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Concurrency
Concurrency 

multiple computational processes that execute at the same time and interact 
with each other

Some programmers may only deal with sequential code …
… but even “sequential” code in reality is normally intertwined with 
several concurrent systems at different levels in the software / hardware 
stack 
Think of modern-day software and the intricate connection between:

data centers in the cloud
networks
OS processes and the kernel 
multiple threads within a single process
CPUs with multiple cores & complex memory hierarchy
I/O handling
…
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Concurrency works “most of the time”

Why only “most of the time”? 
Reasons for non-determinism?
Security issues ?
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Cartoon by Oliver Widder, CC 3.0 license  
 geekandpoke.com

http://geekandpoke.com


The “time and state” pernitious kingdom

Concurrency blurs clear notions of time and state, one of 
the 7 pernicious kingdoms in software security.
CWE category CWE-361 - Time and State

“weaknesses related to the improper management 
of time and state in an environment that supports 
simultaneous or near-simultaneous computation by 
multiple systems, processes, or threads”
“in order for more than one component to communicate, 
state must be shared, and all that takes time […]  
Defects rush to fil l the gap between the 
programmer's model of how a program executes 
and what happens in reality. These defects are related 
to unexpected interactions between threads, processes, 
time, and information.”
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https://cwe.mitre.org/data/definitions/700.html
https://cwe.mitre.org/data/definitions/361.html


Concurrency vulnerabilities

General
CWE-362 — Race Condition
CWE-662: Improper Synchronization
CWE-512 (and subtypes 385 / 515) Covert (Timing / Space) 
Channel 

Examples of more specific vulnerability classes
CWE-366, CWE-567 : Race Condition within a Thread: 
Unsynchronized Access to Shared Data in a Multithreaded Context
CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition  
CWE-377: Insecure Temporary File
CWE-1037: Processor Optimization Removal or Modification of 
Security-critical Code - a category introduced in 2018 related to the 
Meltdown and Spectre vulnerabilities
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https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/662.html
https://cwe.mitre.org/data/definitions/512.html
https://cwe.mitre.org/data/definitions/385.html
https://cwe.mitre.org/data/definitions/515.html
https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/567.html
https://cwe.mitre.org/data/definitions/367.html
https://cwe.mitre.org/data/definitions/377.html
https://cwe.mitre.org/data/definitions/1037.html
https://meltdownattack.com/


Race condition (CWE-362)
“The program contains a code sequence that can run 
concurrently with other code, and the code sequence 
requires temporary, exclusive access to a shared 
resource, but a timing window exists in which the shared 
resource can be modified by another code sequence that 
is operating concurrently.”
“[…] A race condition violates these properties, which are 
closely related: 

Exclusivity - the code sequence is given exclusive access to the 
shared resource, i.e., no other code sequence can modify 
properties of the shared resource before the original sequence has 
completed execution. 
Atomicity - the code sequence is behaviorally atomic, i.e., no 
other thread or process can concurrently execute the same 
sequence of instructions (or a subset) against the same resource.”
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CWE-362 — example vulnerabilities 
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Race conditions

Types of resources:
memory, files, databases, … 

Exploitability / reproducibility
exploit tamper the program or its environment to materialize a 
window of vulnerability
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resource

program

adversary

non-exclusive, 
non-atomic access!



Simple “bank account” example

Assume this is a server-side procedure in your bank that can be 
executed concurrently, and that  getBalanceInDB  and 
setBalanceInDB execute as individual DB transactions.
If two (or more client programs) invoke transfer  concurrently, 
can you “steal” money from the bank?
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# Pseudo-code
withdraw(account, amount) {
    balance = getBalanceInDB(account)
    if balance >= amount 
      setBalanceInDB(account, balance - amount)
      return OK
    else
      return NOT_AUTHORIZED
    end
end



Simple “bank account” example (2)
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withdraw(900)

withdraw(200)

balance 
= 

1000
balance 

=
100

balance 
=

800!

# Pseudo-code
withdraw(account, amount) {
    balance = getBalanceInDB(account)
    if balance >= amount 
      setBalanceInDB(account, balance - amount)
      return OK
    else
      return NOT_AUTHORIZED
    end
end



Serializability

Serializability - the strictest form of isolation
The logical effect of a set concurrent transactions must be 
equivalent to that of a sequential execution of them, i.e., any 
permutation that preserves the “happens-before” relation.
In the example: effect may be equivalent to ABCDE or CADBE for 
instance but not ABDCE, CDABE, or ABCED

Relaxed in many cases, due to complexity of implementation 
and performance / availability trade-offs
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Race condition — multithreaded programs

Suppose two requests execute simultaneously . As in the 
previous example, it is easy to see the returned sequence 
id can be the same for both threads.
An instance of CWE-366 / CWE-567. More on 
multithreaded programs later in this class.
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public static class Counter extends HttpServlet {
  static int count = 0;
  protected void doGet(HttpServletRequest in, HttpServletResponse 
out) throws ServletException, IOException {
    out.setContentType("text/plain");
    PrintWriter p = out.getWriter();
    count++;  // read followed by write implicit
    p.println(count + " hits so far!");
  }
}

https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/567.html


TOCTOU race conditions (CWE-367)

TOCTOU: Time-Of-Check, Time-Of-Use - CWE-367
“The software checks the state of a resource before 
using that resource, but the resource's state can 
change between the check and the use in a way that 
invalidates the results of the check. This can cause the 
software to perform invalid actions when the resource is in 
an unexpected state.”
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TOCTOU race conditions
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resource

system

adversary

TOC TOU

adversary actions

The program:
first checks  for availability/safety of the resource - time-of-check 
(TOC)
and  subsequently starts using it — time-of-use (TOU)

Adversary 
in between TOC and TOU, it accesses or modifies the resource state 
invalidating the TOC assumptions.

system deviates from expected behavior to serve the adversary 
purposes



TOCTOU — classic POSIX example

Program runs with elevated “setuid” privileges 
Effective user id (EUID) may be root
Real user id (RUID) typically has less privileges 

access call takes into account the real UID  
… but fopen call takes into account the EUID: any file can be written by root …
WHAT CAN GO WRONG? 
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   // TOC: access call
   if (access(file, W_OK) == 0) {
      // TOU: fopen call
      FILE* f = fopen(file, "w");
      writeToFile(f);
      fclose(f);
    } else {
      fprintf(stderr, "Cannot write to '%s'\n", file);
    }



TOCTOU - classic POSIX example

Recall:
access call takes into account the real UID  
… but fopen call takes into account the EUID: any file can be written by root …

Adversary changes resource to point to EUID-accessible file like “/etc/
passwd”
A closely releated TOCTOU instance — CWE-363 - “Race Condition 
Enabling Link Following”
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fopen
/home/joe/harmless

TOC TOU
access

symlink(“/etc/passwd”,“/home/joe/harmless”)
unlink(/home/joe/harmless”)

https://cwe.mitre.org/data/definitions/363.html


TOCTOU — code auditing
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toctou.c:16:  [4] (race) access:
  This usually indicates a security flaw. If an attacker can 
change anything along the path between the call to access() and 
the file's actual use (e.g., by moving files), the attacker can 
exploit the race condition (CWE-362/CWE-367). Set up the 
correct permissions (e.g., using setuid())
  and try to open the file directly.
[…]
toctou.c:18:  [2] (misc) fopen:
  Check when opening files - can an attacker redirect it (via 
symlinks), force the opening of special file type (e.g., device 
files), move things around to create a race condition, control 
its ancestors, or change its  contents? (CWE-362).

Flawfinder output



TOCTOU — Temporary files

Other classic examples of TOCTOU vulnerabilities relate to the use of temporary files. 
tmpnam (and other functions/variants):

generates the name of a temporary file that does not exist but does not create it! File can be 
created externally in-between the tmpnam and the fopen call (which was supposed to create 
it)
in some implementations the file name is also relatively predictable.

Slightly more safe
tmpfile : generates name and opens the file by truncating it if it already exists — attacker may 
create the “original” file with relaxed permissions though

Safer
mkstemp: generates name and forces creation of temporary file, otherwise fails.
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if (tmpnam(filename)){ // TOC 
FILE* tmp = fopen(filename,”wb+"); // TOU
while((recv(sock,recvbuf,DATA_SIZE, 0) > 0)&&(amt!=0))

fwrite(recvbuf,1,DATA_SIZE,tmp);
}



TOCTOU [Viega and McGraw, Chap 9] 
advice and programming recipes

Avoid calls that take filenames to perform a check.
Use file descriptors instead whenever possible:

e.g.  open + fstat in place of stat + open
Not always feasible: no file-descriptor based alternatives to 
mkdir, unlink, … 

In this case take measure to ensure the files at stake are 
located in a directory owned by the RUID
File locking may be useful but does not work on file 
systems like NFS
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Concurrency is hard to get right … 

There are many explicit concurrency primitives for 
processes / threads that required careful programming

semaphores, message queues, shared memory, locks, 
monitors, condition variables, … 

These are easily prone to bad use leading to race 
conditions, deadlocks, functional errors …  

For instance in multithreaded programs:  “Concurrent Bug 
Patterns and How to Test Them”, E. Farchi, Y. Nir, S. Ur, PDPS, 
2003
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https://www.research.ibm.com/haifa/projects/verification/contest/papers/W20_PADTD_02.pdf
https://www.research.ibm.com/haifa/projects/verification/contest/papers/W20_PADTD_02.pdf


Alternative concurrency abstractions

Concurrency can be based on safe abstractions that 
alleviate the burden from the programmer. 
Brief reference to a few examples:

Rust language: memory ownership concept built-in prevents 
memory races by construction (among other advantages)
Go, Erlang, Scala actors, … : “clean” concurrency based on 
message-passing / actor model / co-routines
Software Transactional Memory (STM):  support for memory 
transactions
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Concurrent program verification
Bugs/vulnerabilities are NOT revealed “out-of-the-box”:

Execution: interleavings are too many and can be fine-
grained. For example, thread/process context switches are 
non-deterministic, irreproducible and uncontrollable. Only 
certain (sometimes rare) executions may lead to erroneous 
behavior.
Debugging is frequently useless. The execution of a 
debugger itself affects the schedule of a running program.  
“Heisenbugs” are common (“a bug that disappears or 
alters its behavior when one attempts to probe or isolate it”).
Standard testing cannot predict or programatically control 
the interleavings.

Special-purpose, relatively complex methodologies can be 
used, but face scalability/state-explosion problems …
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Example: exposing a race condition

Multi-threaded Java code — note that:
start() : begins thread execution (asynchronously)
join() : waits for thread to terminate

The two threads increment data.value that is initially 0
Is there a race? Is value always 2 after both t1 and t2 end ?
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      data.value = 0;
      Thread t1 = new Thread(() -> { data.value++; }),
             t2 = new Thread(() -> { data.value++; });
      t1.start(); t2.start();
      t1.join(); t2.join();
      assert data.value == 2;   

  class Data {
    int value;
  }



Example: exposing a race condition (2)
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      data.value = 0;
      Thread t1 = new Thread(() -> { data.value++; }),
             t2 = new Thread(() -> { data.value++; });
      t1.start(); t2.start();
      t1.join(); t2.join();
      assert data.value == 2;   

  class Data {
    int value;
  }

data.value++;
equivalent to 

data.value = data.value + 1

       0: aload_0
       1: dup
       2: getfield      #34    // Field qses/Data.value:I
       5: iconst_1
       6: iadd
       7: putfield      #34    // Field qses/Data.value:I

JVM 
bytecode



Example: exposing a race condition (3)

Result can be 1 if both reads precede the writes.
Fix: synchronize access to data / ensure mutual exclusion during update
But if you can run the incorrect code > a million times … and the value will be 2
Small segment of code in each thread tends to run in sequence without 
interleaving. Context switches are too coarse-grained …
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getfield → 0T1

T2
getfield → 0

 putfield(1)

 putfield(1)

  synchronized(data) {
     data.value++; 
  }

Code that 
fixes the race 

condition



Inducing noise to expose bugs…

“Noise” = calls that lead to context switches like 
Thread.yield() / sleep()
Noise at thread interference points increases the probability 
of inducing more fine-grained schedules / exposing bugs

For instance see “Testing Concurrent Java Programs using 
Randomized Scheduling”, S.D. Steller, RV’02 
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  int v = data.value;
  Thread.yield();
  data.value = v + 1;

http://www.sciencedirect.com/science/article/pii/S1571066104805826
http://www.sciencedirect.com/science/article/pii/S1571066104805826
http://www.sciencedirect.com/science/article/pii/S1571066104805826


Testing approaches

Possible thread interleavings can be explored by 
systematically intercepting thread interference points on 

shared data access
use of multi-threading primitives

Example systems
CHESS — “Finding and Reproducing Heisenbugs in Concurrent 
Programs”, Musuvathi et al., OSDI’08
“Cooperari: A Tool for Cooperative Testing of Multithreaded Java 
Programs”, Marques et al, PPPJ’14
We’ll go through an overview of Cooperari next (overview slides 
here).
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https://www.usenix.org/legacy/event/osdi08/tech/full_papers/musuvathi/musuvathi.pdf
https://www.usenix.org/legacy/event/osdi08/tech/full_papers/musuvathi/musuvathi.pdf
http://www.dcc.fc.up.pt/~edrdo/publications/papers/pppj14.pdf
http://www.dcc.fc.up.pt/~edrdo/publications/papers/pppj14.pdf
http://www.dcc.fc.up.pt/~edrdo/publications/papers/pppj14.pdf
https://github.com/Cooperari/cooperari/raw/master/papers/pppj14.pdf


Covert channels / micro-architectural 
attacks

CWE-385: Covert Timing Channel
“Covert timing channels convey information by modulating 
some aspect of system behavior over time, so that the 
program receiving the information can observe system 
behavior and infer protected information.”

For instance, password timing attacks are based on the fact that 
password checking may not occur in constant time / independently 
of password length.
Some relevant covert channels inherently rely on concurrency at 
the hardware micro-architectural level:

memory hieararchy, in particular the shared use of caches 
by multiple cores/processors
Processor features: hyper-threading, branch-prediction, 
out-of-order execution
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https://cwe.mitre.org/data/definitions/385.html


Memory hierarchy / caches

Example: AMD Athlon K8 
Image source: Wikipedia entry for "CPU cache"
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https://en.wikipedia.org/wiki/CPU_cache


Covert-channel cache attacks

Outline
Cache hits and misses have significantly different latencies <=> 
memory access time is correlated with cache hits/misses.
A “spy program” races the cache by flushing it altogether or 
accessing memory that leads to the eviction of cache lines by 
other programs.
The execution of the “victim programs” will incur cache misses.
Spy can “walk” through the cache again and know what cache 
lines have been accessed (if it also has misses)

There are several variants, e.g., check the libflush library.
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https://github.com/IAIK/armageddon/tree/master/libflush


Image source: “Concurrency and security”, R. Watson, Security course at 
Cambridge
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https://www.cl.cam.ac.uk/teaching/0809/Security/concurrency.pdf


CACHE MISSING FOR FUN AND PROFIT 7

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x · a2k+1 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x · a2k+1 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x · a2k+1 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

T
im

e
(c

yc
le

s)

Cache congruency class

0 · 105

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

0 31

Figure 2. Part of a 512-bit modular exponentiation in
OpenSSL 0.9.7c. The shading of each block indicates
the number of cycles needed to access all the lines in
a cache set, ranging from 120 cycles (white) to over 170
(black). The circled regions reveal information about the
multipliers a2k+1 being used.
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Source:  “Cache Missing for Fun and Profit”  

Colin Percival

http://www.daemonology.net/papers/htt.pdf


Meltdown
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Lipp et al., “Meltdown: Reading Kernel 
Memory from User Space”, 27th USENIX 
Security Symposium, 2018



Spectre
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Rocher et al., “Spectre Attacks: Exploiting 
Speculative Execution”, 40th IEEE 
Symposium on Security and Privacy, 2019


