(x);
assertEquals("0 zeros in an array with no zeros", 0, n);

}
 ...

test class

test method
has @Test annotation
- one per test case -

another test
method/case

imports

JUnit - test methods

Test design atterns
Setup + execute SUT + verify expected results (+ teardown)
Use assertion methods provided by JUnit to verify expected results
Use assertion messages together with assertion methods to give an
indication of what went worn

“Four-phase test”, “Assertion Method”, and “Assertion Message” patterns [see
also G. Meszaros, pages 358-372]28

@Test
public void testNumZeroArrayWithNoZeros() {

 int[] x = { 1,2, 3 };

 int n = numZero(x);

 assertEquals("0 zeros in an array with no zeros", 0, n);
}
 ...

1) setup test case values

2) execute SUT

3) assert expected vs. test outputs
expected

exec. output

http://xunitpatterns.com/Four%20Phase%20Test.html
http://xunitpatterns.com/Assertion%20Method.html
http://xunitpatterns.com/Assertion%20Message.html

JUnit assertions

Full list at http://junit.org/junit4/javadoc/latest/index.html

29

Method Checked condition

assertEquals(msg,expected,value)
assertNotEquals(msg,expected,value)

 value.equals(expected)
!value.equals(expected)

assertTrue(msg, value)
assertFalse(msg, value)

value == true
value == false

assertNull(msg, expression)
assertNotNull(msg, expression)

value == null
value != null

assertArrayEquals(msg, vexp, vVal) Arrays vExp and vVal have the same
contents.

assertSame(msg, expected, value)
value == expected

(exactly the same object reference)

http://junit.org/junit4/javadoc/latest/index.html

JUnit: setup/teardown

30

 @BeforeClass
 public static void globalSetup() {
 // executed once before all test
 ...
 }
 @AfterClass
 public static void globalTeardown() {
 // executed once after all tests
 ...
 }
 @Before
 public void perTestSetup() {
 // executed every time before each test
 ...
 }
 @After
 public static void perTestTeardown() {
 // executed every time after each test
 ...
 }

Beyond basic
coverage criteria

Testing approaches

Related questions :
What are good tests?
What are meaningul inputs?
What (coverage) criteria should be used to derive them?

Line/instruction/branch coverage
Easy to understand and measure through program instrumentation,
The most common metrics for coverage assessment in practice.
Fragile however in the sense of possibly conveying a false notion
regarding the quality of inputs/tests and their ability to expose bugs.

We will briefly look at a few approaches that go further …
Graph-based coverage, input space partitioning, mutation testing,
property-based testing

32

Graph-based coverage
Basic approach

Model the SUT as a graph.
The execution of a test case corresponds to a path in the graph.
Coverage criteria specify requirements as sets of paths that must be
covered by test paths.

Graphs as models for:
individual procedures — control flow graphs (discussed next)
interacting units — call graphs
 finite-state machine abstractions of software

Structural vs. data-flow based coverage
Structural: takes into account only structure of the graph (example
application next)
Data-flow based: also account for data usage in association to nodes/edges
(we won’t cover this)

33

1

2 3

4 5

Node and edge coverage (NC, EC)

Node coverage (NC)
Test requirements: cover every node (all graph paths up of length 0)

TR(NC) = set of nodes in the graph

Edge coverage (EC): cover every edge.
Test requirements: cover every edge (all paths up to length 1)

TR(EC) = set of edges in the graph

EC subsumes NC. Why?
34

1

2 3

4 5

TR(NC) = { [1], [2], [3], [4], [5] }

TR(EC) = { [1,2], [1,3], [1,4], [2,4], [4,2], [4,5] }

T1 = { [1,3], [1,2,4,5] } satisfies NC, but not EC

T2 = { [1,3], [1,2,4,5],[1,4,2,4,5] }
satisfies both NC and EC

Control flow graph (CFG)

A control flow graph (CFG) can be used to represent the
control flow of a piece of (imperative) source code.

Nodes represent basic blocks - sequences of instructions that
always execute together in sequence.
Edges represent control flow between basic blocks.
The entry node corresponds to a method’s entry point.
Final nodes correspond to exit points, e.g. in Java: return or
throw instructions.
Decision nodes represent choices in control flow - e.g. in Java:
due to if, switch-case blocks or condition tests for loops.

35

Example

➡ Basic blocks (nodes)
➡ 1: if (v ==

null)

➡ 2: throw ...;

➡ 3: n=0; i=0;

➡ 4: i < v.length;

➡ 5: v[i] == c;

➡ 6: n++;

➡ 7: i++;36

 public static int occurrences(char[] v, char c) {
 if (v == null) {
 throw new IllegalArgumentException();
 }
 int n = 0;
 for (int i=0; i < v.length; i++) {
 if (v[i] == c) {
 n++;
 }
 }
 return n;
 }

➡ Control flow (edges)

➡ 1 ! 2, 1 ! 3
➡ 3 ! 4
➡ 4 ! 5, 4 ! 8
➡ 5 ! 6, 5 ! 7
➡ 6 ! 7
➡ 7 ! 4

➡ Entry node

➡ 1

➡ Decision nodes

➡ 1, 4, 5

➡ Exit nodes

➡ 2, 8

CFG for occurrences()
1

32

7

8

v == null ¬ v == null

n = 0
i = 0

¬ i < v.length
 return n;

5i++

4

6

i < v.length

throw ...

v[i] == c

¬ v[i] == c

n++

➡ Basic blocks (nodes)

➡ 1: if (v ==
null)

➡ 2: throw ...;

➡ 3: n=0; i=0;

➡ 4: i < v.length;

➡ 5: v[i] == c;

37

➡ Control flow (edges)

➡ 1 ! 2, 1 ! 3
➡ 3 ! 4
➡ 4 ! 5, 4 ! 8
➡ 5 ! 6, 5 ! 7
➡ 6 ! 7
➡ 7 ! 4

38

t test case values
(v,c)

exp.
values test path covered

nodes
covered
edges

t1 (null, ‘a’) IAE [1,2] 1 2 [1,2]

t2 ({‘a’}, ‘a’) 1 [1,3,4,5,6,7,4,8] 1 3 4
5 6 7 8

[1,3][3,4][4,5][5,6]
[6,7][7,4][4,8]

t3 ({‘x’,’a’}, ‘a’) 1 [1,3,4,5,7,4,5,6,7,8] 1 3 4
5 6 7 8

[1,3][3,4][4,5][5,6]
[6,7][7,4][5,7][4,8]

1

32

7

8

v == null ¬ v == null

n = 0
i = 0

¬ i < v.length
 return n;

5i++

4

6

i < v.length

throw ...

v[i] == c

¬ v[i] == c

n++

Node coverage

TR(NC) = { [1], [2],[3],[4], [5],[6],[7],[8] }

NC satisfied by { t1, t2 } or {t1, t3}

Edge coverage

TR(EC) = TR(NC) ∪ {
 [1,2],[1,3],[3,4],[4,5],[4,8], [5,6],[5,7][6,7],[7,4]
}

EC satisfied by { t1, t3 } but not by {t1,t2}.

Beyond node/edge coverage
Edge-pair coverage (EPC) - cover all paths up to length 2

EPC subsumes NC and EPC

NC, EC, EPC are instances of the general criterion: cover
all paths up to length k

NC for k=0; EC for k=1; EPC for k=2;

As we increase k we approximate ... Complete-Path-
Coverage (CPC)

CPC: Cover all possible paths.
The number of paths may be infinite or very large e.g., code with
loops (CFGs with cycles) - CPC generally not applicable.
In practice, instead of “increasing k”, we should try to pick a
subset of “relevant” paths in the graph, e.g., criteria like Prime
Path Coverage [Amman & Offutt].

39

Mutation testing

40

 public static int numZero(int[] x) {
 int count = 0;
 for (int i = 0; i < x.length; i++)
 if (x[i] == 0)
 count++;
 return count;
 }

 public static int numZero(int[] x) {
 int count = 0;
 for (int i = 1; i < x.length; i++)
 if (x[i] == 0)
 count++;
 return count;
 }

Introduce “faults”
by mutating the code.

What’s the point?

The premise for mutation testing

Fundamental premise of mutation testing

 “if the software contains a fault, there will usually
be a set of mutants that can only be killed by a
test case that also detects the fault” [provided we
consider a rich set of mutation operators], Ammann and
Offutt

sensitivity to mutations (killing mutants)

≃
sensitivity to faults (exposing failures)

41

“Testing the tests”
Suppose you have a test set T for program P (maybe
derived applying some coverage criteria C, manually or
automatically).
Program-based mutation testing helps answering the
following key question:

How “good” is T (and C)?
For m ∈ M (the set of all mutants), if T is “good” then a
test in T should kill m.
If no test in T kills a mutant m, then T should be
reformulated (one may also question the choice of C)...
Program-based mutation is many times taken as the
“golden standard” of coverage criteria, given its
potential to subsume other testing criteria.

42

Killing the mutants …

i =1 is a mutation of i = 0 ; the code obtained by changing i=0 to i=1 is
called a mutant of numZero.
We say a test kills the mutant if the mutant yields different outputs from
the original code.

Considering x={1,0,0} the mutant is not killed; 2 is the return
value of the method for both the original code and the mutant.
Considering x={0,1,0} the mutant is killed; the result is 1
rather than 2.43

 public static int numZero(int[] x) {
 int count = 0;
 for (int i = 1; i < x.length; i++)
 if (x[i] == 0)
 count++;
 return count;
 }

 public static
 int min(int x, int y) {
 int v;
 if (x < y)
 v = x;
 else
 v = y;
 return v;
 }

 public static
 int min(int x, int y) {
 int v;

 if (x >= y)
 v = x;
 else
 v = y;
 return v;
 }

 public static
 int min(int x, int y) {
 int v;

 if (x <= y)
 v = x;
 else
 v = y;
 return v;
 }

 public static
 int min(int x, int y) {
 int v;
 if (x < y)
 v = x;
 else

 v = -y;
 return v;
 }

Example 2

Which mutants will be
killed by tests:
(t1) (x,y) = (0,0)
(t2) (x,y) = (0,1)
(t3) (x,y) = (2,1)

Observe that m2 can not
be killed. Why not?

m1

m2

m3

original
code

mutants

44

x y min m1 m2 m3

t1 0 0 0 0 0 0

t2 0 1 0 1 0 0

t3 2 1 1 2 1 -1

t1 kills none of the mutants.
t2 kills m1.
t3 kills m1 and m3.

Observe that m2 will always yield
the same result as the original
code. Thus it cannot be killed. It is
a func t iona l ly equ iva len t
mutant.

45

 public static
 int min(int x, int y) {
 int v;

 if (x >= y)
 v = x;
 else
 v = y;
 return v;
 }

 public static
 int min(int x, int y) {
 int v;

 if (x <= y)
 v = x;
 else
 v = y;
 return v;
 }

 public static
 int min(int x, int y) {
 int v;
 if (x < y)
 v = x;
 else

 v = -y;
 return v;
 }

m1

m2

m3

mutants

Mutation operators from PIT

46

http://pitest.org

http://pitest.org

Mutation operators from PIT (2)

47

http://pitest.org

http://pitest.org

Mutation operators and effectiveness

Mutants to avoid …
stillborn mutant (i.e., dead at birth): mutant is not syntactically valid
functionally-equivalent mutant: no test can kill it
trivial mutant: almost every test can kill it

For effectiveness, a mutation operator should:
always define a syntactically valid transformation (generate no
stillborn mutants)
generate functionally-equivalent and trivial mutants with low
probability
mimic typical programmer mistakes
not be subsumed by another operator i.e., tests that kill mutants
created by the other operator also kill the ones generated by this
one (or a large fraction of them)

48

Mutation testing - coverage

Mutation operator o: takes a program P and yields a set of
mutants of p, o(p).
Let O be the set of mutation operators and M be the set of all
mutants generated using O i.e., M = { m | m ∈ o(p), o ∈ O }
Killing mutants

We say a test t kills m ∈ M iff the output of t for m differs
from the output of t for P.

Mutation coverage = percentage of mutants in M killed by
at least one test.

49

Mutation testing tools - basics

A MT tool has a built-in set of mutation operators. The set
of mutants for the SUT is generated in automated manner
according to the mutation operators.
A test set in context is ran against the mutants. As soon as
a mutant from the set is killed, it is typically not exercised
by further tests.
If the mutation coverage is not satisfactory, the test set is
typically revised and/or increased with further test cases.

Obs: The strategies for both mutant generation and test
selection/execution can be quite elaborate in technical terms.

50

Property-based testing

Approach:
Specify properties to check instead of inputs !
A great number of test cases are generated automatically, in line with the specification.
If a property fails for a certain input, try to find the minimal input that violates the
property, a process designated as shrinking.
Original formulation: “QuickCheck: a lightweight tool for random testing of Haskell
programs”, Koen Claessen and John Hughes, Proc. ICFP, 2000. Other property-based
testing frameworks: scalacheck (Scala/Java), Hypothesis (Python), Java
(QuickTheories), …51

Image source:
“Better than unit tests”, M. Nygard

https://dl.acm.org/citation.cfm?id=1988046
https://dl.acm.org/citation.cfm?id=1988046
https://www.scalacheck.org/
https://hypothesis.readthedocs.io/

52

 @Test
 public void testTEAWithFixedKey() {
 TEA obj = new TEA("0123456789ABCDEF".getBytes());
 qt()
 .forAll(byteArrays(integers().between(1,256),
 bytes(Byte.MIN_VALUE, Byte.MAX_VALUE, (byte) 0)))
 .describedAs(data -> Arrays.toString(data))
 .check(data -> Arrays.equals(data, obj.decrypt(obj.encrypt(data))));
 }

 @Test
 public void testForAnyKey() {
 Gen<Byte> anyByte = bytes(Byte.MIN_VALUE, Byte.MAX_VALUE, (byte) 0);
 Gen<byte[]> keyGen = byteArrays(constant(16), anyValue)
 .describedAs(Arrays::toString);
 Gen<byte[]> dataGen = byteArrays(integers().between(1, 100),
anyValue).describedAs(Arrays::toString);

 qt()
 .forAll(keyGen,dataGen)
 .check((key,data) -> {
 TEA tea = new TEA(key);
 return Arrays.equals(tea.decrypt(tea.encrypt(data)), data);
 });
 }

fixed encryption key, but generator
used for data (random byte array
with length between 1 and 256)

Property: ∀data, decrypt(encrypt(data)) = data

variable key also

Validation of a Tiny Encryption Algorithm (TEA) implementation using
QuickTheories (for Java 8)

http://www.winterwell.com/software/TEA.php
https://github.com/ncredinburgh/QuickTheories

QuickTheories (example 2)

53

 @Test
 public void testValidPasswordNoPunct() {

 Gen<Byte> lo = bytes((byte)'a', (byte)'z', (byte)'a');
 Gen<Byte> up = bytes((byte)'A', (byte) 'Z', (byte)'A');
 Gen<Byte> digit = bytes((byte) '0', (byte) '9', (byte)'0');

 Gen<Byte> combined = lo.mix(up,50).mix(digit,25);
 Gen<byte[]> arrGen = byteArrays(integers().between(10, 20), combined);
 Gen<String> strGen = arrGen.map(ba -> new String(ba));

 qt()
 .withFixedSeed(0)
 .forAll(strGen)
 .assuming(s -> s.chars().anyMatch(Character::isLowerCase))
 .assuming(s -> s.chars().anyMatch(Character::isUpperCase))
 .assuming(s -> s.chars().anyMatch(Character::isDigit))
 .check(CHECKER::isPasswordOK);

 }

Input space partitioning (ISP)

Base approach: identify relevant classes of input values
and derive test cases from it.
Step 1. Identify the input parameters for the SUT.
Step 2. Model the input domain by defining one or more
characteristics in the input domain. Each characteristic
defines blocks that partition the input space.
Step 3. Apply some criterion over characteristic of the
input domain, defining a set of test requirements.
Step 4. Derive test inputs (test cases).
Also known as equivalence partitioning.

54

Input domain (D): the set of possible values for the input
parameters.
A characteristic q for D is a partition of D. It defines blocks b1 ,
… , bn such that :

∀ i,j : i≠j bi ∩ bj = ∅ (blocks are disjoint)
D = b1 ∪ ... ∪ bn (blocks cover the entire input domain)

Q : the set of characteristics we consider to derive test
requirements.

ISP - definitions

D b1
b2

b3

55

ISP - guidelines

Meaningful characteristics: Each characteristic should
represent a meaningful feature for the input domain.
Distinctive blocks: blocks of a characteristic should be
reasonably aligned with distinctive values for it, e.g., consider:

“common use” values
boundary values
“invalid use” values
relevant relations between input parameters

Subdomains: if necessary break down domain into sub-domains
E.g. first partition into “valid” and “invalid” values, then define
characteristics for each of these domains, or sub-partition them further
if convenient.

56

isPasswordOK example

57

 /**
 * Test if password is OK.
 * @param password The password
 * @return <code>true</code> is password is OK.
 */
 boolean isPasswordOK(String password);

isPasswordOK example (2)

Null vs non-null characteristic
Breaks domain into “null” sub-domain and “non-null” subdomain

For the “non-null” subdomain we may consider:
l = Length of password
U = # upper-case characters
L = # lower-case characters
D = # digits
P = # punctuation characters
I = # invalid symbols

58

isPasswordOK example (3)

Possible blocks for the length characteristic (l)
l < 10, 10 <= l <= 20, l > 20 (3 blocks)
The blocks must define a partition. Thus, the block values do
not intersect and we cannot rule out any possible value of L.
A more fine-grained choice could consider l=10 and l=20 blocks
to force testing of boundary values for length.

A possible choice of blocks for the X = U, L, D, and I
characteristics

X=0, X > 0 (2 blocks each)

Finally, for P (the punctuation characters)
P = 0, P = 1, P > 1

59

isPasswordOK example (4)

Input “Ab1234567890” fits in the following blocks:
10 <= l <= 20 (the length is 12)
U > 0

L > 0

D > 0

P = 0

I = 0

What are the blocks for “ABxy12!$?” ?

60

ISP coverage criteria
t-wise coverage (TWC)

Cover t blocks of different characteristics by at least one test
case.

Each Choice Coverage (ECC) [t=1]
Cover each block of each characteristic at least once.

Pair-wise Coverage (ECC) [t=2]
Cover each block pair of two different characteristic at least
once.

All-Combinations Coverage (ECC) [t = number of
characteristics]

Cover each combinations of blocks of different characteristic at
least once.

61

ECC coverage for isPasswordOK

A few tests are enough, for instance:
“Ab1234567890” covers blocks 10 <= l <= 20, U > 0,
L > 0, D > 0, P = 0, I = 0

“!@” covers blocks l < 10, U = 0, L = 0, D = 0, P
= 1, I > 0

“!!”
covers blocks l > 20, U = 0, L = 0, D = 0, P > 1,
I = 0

62

PWC coverage for isPasswordOK

“Ab1234567890” will cover 15 block pairs (5 + 4 + 3 + 2
+ 1)

(10 <= l <= 20, U > 0), (10 <= l <= 20, L > 0),
(10 <= l <= 20, D > 0) (10 <= l <= 20, P = 0),
(10 <= l <= 20, I = 0)

(U > 0, L > 0), (U > 0, D > 0), (U > 0, P = 0),
(U > 0, I = 0)

(L > 0, D > 0), (L > 0, P = 0), (L > 0, I = 0),

(D > 0, P = 0), (D > 0, I = 0)

(P =0, I = 0)

Covering all block pairs will require more test cases.

63

ISP - test effort vs coverage

ECC
∑i=1, ..., |Q| | Bi | test requirements, at least maxi=1, ..., |Q| |Bi| tests.
isPasswordOK: >= 3 tests

PWC
∑i,j=1, ..., |Q|, i != j | Bi | . |Bj| requirements, at least M2 tests for M =
maxi=1, ..., |Q| |Bi |
isPasswordOK: ~ 3 x 3 = 9 tests

ACoC
∏i=1, ..., |Q| | Bi | test requirements and as many tests required
isPasswordOK: 3 x 2 x 2 x 2 x 2 x 3 = 144 tests

64

Security-oriented
testing

Security testing

How does security testing differ from standard program
testing?

Security features must be tested with regard to possible
adversarial actions => guided by the requirements posed to
security-minded code.
Other features must be tested in respect to “unintended
behavior” => guided by the possibility of common
vulnerabilities in standard code

What are general recommended practices? How can
standard or specific testing approaches help?
As an introductory discussion, let’s have a look at some of
the activities in the BSIMM Security Testing touchpoint.

66

https://www.bsimm.com/framework/software-security-development-lifecycle/software-security-testing.html

BSIMM - Security Testing

[ST1.1: 100] “Ensure QA supports edge/boundary value
condition testing”

“The QA team goes beyond functional testing to perform basic
adversarial tests and probe simple edge cases and boundary
conditions, no attacker skills required.”

[ST1.3: 88] “Drive tests with security requirements and
security features.”

“For the most part, security features can be tested in a fashion
similar to other software features.”

Standard software testing practices apply. We will see
a few important approaches in this sense.

67

BSIMM - Security Testing (cont.)

“[ST3.4: 3] Leverage coverage analysis”
“Testers measure the code coverage of their security tests.
Code coverage analysis drives increased security testing
depth.”

“[ST2.5: 12] Include security tests in QA automation”
“Security tests run alongside functional tests as part of
automated regression testing. In fact, the same automation
framework houses both, and security testing is part of the
routine.”

Again, standard software testing practices apply.
[ST2.5: 12] mentions regression testing ? Q: Are you
familiar with it?

68

A note on regression testing

Regression testing: testing if updated software still
behaves the same (in regard to unchanged requirements)
after a change in its code (bug fix, new feature) or after
integration with an updated version of an external
component.
Ideally, a regression test suite is composed of a minimal
set of “core tests” that always run in automated fashion
whenever an update takes place.
In a large code base, determining which tests should be
part of (or removed from) the regression suite is not
straightforward. Running regression test suites (if too big)
for instance on every build may also be quite costly.

69

BSIMM - Security Testing (cont.)
[ST2.1: 30] “Integrate black-box security tools into the QA
process.”

“The organization uses one or more black-box security testing tools as
part of the QA process. Such tools are valuable because they
encapsulate an attacker’s perspective, albeit generically”.
Some commercial frameworks are mentioned in the text combining static/
dynamic analysis, pen-testing and fuzz testing.

[ST2.6: 13] Perform fuzz testing customized to application
APIs.

“Test automation engineers or agile team members customize a fuzzing
framework to the organization’s APIs.The fuzzing framework has a built-
in understanding of the application interfaces it calls into.”

Fuzz testing? A common practice in security-oriented testing,
but not in standard program testing. We will see what it
means.

70

BSIMM - Security Testing (cont.)

“[ST3.3: 4] Drive tests with risk analysis results.”
“Testers use architecture analysis results to direct their
work […] Adversarial tests like these can be developed
according to risk profile, with high-risk flaws at the top of
the list.”

“[ST3.5: 3] Begin to build and apply adversarial security
tests (abuse cases).”

“Testing begins to incorporate test cases based on abuse cases”

These are important aspects mentioned earlier in the course.
They require expertise and overall understanding of:

the software architecture and design
the inherent attack surface
the SDLC process in place

71

BSIMM testing activities — state of
practice (2018)

Source: BSIMM 9 - Gary McGraw, Ph.D., Sammy Migues, and Jacob West
“[the] result of a multiyear study of real-world software security initiatives We present the BSIMM8
model as built directly out of data observed in 109 software security initiatives”

72

20 | Building Security in Maturity Model (BSIMM) Version 9

SSDL Touchpoints continued...</>

SECURITY TESTING (ST)

ACTIVITY DESCRIPTION ACTIVITY PARTICIPANT %

LEVEL 1

Ensure QA supports edge/boundary value condition testing. ST1.1 83.3

Drive tests with security requirements and security features. ST1.3 73.3

LEVEL 2

Integrate black-box security tools into the QA process. ST2.1 25.0

Share security results with QA. ST2.4 11.7

Include security tests in QA automation. ST2.5 10.0

Perform fuzz testing customized to application APIs. ST2.6 10.8

LEVEL 3

Drive tests with risk analysis results. ST3.3 3.3

Leverage coverage analysis. ST3.4 2.5

Begin to build and apply adversarial security tests (abuse cases). ST3.5 2.5

https://www.bsimm.com/download.html

Fuzzing
(fuzz testing)

Fuzzing
What is fuzzing ?

Testing software with invalid and possibly malicious data,
usually generated in semi-automatic manner.

What is the goal of fuzzing?
Evaluate program response to invalid input, rather than
“common case” inputs used for plain functional testing.

Optimal response to invalid inputs:
a grafecul failure — in line with the “Fail Safely” design
principle. Nothing “unintended” or “bad” happens!

Vulnerable responses to invalid input may include
(possibly a combination of):

program crashes, memory corruption (e.g. buffer
overflows). failure to detect the error in input

74

Deriving inputs

Deriving inputs — essential techniques
Randomisation: generate random inputs, or introduze
randomness during generation:
Mutation: mutate given inputs according to some criteria
Grammar-based generation: use a grammar to generate
inputs
Hybrid approaches combining these are common.

Fuzz-testing process
Black-box: generate inputs and monitor execution result,
blindly.
White-box: guide input generation according to feedback from
execution + information regarding program structure.

75

Random input

No context of the software at stake or the type of input.
Easy to implement, but will typically expose only shallow
bugs

76

$ head -c 15 /dev/urandom | xargs ping
ping: cannot resolve ?c?ׇD?\fN\016?=?;?: Unknown host

Mutation-based input generation

Start from valid inputs, mutate them according to some
strategy for instance:

Applying randomisation, e.g., random bit flips.
More generally, applying mutation rules
Mutation fragments may be domain-specific, e.g., contain shell-
code, SQL injection, etc.

Ability to expose bugs: dependent on starting inputs and
mutation expressiveness for the context at stake.
Example tools next: radamsa, ZAP fuzze, zzuf

77

Example tools — radamsa

Radamsa: a mutation-based input generator
Mutates given inputs, randomly applying pre-defined
mutation rules and patterns.

78

$ echo 192.168.106.103 | radamsa --count 10 --seed 0
-107.167.106.103
192.168.8407971865571866.-9�5154737306362663942413194069
191.1A1.1A1.106.1
192.129.18.106.103
192.168.0.103
192.170141183460.106.1802311213346089.104
-3402823669209.106.168.106.16.103
192093846346337460765704.192.65704.-1.?-18446744073709518847
192.106.0
191.168.106.103
$ echo 192.168.106.103 | radamsa --count 1 --seed 0 | xargs ping
ping: invalid option -- 1

https://gitlab.com/akihe/radamsa

Example tools — radamsa (2)

Example mutations and mutation patterns (listed with
radamsa --list)

79

$./radamsa --list
Mutations (-m)
 ...
 bd: drop a byte
 bf: flip one bit
 bi: insert a random byte
 ...
 sr: repeat a sequence of bytes
 sd: delete a sequence of bytes
 ld: delete a line
 ...
 ls: swap two lines
 ...
 num: try to modify a textual number
 xp: try to parse XML and mutate it
 ...
Mutation patterns (-p)
 od: Mutate once
 nd: Mutate possibly many times
 bu: Make several mutations closeby once

ZAP fuzzer

80

Select part of the input to “fuzz
with”, in this case the “1” value that
is part of the HTTP request header

Select “fuzz set” of replacements
for the chosen input, in this case
strings likely to trigger SQLi, if a
vulnerability of this kind exists

Several test cases will be
considered for execution, each

replacing ‘1’ by potentially
malicious input

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

Example programs - zzuf

zzuf automates the fuzzing process by transparently fuzzing read
from files or from the network.

Mutations are introduced randomly according to a specifed bit fuzzing ratio.
The target program runs in batch mode for a specified number of trials / seeds.
It has been sucessfull in uncovering bugs in real-world programs.

81

zzuf -r 0.02 -s 1:3 cat ./silly_program.c

J'a|cl}de <st?i?.h>

inu`main(int avgc, char*? argw) {
 int l = 0;
 whidE("fgfgets*buf,sizeof(Buf-, f) != NULL- {
 pryntf(btf?;
 } dclose(f);
 retezn 0;J}

#include |stdio.h

i|t main(int aRfc, ch`r** argv) {
 ahar buf[128};

https://github.com/samhocevar/zzuf
http://caca.zoy.org/wiki/zzuf/bugs

Example programs - zzuf (2)
In this case zzuf transparently mutates data from the network (use of
the -n switch).

82

$ zzuf -r 0.02 -s 1 -n curl http://www.dcc.fc.up.pt/~edrdo/aulas/qses/index.html
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 328 0 328 0 0 60 0 --:--:-- 0:00:05 --:--:-- 0
HT?P'1.1 200 OK
D?te: Wmd, 1"dec 2018 1=;42:36 GMt
fips PHP/54*1>?2.4.6"(CentO[)0OrenSSL/1.0.k
L?st/Modif?ed: WeD, 12 Dec 0q8$!5:40:54 GMT
Etag: "07-57bd?86197e5a"
Acce`t-Ranges: bxtus
ConteNt-Lmngth: 71
Cltent-Type: |ext.html

8html>?<rody>

ZZUF!|est(resource -- QSS 0018/2019

</body>
 </html>

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 71 100 71 0 0 220 0 --:--:-- --:--:-- --:--:-- 1145
<html>
<body>

ZZUF test resource -- QSES 2018/2019

</body>
</html> Normal execution

“Fuzzed” execution

Grammar-based input generation

Generate inputs using a grammar.
Grammar rules may express possible deviations.
Combination with mutation: alternatively, valid inputs may be
generated using a grammar, and then mutated.
This approach can be more systematic, is potentially able to
generate more relevant inputs, and account for complex
combinations of input fragments.

Example tool illustrated next: blab
A few others of the same kind: ABNFfuzzer gramfuzz

83

https://github.com/aoh/blab
https://github.com/nradov/abnffuzzer
https://d0c-s4vage.github.io/gramfuzz/

Example tools - blab

Blab: a grammar-based black-box fuzzer
Inputs generated according to grammar. In this example
the grammar generates only valid IP addresses.

84

$ blab ip_address.blab -n 10 —s 0
4.4.4.104
5.148.205.94
0.237.230.95
0.140.232.252
178.81.250.6
252.252.252.8
135.159.123.250
204.5.172.8
177.188.21.213
0.78.204.240

output = ip_address "\n"
ip_address = octet "." octet "." octet "." octet
octet = [0-9] | [1-9][0-9] | “1” [0-9][0-9] | “2” [0-4][0-9] | “25” [0-5]

ip_address.blab

https://github.com/aoh/blab

Example tools - blab (2)

In this variation we allow the possibility of malformed IP IP
addresses.

85

$ blab fuzzed_ip_address.blab -n 10 -s 0
40.4.40.40
143.696.528.100
137.013.61.242
7.433.5.522
113.277.743.145
123.6.119.235
740.810.87.801
221.077.43.319
079.737.507.518
947.479.245.947

output = fuzzed_ip_address "\n"
fuzzed_ip_address = octet "." octet "." octet "." octet
octet = normal_octet | fuzzed_octet
normal_octet = [0-9] | [1-9][0-9] | “1” [0-9][0-9] | “2” [0-4][0-9] | “25” [0-5]
fuzzed_octet = [0-9]{3}

fuzzed_ip_address.blab

Generate, then mutate

Generation and mutation can be combined, e.g., blab +
radamsa.

86

$ blab fuzzed_ip_address.blab -n 5 -s 0 | tee generated.txt
40.4.40.40
143.696.528.100
137.013.61.242
7.433.5.522
113.277.743.145
$ radamsa --count 1 --seed 22 generated.txt -p nd=10
3321759348573678331568.4.40.40
143.696.528.100
1.013.61.0
7.65535.9223372036854775803.522
113.280.743.145

Black-box fuzzing

Simplest approach — “black box” fuzzing
Repeatedly feed the program with fuzzed inputs,
without consideration for the program structure.
Observe program responses and assert that program
fails gracefully / nothing “bad” happens (crashes,
memory corruption etc).

Looking for bugs — possible strategies
Instrument the program with runtime sanitizers to
monitor abnormal program execution (undefined
behavior, buffer overflows, etc)
Inspect exit codes (e.g. SIGSEV = 139 — segmentation
fault), program output, etc

87

White-box fuzzing
Idea

Monitor (instrumented) program state during execution and observe
which changes to input cause new program states to be explored.
The information is used to generate new inputs, trying to avoid inputs
that repeat the same program paths.

The goal is to explore the state-space of the program as
extensively as possible / increase code coverage.

The execution is automatic, but can be time-consuming given that
many executions of the program under test will be triggered.
Tools can derive inputs randomly or (with better results) through
mutations of a pre-defined set of inputs that are accepted by the
program.

Example tools:
AFL, libFuzzer, SAGE

88

http://lcamtuf.coredump.cx/afl/
http://llvm.org/docs/LibFuzzer.html
https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf

libFuzzer / AFL

libFuzzer, AFL
The fuzzers are employed by ClusterFuzz and Google’s OSS-
Fuzz project (“continuous fuzzing of open source software”)
Employ program instrumentation/monitoring coupled with input
mutation techniques that are guided by runtime coverage
information.
The fuzzers are quite more effective if supplied with an initial
corpus of input samples that are representative of the program
execution.
Normally used in combination with sanitizers to uncover bugs,
e.g. AddressSanitizer.

89

https://google.github.io/clusterfuzz/
https://github.com/google/oss-fuzz/
https://github.com/google/oss-fuzz/

libFuzzer — example test

LLVMFuzzerTestOneInput: test entry point
data: fuzzed input from initial corpus or randomly
generated90

extern char* escapeHTML(char* input);

int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
 if (size > 0) {
 // Ensure null termination
 char* buf = (char*) malloc(size+1);
 memcpy(buf, data, size);
 buf[size] = 0;

 // Call function to test
 char* edata = escapeHTML(buf);

 // Clean-up
 free(buf);
 free(edata);
 }
 return 0;
}

libFuzzer — example test (2)

Execution takes initial input samples (seeds dir) and derives more
inputs (corpus d i r) . Bug is then eventual ly detected by
AddressSanitizer.91

$ clang -g -fsanitize=address,fuzzer escapeHtml.c fuzzTest.c -o fuzzTest
$./fuzzTest corpus seeds
INFO: Seed: 1148001052
INFO: Loaded 1 modules (13 inline 8-bit counters): 13 [0x5a5f70,
0x5a5f7d),
…
INFO: -max_len is not provided; libFuzzer will not generate inputs larger
than 4096 bytes
INFO: seed corpus: files: 1 min: 73b max: 73b total: 73b rss: 27Mb
#2 INITED cov: 12 ft: 13 corp: 1/73b exec/s: 0 rss: 27Mb
…
===
==18004==ERROR: AddressSanitizer: heap-buffer-overflow on address
0x602000004dd5 at pc 0x00000054f5ac bp 0x7ffc444e1990 sp 0x7ffc444e1988
…
artifact_prefix='./'; Test unit written to ./
crash-0ed93db39ee78666320ef6bf9145483c206743d4
Base64:
JgAAALa2q6urq6urq21sJjwAAAAmPSYAJiY8AAAAAAAAACs8AAAAJiYmJiYmJiYmJiYmJiYma
AAAAAAAAAAAAAAAACs8JnRtDw==

Symbolic
execution

Symbolic execution

Approach:
Execute a program, treating some or all of the inputs as
symbolic — actual values need not be specified.
When a branch condition that depends on symbolics input,
follow each branch leading to a symbolic execution tree.

93

Symbolic execution tree
Each node represents a symbolic execution state
and is defined by:

the program counter (PC)
set of (reachability) conditions over the symbolic inputs

Each path in the tree represents a set of possible
executions with the same reachability conditions.

94

 int getSign(int x) {
 int r ;
 if (x == 0)
 r = 0;
 else if (x < 0)
 r = -1;
 else

 r = 1;
 return r;
 }

[screenshot obtained using the KeY Symbolic Execution Debugger]

http://i12www.ira.uka.de/key/~key/eclipse/SED/tutorial.html

Major aspects
Automated verification

no need to specify concrete inputs as in testing — in fact we can use
symbolic execution to generate test cases instead!
coverage can be guided by precise (boundary) conditions, unlike fuzz-testing

Path explosion …
The number of execution paths grows exponentially with respect to the
number of inputs, control branches, …
Mitigations: coverage criteria constraints, special techniques (e.g. partial
order reduction to identify/merge equivalent states, exploration heuristics)

Environment interface (e.g., OS system calls, multi-threading):
Native execution (simple), but leads to non-deterministic side effects being
propagated down the execution tree (global execution may be not accurate /
repeatable)
Approach: implement a set of primitives of interest through a symbolic
execution layer

95

A few symbolic execution tools

C / LLVM
Klee (discussed next)
Cloud9
S2E

x86
angr
Triton

Java
Java Path Finder (JPF) - symbc module
KeY symbolic execution debugger

96

https://klee.github.io/
http://cloud9.epfl.ch/
http://s2e.systems/
https://angr.io/
https://triton.quarkslab.com/
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
http://i12www.ira.uka.de/key/~key/eclipse/SED/tutorial.html

Klee

Features:
Symbolic execution of LLVM bytecode
Bindings for POSIX runtime, libc, and uclibc (library calls can be
executed symbolically)
Program arguments and standard input can be symbolic, there
is also support for symbolic files

Fast start:
Online: http://klee.doc.ic.ac.uk/
Docker image: http://klee.github.io/docker/ (used in class)

97

http://klee.doc.ic.ac.uk/
http://klee.github.io/docker/

98

 char pass[MAX_PASSWORD_LEN+1];
 klee_make_symbolic(pass, sizeof(pass), "pass");
 isPasswordOK(pass);

pany.c

passwd.c
 int isPasswordOK(const char* pass) {
 …
 int len = strlen(password);
 …
 }

$ clang -emit-llvm -g -I $KLEE_SRC_ROOT/include -c testAnyString.c passwd.c
$ llvm-link testAnyString.bc passwd.bc -o testAnyString

compilation

$ klee --max-time=60 --libc=uclibc ./testAnyString
…
KLEE: ERROR: /home/klee/klee_build/klee-uclibc/libc/string/strlen.c:22: memory
error: out of bound pointer
KLEE: done: generated tests = 9

Klee execution

Klee test case inspection (for the error)

$ ktest-tool --write-ints --trim-zeros klee-last/test000002.ktest
ktest file : ‘klee-last/test000002.ktest'
args : ['testAnyString']
num objects: 1
object 0: name: b'pass'
object 0: size: 13
object 0: data: b'\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01'

99

 char pass[MAX_PASSWORD_LEN+1];
 klee_make_symbolic(pass, sizeof(pass), "pass");
 isPasswordOK(pass);

pany.c

passwd.c
 int isPasswordOK(const char* pass) {
 …
 int len = strlen(password);
 …
 }

$ clang -emit-llvm -g -I $KLEE_SRC_ROOT/include -c testAnyString.c passwd.c
$ llvm-link testAnyString.bc passwd.bc -o testAnyString

compilation

$ klee --max-time=60 --libc=uclibc ./testAnyString
…
KLEE: ERROR: /home/klee/klee_build/klee-uclibc/libc/string/strlen.c:22: memory
error: out of bound pointer
KLEE: done: generated tests = 9

Klee execution

Klee test case inspection (for the error)

$ ktest-tool --trim-zeros klee-last/test000002.ktest
ktest file : ‘klee-last/test000002.ktest'
args : ['testAnyString']
num objects: 1
object 0: name: b'pass'
object 0: size: 13
object 0: data: b'\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01'

pass is marked
as symbolic

strlen vulnerable
to buffer overflow

klee execution detects
buffer overflow / program crash

this input value for pass
is not null-terminated

In this case, klee finds no buffer overflow errors
In fact, no errors at all, we can add more assumptions of
interest but also assertions

100

 char pass[MAX_PASSWORD_LEN+1];
 klee_make_symbolic(pass, sizeof(pass), "pass");
 int len = klee_range(0, sizeof(pass)-1, "len");
 klee_assume(pass[len] == 0);
 isPasswordOK(pass);

pass is marked
as symbolic

len is also symbolic — an integer
with range between 0 and

sizeof(pass)-1
Klee executes under the

assumption that
pass[len] == 0

i.e. that pass is null-terminated

pnulltermstring.c

Assumptions:
Password has valid length, and contains at least one lower case letter, one upper case letter, and one digit

Assertions
isPasswordOK should return 1.

101

 #define LET_POS(var, cond) \
 int var = klee_range(0, len-1, #var); klee_assume(cond);

 char pass[MAX_PASSWORD_LEN+1];
 klee_make_symbolic(pass, sizeof(pass), "pass");
 int len = klee_range(MIN_PASSWORD_LEN, MAX_PASSWORD_LEN, "len");
 LET_POS(lpos, IS_LOWER(pass[lpos]));
 LET_POS(upos, IS_UPPER(pass[upos]) & (upos != lpos));
 LET_POS(dpos, IS_DIGIT(pass[dpos]) & (dpos != lpos) & (dpos != upos));
 klee_assume(pass[len] == 0);
 for (int i=0; i < len; i++) {
 if (i != dpos && i != lpos && i != upos) {
 char c = pass[i];
 klee_assume(IS_DIGIT(c)
 | IS_UPPER(pass[i])
 | IS_LOWER(pass[i]));
 }
 }

 int ok = isPasswordOK(pass);
 klee_assert(ok); pvalidLUD.c

A few research highlights
Overview papers

Symbolic execution for software testing in practice: preliminary
assessment, Cadar et al., ICSE’11
All You Ever Wanted to Know about Dynamic Taint Analysis and Forward
Symbolic Execution (but Might Have Been Afraid to Ask) , Schwartz et al.,
SP’10

A few example applications / tools
KLEE: Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs, OSDI’08
SAGE: Whitebox Fuzzing for Security Testing, Godefroid et al, CACM’12
Automatic Exploit Generation, Avgerinos et al., CACM, 2014 -
Checking Interaction-Based Declassification Policies for Android Using
Symbolic Execution , Micinski et al., ESORICS’15
SAFELI – SQL Injection Scanner Using Symbolic Execution, Fu & Xian,
TAV-WEB '08

102

http://dl.acm.org/citation.cfm?id=1985995
http://dl.acm.org/citation.cfm?id=1985995
http://ieeexplore.ieee.org/document/5504796/?arnumber=5504796
http://ieeexplore.ieee.org/document/5504796/?arnumber=5504796
https://www.usenix.org/legacy/event/osdi08/tech/full_papers/cadar/cadar.pdf
https://www.usenix.org/legacy/event/osdi08/tech/full_papers/cadar/cadar.pdf
http://dl.acm.org/citation.cfm?id=2094081
http://dl.acm.org/citation.cfm?id=2560219
http://link.springer.com/chapter/10.1007/978-3-319-24177-7_26
http://link.springer.com/chapter/10.1007/978-3-319-24177-7_26
http://dl.acm.org/citation.cfm?id=1390838

