
Questões de Segurança em Engenharia de Software (QSES)
Mestrado em Segurança Informática
Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Eduardo R. B. Marques, edrdo@dcc.fc.up.pt

Concurrency and security

mailto:edrdo@dcc.fc.up.pt?subject=

Concurrency
Concurrency

multiple computational processes that execute at the same time and interact
with each other

Some programmers may only deal with sequential code …
… but even “sequential” code in reality is normally intertwined with
several concurrent systems at different levels in the software / hardware
stack
Think of modern-day software and the intricate connection between:

data centers in the cloud
networks
OS processes and the kernel
multiple threads within a single process
CPUs with multiple cores & complex memory hierarchy
I/O handling
…

2

Concurrency works “most of the time”

Why only “most of the time”?
Reasons for non-determinism?
Security issues ?

3

Cartoon by Oliver Widder, CC 3.0 license
 geekandpoke.com

http://geekandpoke.com

The “time and state” pernitious kingdom

Concurrency blurs clear notions of time and state, one of
the 7 pernicious kingdoms in software security.
CWE category CWE-361 - Time and State

“weaknesses related to the improper management
of time and state in an environment that supports
simultaneous or near-simultaneous computation by
multiple systems, processes, or threads”
“in order for more than one component to communicate,
state must be shared, and all that takes time […]
Defects rush to fil l the gap between the
programmer's model of how a program executes
and what happens in reality. These defects are related
to unexpected interactions between threads, processes,
time, and information.”

4

https://cwe.mitre.org/data/definitions/700.html
https://cwe.mitre.org/data/definitions/361.html

Concurrency vulnerabilities

General
CWE-362 — Race Condition
CWE-662: Improper Synchronization
CWE-512 (and subtypes 385 / 515) Covert (Timing / Space)
Channel

Examples of more specific vulnerability classes
CWE-366, CWE-567 : Race Condition within a Thread:
Unsynchronized Access to Shared Data in a Multithreaded Context
CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition
CWE-377: Insecure Temporary File
CWE-1037: Processor Optimization Removal or Modification of
Security-critical Code - a category introduced in 2018 related to the
Meltdown and Spectre vulnerabilities

5

https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/662.html
https://cwe.mitre.org/data/definitions/512.html
https://cwe.mitre.org/data/definitions/385.html
https://cwe.mitre.org/data/definitions/515.html
https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/567.html
https://cwe.mitre.org/data/definitions/367.html
https://cwe.mitre.org/data/definitions/377.html
https://cwe.mitre.org/data/definitions/1037.html
https://meltdownattack.com/

Race condition (CWE-362)
“The program contains a code sequence that can run
concurrently with other code, and the code sequence
requires temporary, exclusive access to a shared
resource, but a timing window exists in which the shared
resource can be modified by another code sequence that
is operating concurrently.”
“[…] A race condition violates these properties, which are
closely related:

Exclusivity - the code sequence is given exclusive access to the
shared resource, i.e., no other code sequence can modify
properties of the shared resource before the original sequence has
completed execution.
Atomicity - the code sequence is behaviorally atomic, i.e., no
other thread or process can concurrently execute the same
sequence of instructions (or a subset) against the same resource.”

6

CWE-362 — example vulnerabilities

7

Race conditions

Types of resources:
memory, files, databases, …

Exploitability / reproducibility
exploit tamper the program or its environment to materialize a
window of vulnerability

8

resource

program

adversary

non-exclusive,
non-atomic access!

Simple “bank account” example

Assume this is a server-side procedure in your bank that can be
executed concurrently, and that getBalanceInDB and
setBalanceInDB execute as individual DB transactions.
If two (or more client programs) invoke transfer concurrently,
can you “steal” money from the bank?

9

Pseudo-code
withdraw(account, amount) {
 balance = getBalanceInDB(account)
 if balance >= amount
 setBalanceInDB(account, balance - amount)
 return OK
 else
 return NOT_AUTHORIZED
 end
end

Simple “bank account” example (2)

10

withdraw(900)

withdraw(200)

balance
=

1000
balance

=
100

balance
=

800!

Pseudo-code
withdraw(account, amount) {
 balance = getBalanceInDB(account)
 if balance >= amount
 setBalanceInDB(account, balance - amount)
 return OK
 else
 return NOT_AUTHORIZED
 end
end

Serializability

Serializability - the strictest form of isolation
The logical effect of a set concurrent transactions must be
equivalent to that of a sequential execution of them, i.e., any
permutation that preserves the “happens-before” relation.
In the example: effect may be equivalent to ABCDE or CADBE for
instance but not ABDCE, CDABE, or ABCED

Relaxed in many cases, due to complexity of implementation
and performance / availability trade-offs

11

A

C

B

D E

BA

C D
E

happens-before
relation

time

Race condition — multithreaded programs

Suppose two requests execute simultaneously . As in the
previous example, it is easy to see the returned sequence
id can be the same for both threads.
An instance of CWE-366 / CWE-567. More on
multithreaded programs later in this class.

12

public static class Counter extends HttpServlet {
 static int count = 0;
 protected void doGet(HttpServletRequest in, HttpServletResponse
out) throws ServletException, IOException {
 out.setContentType("text/plain");
 PrintWriter p = out.getWriter();
 count++; // read followed by write implicit
 p.println(count + " hits so far!");
 }
}

https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/567.html

TOCTOU race conditions (CWE-367)

TOCTOU: Time-Of-Check, Time-Of-Use - CWE-367
“The software checks the state of a resource before
using that resource, but the resource's state can
change between the check and the use in a way that
invalidates the results of the check. This can cause the
software to perform invalid actions when the resource is in
an unexpected state.”

13

resource

system

adversary

TOC TOU

adversary actions

TOCTOU race conditions

14

resource

system

adversary

TOC TOU

adversary actions

The program:
first checks for availability/safety of the resource - time-of-check
(TOC)
and subsequently starts using it — time-of-use (TOU)

Adversary
in between TOC and TOU, it accesses or modifies the resource state
invalidating the TOC assumptions.

system deviates from expected behavior to serve the adversary
purposes

TOCTOU — classic POSIX example

Program runs with elevated “setuid” privileges
Effective user id (EUID) may be root
Real user id (RUID) typically has less privileges

access call takes into account the real UID
… but fopen call takes into account the EUID: any file can be written by root …
WHAT CAN GO WRONG?

15

 // TOC: access call
 if (access(file, W_OK) == 0) {
 // TOU: fopen call
 FILE* f = fopen(file, "w");
 writeToFile(f);
 fclose(f);
 } else {
 fprintf(stderr, "Cannot write to '%s'\n", file);
 }

TOCTOU - classic POSIX example

Recall:
access call takes into account the real UID
… but fopen call takes into account the EUID: any file can be written by root …

Adversary changes resource to point to EUID-accessible file like “/etc/
passwd”
A closely releated TOCTOU instance — CWE-363 - “Race Condition
Enabling Link Following”

16

fopen
/home/joe/harmless

TOC TOU
access

symlink(“/etc/passwd”,“/home/joe/harmless”)
unlink(/home/joe/harmless”)

https://cwe.mitre.org/data/definitions/363.html

TOCTOU — code auditing

17

toctou.c:16: [4] (race) access:
 This usually indicates a security flaw. If an attacker can
change anything along the path between the call to access() and
the file's actual use (e.g., by moving files), the attacker can
exploit the race condition (CWE-362/CWE-367). Set up the
correct permissions (e.g., using setuid())
 and try to open the file directly.
[…]
toctou.c:18: [2] (misc) fopen:
 Check when opening files - can an attacker redirect it (via
symlinks), force the opening of special file type (e.g., device
files), move things around to create a race condition, control
its ancestors, or change its contents? (CWE-362).

Flawfinder output

TOCTOU — Temporary files

Other classic examples of TOCTOU vulnerabilities relate to the use of temporary files.
tmpnam (and other functions/variants):

generates the name of a temporary file that does not exist but does not create it! File can be
created externally in-between the tmpnam and the fopen call (which was supposed to create
it)
in some implementations the file name is also relatively predictable.

Slightly more safe
tmpfile : generates name and opens the file by truncating it if it already exists — attacker may
create the “original” file with relaxed permissions though

Safer
mkstemp: generates name and forces creation of temporary file, otherwise fails.

18

if (tmpnam(filename)){ // TOC
FILE* tmp = fopen(filename,”wb+"); // TOU
while((recv(sock,recvbuf,DATA_SIZE, 0) > 0)&&(amt!=0))

fwrite(recvbuf,1,DATA_SIZE,tmp);
}

TOCTOU [Viega and McGraw, Chap 9]
advice and programming recipes

Avoid calls that take filenames to perform a check.
Use file descriptors instead whenever possible:

e.g. open + fstat in place of stat + open
Not always feasible: no file-descriptor based alternatives to
mkdir, unlink, …

In this case take measure to ensure the files at stake are
located in a directory owned by the RUID
File locking may be useful but does not work on file
systems like NFS

19

Concurrency is hard to get right …

There are many explicit concurrency primitives for
processes / threads that required careful programming

semaphores, message queues, shared memory, locks,
monitors, condition variables, …

These are easily prone to bad use leading to race
conditions, deadlocks, functional errors …

For instance in multithreaded programs: “Concurrent Bug
Patterns and How to Test Them”, E. Farchi, Y. Nir, S. Ur, PDPS,
2003

20

https://www.research.ibm.com/haifa/projects/verification/contest/papers/W20_PADTD_02.pdf
https://www.research.ibm.com/haifa/projects/verification/contest/papers/W20_PADTD_02.pdf

Alternative concurrency abstractions

Concurrency can be based on safe abstractions that
alleviate the burden from the programmer.
Brief reference to a few examples:

Rust language: memory ownership concept built-in prevents
memory races by construction (among other advantages)
Go, Erlang, Scala actors, … : “clean” concurrency based on
message-passing / actor model / co-routines
Software Transactional Memory (STM): support for memory
transactions

21

Concurrent program verification
Bugs/vulnerabilities are NOT revealed “out-of-the-box”:

Execution: interleavings are too many and can be fine-
grained. For example, thread/process context switches are
non-deterministic, irreproducible and uncontrollable. Only
certain (sometimes rare) executions may lead to erroneous
behavior.
Debugging is frequently useless. The execution of a
debugger itself affects the schedule of a running program.
“Heisenbugs” are common (“a bug that disappears or
alters its behavior when one attempts to probe or isolate it”).
Standard testing cannot predict or programatically control
the interleavings.

Special-purpose, relatively complex methodologies can be
used, but face scalability/state-explosion problems …

22

Example: exposing a race condition

Multi-threaded Java code — note that:
start() : begins thread execution (asynchronously)
join() : waits for thread to terminate

The two threads increment data.value that is initially 0
Is there a race? Is value always 2 after both t1 and t2 end ?

23

 data.value = 0;
 Thread t1 = new Thread(() -> { data.value++; }),
 t2 = new Thread(() -> { data.value++; });
 t1.start(); t2.start();
 t1.join(); t2.join();
 assert data.value == 2;

 class Data {
 int value;
 }

Example: exposing a race condition (2)

24

 data.value = 0;
 Thread t1 = new Thread(() -> { data.value++; }),
 t2 = new Thread(() -> { data.value++; });
 t1.start(); t2.start();
 t1.join(); t2.join();
 assert data.value == 2;

 class Data {
 int value;
 }

data.value++;
equivalent to

data.value = data.value + 1

 0: aload_0
 1: dup
 2: getfield #34 // Field qses/Data.value:I
 5: iconst_1
 6: iadd
 7: putfield #34 // Field qses/Data.value:I

JVM
bytecode

Example: exposing a race condition (3)

Result can be 1 if both reads precede the writes.
Fix: synchronize access to data / ensure mutual exclusion during update
But if you can run the incorrect code > a million times … and the value will be 2
Small segment of code in each thread tends to run in sequence without
interleaving. Context switches are too coarse-grained …

25

getfield → 0T1

T2
getfield → 0

 putfield(1)

 putfield(1)

 synchronized(data) {
 data.value++;
 }

Code that
fixes the race

condition

Inducing noise to expose bugs…

“Noise” = calls that lead to context switches like
Thread.yield() / sleep()
Noise at thread interference points increases the probability
of inducing more fine-grained schedules / exposing bugs

For instance see “Testing Concurrent Java Programs using
Randomized Scheduling”, S.D. Steller, RV’02

26

 int v = data.value;
 Thread.yield();
 data.value = v + 1;

http://www.sciencedirect.com/science/article/pii/S1571066104805826
http://www.sciencedirect.com/science/article/pii/S1571066104805826
http://www.sciencedirect.com/science/article/pii/S1571066104805826

Testing approaches

Possible thread interleavings can be explored by
systematically intercepting thread interference points on

shared data access
use of multi-threading primitives

Example systems
CHESS — “Finding and Reproducing Heisenbugs in Concurrent
Programs”, Musuvathi et al., OSDI’08
“Cooperari: A Tool for Cooperative Testing of Multithreaded Java
Programs”, Marques et al, PPPJ’14
We’ll go through an overview of Cooperari next (overview slides
here).

27

https://www.usenix.org/legacy/event/osdi08/tech/full_papers/musuvathi/musuvathi.pdf
https://www.usenix.org/legacy/event/osdi08/tech/full_papers/musuvathi/musuvathi.pdf
http://www.dcc.fc.up.pt/~edrdo/publications/papers/pppj14.pdf
http://www.dcc.fc.up.pt/~edrdo/publications/papers/pppj14.pdf
http://www.dcc.fc.up.pt/~edrdo/publications/papers/pppj14.pdf
https://github.com/Cooperari/cooperari/raw/master/papers/pppj14.pdf

Covert channels / micro-architectural
attacks

CWE-385: Covert Timing Channel
“Covert timing channels convey information by modulating
some aspect of system behavior over time, so that the
program receiving the information can observe system
behavior and infer protected information.”

For instance, password timing attacks are based on the fact that
password checking may not occur in constant time / independently
of password length.
Some relevant covert channels inherently rely on concurrency at
the hardware micro-architectural level:

memory hieararchy, in particular the shared use of caches
by multiple cores/processors
Processor features: hyper-threading, branch-prediction,
out-of-order execution

28

https://cwe.mitre.org/data/definitions/385.html

Memory hierarchy / caches

Example: AMD Athlon K8
Image source: Wikipedia entry for "CPU cache"

29

https://en.wikipedia.org/wiki/CPU_cache

Covert-channel cache attacks

Outline
Cache hits and misses have significantly different latencies <=>
memory access time is correlated with cache hits/misses.
A “spy program” races the cache by flushing it altogether or
accessing memory that leads to the eviction of cache lines by
other programs.
The execution of the “victim programs” will incur cache misses.
Spy can “walk” through the cache again and know what cache
lines have been accessed (if it also has misses)

There are several variants, e.g., check the libflush library.

30

https://github.com/IAIK/armageddon/tree/master/libflush

Image source: “Concurrency and security”, R. Watson, Security course at
Cambridge

31

https://www.cl.cam.ac.uk/teaching/0809/Security/concurrency.pdf

CACHE MISSING FOR FUN AND PROFIT 7

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x · a2k+1 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x · a2k+1 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x · a2k+1 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

T
im

e
(c

yc
le

s)

Cache congruency class

0 · 105

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

0 31

Figure 2. Part of a 512-bit modular exponentiation in
OpenSSL 0.9.7c. The shading of each block indicates
the number of cycles needed to access all the lines in
a cache set, ranging from 120 cycles (white) to over 170
(black). The circled regions reveal information about the
multipliers a2k+1 being used.

CACHE MISSING FOR FUN AND PROFIT 7

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x · a2k+1 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x · a2k+1 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

x := x · a2k+1 mod p

x := x2 mod p

x := x2 mod p

x := x2 mod p

T
im

e
(c

yc
le

s)

Cache congruency class

0 · 105

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

0 31

Figure 2. Part of a 512-bit modular exponentiation in
OpenSSL 0.9.7c. The shading of each block indicates
the number of cycles needed to access all the lines in
a cache set, ranging from 120 cycles (white) to over 170
(black). The circled regions reveal information about the
multipliers a2k+1 being used.

Source: “Cache Missing for Fun and Profit”

Colin Percival

http://www.daemonology.net/papers/htt.pdf

Meltdown

33

Lipp et al., “Meltdown: Reading Kernel
Memory from User Space”, 27th USENIX
Security Symposium, 2018

Spectre

34

Rocher et al., “Spectre Attacks: Exploiting
Speculative Execution”, 40th IEEE
Symposium on Security and Privacy, 2019

