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Abstract— A viability algorithm is developed to compute
the constrained minimum time function for general dynamical
systems. The algorithm is instantiated for a specific dynamics
(Dubin’s vehicle with current constraints), in order to solve
numerically the minimum time problem. With the specific
dynamics considered, the framework of hybrid systems enable
to solve the problem efficiently. The algorithm is implemented
in C using epigraphical techniques to reduce the dimension
of the problem. The feasibility of this optimum trajectory
algorithm is tested in an experiment with a Light Autonomous
Underwater Vehicle (LAUV) system. The hydrodynamics of the
LAUV are analyzed in order to develop a low-dimension vehicle
model. Deployment results from experiments performed in the
Sacramento River in California are presented, which show good
performance of the algorithm.

I. INTRODUCTION

Reachability analysis seeks to find the set of points that
can be reached by trajectories of a dynamical system in the
presence of some non-deterministic features. In the context
of system verification, the non-determinism may include
both control and external uncertainties; in the context of
optimal control, only the control input is included. The
techniques of reachable set computation can be applied to the
problem of optimum trajectory generation, by constructing
a value function that can then be used with standard dy-
namic programming methods. While finding the minimum
time to reach function in the absence of constraints is a
standard problem, the addition of state constraints makes this
problem significantly harder, theoretically and numerically.
In this article, we present a method for generating optimum
trajectories for a vehicle with a heading-specific planar
dynamic, driven by a non-linear, non-parametric field, subject
to spatial constraints. The spatial constraints are key, since
they make this work significantly different from standard
work in optimal control.

The theoretical foundations of the applicability of reacha-
bility to non-parametric optimal control problems are in the
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viscosity solutions to the Hamilton-Jacobi-Bellman (HJB)
equation [1], [2], which opened the door to numerical
approximation of non-differentiable value functions for con-
tinuous dynamical systems. However, it is very difficult to
incorporate general constraints, such as spatial obstacles,
into the Hamilton-Jacobi-Bellman framework. In particular,
the implications of the constraints or the nature of the
solution (lack of continuity of the value function) prevent
the straightforward use of Hamilton-Jacobi tools [3].

In contrast with representational methods, such as levee set
methods or Hamilton-Jacobi based methods, viability based
approaches do not simplify the representation of reachable
sets, but instead approximate them over a regular grid, in a
way which can be shown to be mathematically equivalent
to Hamilton-Jacobi formulations [1], [2], [4] in some cases,
see for example [5] and [6]. In the present work, we present
an instantiation of the algorithm described in [7] specifically
applied to minimum time. We use a hybrid formulation for
the system dynamics as a way of modifying the discretization
of the continuous dynamics to the discrete dynamics required
by the viability algorithm [8]. While the model of the
system dynamics used here is not hybrid in nature, the
hybrid formulation of the algorithm using this framework
is a convenient way to handle the anisotropy inherent in the
Dubins car model we use.

Fig. 1. The Light Autonomous Underwater Vehicle from Porto University
used for the implementation of the algorithm

Our approach is applied to the problem of finding minimal-
time trajectories for a Light Autonomous Underwater Vehicle
(LAUV) in a non-parametric velocity field. This example
problem features a model derived from the hydrodynamic



parameters of a LAUV (shown in Figure 1) and a velocity
field calculated for a junction of the Sacramento River in
California. An experiment was performed in which we used
the optimal trajectories generated by this algorithm to control
the LAUV in the Sacramento River. Our modelling approach
involves the reduction of a non-linear 6-DOF model of
the LAUV to a 2D Dubins car constrained by the water
dynamics.

In Section II, we introduce the HJB formulation for
minimum time problems and the utility of viability kernels
for problems with constraints. In particular, we underline the
difference between the viability solution used in this article
and the classical viscosity solution to the HJB equation. In
Section III we present the LAUV model and discuss sim-
plifications for planar motion, then adapt the model for the
hybrid viability kernel formulation of the problem. Section
IV describes the LAUV system with special emphasis on the
control system. In Section V we describe the experimental
setup and the results of the field deployment with the LAUV.

II. VIABILITY FORMULATION OF MINIMUM TIME

A. Viability based formulation of the reachability problem

We consider the following dynamical system:

ż(t) = f(z(t), u(t)) (1)

with u(t) ∈ U = {u : [0,+∞[→ U,measurable}, and U
is a compact metric space. This system has the equivalent
set-valued formulation [9]:

ż(t) ∈ F (z(t)) = {f(z(t), u)}u∈U (2)

We use the following assumptions:
• f is continuous in u,
• f is Lipschitz continuous in z,
• f is constrained by a linear bound:
∃c : maxu∈U

∥∥f(z, u)
∥∥ ≤ c(‖z‖ ,+1),

• F is upper semicontinuous.
Definition 2.1: A function LT (z0) is the minimum-time-

to-reach (MTTR) function for the dynamical system (1) and
a closed, compact target set T if it satisfies the following
condition:

LT (z0) = min
u(·)∈U

{
T : ∃z(·) : ż(·) = f(z(·), u(·)),

z(0) = z0, z(T ) ∈ T

}
(3)

where U is the proper class of measurable feedbacks.
Definition 2.2: A function LKT (z0) is the minimum-time-

to-reach function with constraints for the dynamical system
(1), a closed, compact constraint set K, and a closed,
compact target set T if it satisfies the following condition:

LKT (z0) = min
u(·)∈U

T
: ∃z(·) : ż(·) = f(z(·), u(·)),
z(0) = z0, z(T ) ∈ T ,
∀δ ∈ [0, T ], z(δ) ∈ K

 (4)

From [2] it is known that LT (z0) can be characterized
as the viscosity solution of the Hamilton-Jacobi-Bellman
equation {

H(∇LT , z) = −1
∀z ∈ T : LT (z) = 0

(5)

However, if we are interested in the MTTR function with
constraints, the viscosity solution of the HJB equation is
inadequate. In particular, the viscosity solution character-
ization of the solution (5) no longer holds. In particular,
discontinuities inherent to problem (4) force the use of a
more general concept of solution, called viability solutions
(which are lower semi-continuous). By the definition of
LKT (z) as LT (z) with additional constraints, it is easy to
see that:

LT (z) ≤ LKT (z) (6)

but other than providing this lower bound, the viscosity
solution to the HJB equation is not helpful for our problem.
One of the goals of this article is to use a characterization
of the solution to (2.2) based on viability theory and to
implement it algorithmically.

B. Instantiation of the viability technique used

We formalize the technique used, for our specific problem.
Let z := (x, y, ψ) ∈ Z := R2 × [−π, π] denote the state
variable, constrained to remain in a closed subset K ⊂ Z.
The target is any closed subset of K denoted T . Let u ∈
U(z) be a control variable which ranges in a convex set (that
may depend on the state z) and let

ż(t) ∈ F (z(t)) := {f(z(t), u), u ∈ U(z(t))} (7)

be the set-valued representation of the dynamics. We assume
that K is compact and that the set-valued map F : Z  Z is
convex, compact valued, and has closed graph. ( denotes
a set-valued function).

We denote by SF,K,T (z0) the set of all solutions to (7)
starting from z0, viable in K, and reaching T in finite time.
Compactness properties of this set can be found in [10].

The capture basin associated with the triple (F,K, T ) is
defined by:

CaptF (K, T ) := {z0 ∈ K, ∃z(·) ∈ SF,K,T (z0)} (8)

The objective of this work is to determine a feedback
control map Ũ(z) such that, starting from an initial position
z0 = (x0, y0, ψ0) ∈ CaptF (K, T ), any trajectory associated
with a selected ũ(z) ∈ Ũ(z) solution to the system (7)
reaches the target in minimal time while remaining in the
constraint set K.

C. Hybrid dynamical systems notations used

Hybrid dynamical systems are systems in which the evo-
lutions may either follow a continuous dynamic or jump
following an impulse rule when the state reaches a given
closed reset set R ⊂ K.
• The continuous evolutions are governed by the differ-

ential inclusion

ż(t) ∈ Fc(z(t)), for almost all t ∈ R+ (9)

• The impulsive evolutions are governed by the recursive
inclusion

z+ ∈ Φd(z−) (10)



where the set-valued map Φd is defined on R and has
compact values with closed graph.

A hybrid system is characterized by the pair (Fc,Φd).
Definition 2.3: A hybrid solution - or an impulsive solu-

tion or a run - of a system defined by (Fc,Φd) is any map
t → z(t) starting from x0 at the time t = 0 and defined on
an interval [0, T ], (T can be zero, finite or infinite) such that
there exists an integer N (N can be zero, finite or infinite),
an increasing sequence (tn)n∈{0···N}, and a sequence of
positions (zn)n∈{0···N} such that ∀n ∈ {0 · · ·N}
• either zn ∈ R, zn+1 ∈ Φd(zn), and tn+1 = tn,
• or z(·) is a solution to (9) on [tn, tn+1[ such that
z(tn) = zn and, if tn+1 < +∞, z(tn+1) = zn+1 ∈ K.

Following [11], [8], we can generalize the viability kernel
to hybrid systems:

Definition 2.4: The hybrid kernel of K for the hybrid
dynamic (Fc,Φd) is the subset of initial states belonging to
K from which there starts at least one viable hybrid solution.
We denote these sets Hyb(Fc,Φd)(K).

Using an extension of the capture basin algorithm [8], a
hybrid kernel can be approximated by a converging sequence
of closed sets that are discrete viability kernels of discrete
dynamical systems. The extension of viability kernel and
capture basin algorithms to hybrid systems, and their con-
vergence, can be found in [8] and [12].

III. MODEL OF LAUV DYNAMICS

We treat the LAUV as a 3-DOF planar vehicle. The vehicle
has a propeller for longitudinal acceleration, and fins for
lateral and vertical actuation. However, we decouple the
actuators and use the vertical actuation only to maintain a
constant depth. We characterize the state of the system with
three variables: x, y for earth-fixed East and North coordi-
nates, and ψ for earth-fixed heading. For this application it
is acceptable to assume that the effect of currents can be
captured by superposition; in other words, the velocity of
the surrounding water can simply be added to the velocity
of the vehicle due to actuation.

The LAUV is modeled as a Dubins’ car [13] with limited
turn rate in a non-parametric velocity field:

ẋ = V cosψ + vcx(x, y)
ẏ = V sinψ + vcy(x, y)

ψ̇ ∈ [−rmax, rmax]

(11)

To find the turn rate limit, a more general 6-DOF model
of the LAUV [14] was used, with the known parameters
of the fin surface area and angular range. The fin servo
dynamics are significantly faster than the vehicle dynamics
and so were disregarded. The maximum speed of the LAUV
in still water was experimentally determined to be 2m/s,
and at that speed, the maximum turn rate was 0.5rad/s.
By fitting the hydrodynamic model to these values, the turn
rate/speed relationship could be estimated for lower speeds.
The value 2m/s was judged to be too fast for the planned
experiments. We used an intermediate value of V = 1.0m/s
and rmax = 0.2rad/s.

A. Implemented model

The model (11) is a continuous-time, continuous-space,
differential inclusion. In order to apply the viability algo-
rithm, we must first choose an appropriate discretization, cre-
ating a discrete-time, discrete-space viability kernel problem
while respecting the consistency bounds defined in [15] and
[7]. The standard viability notation for the step size is h for
the step size in the spatial dimensions and ρ for the time
step. There is a consistency bound on h and ρ:

ρ ≥
√

2h
ML

(12)

where M = supz∈K supy∈F (z) ‖y‖ is the norm of fastest
system velocity, and L is the Lipschitz constant of the dy-
namics satisfying ∀z, z′ ∈ K,F (z′) ⊂ F (z) +L‖z− z′‖B0,
B0 denoting the unit ball in the state space.

The formulations of the viability approximation algorithm
in [15] and [7] assume an isotropic problem. In this problem,
however, there is a significant difference between the spatial
position dimensions (x, y) and the heading dimension ψ.
The isotropic formulation uses a single step size h; there
is no guideline to suggest what the relationship between the
step sizes of (x, y), in meters, and the step size of ψ, in
radians, should be. In order to treat these two categories
of dimension separately, we adopted a hybrid formulation,
essentially “breaking out” the ψ dimension and discretizing
it separately. We are using this formulation as a means of
achieving greater control over the discretization, not because
the system is fundamentally hybrid.

In our hybrid formulation, we use h for the step size in
(x, y), ρ for the time step, and dψ = 2π

Nψ
for the heading

step size. Note that Nψ ∈ Z+. In the hybrid case, the M and
L constants are evaluated on the continuous part associated
with the set-valued right hand side map Fc. Since ψ̇ = 0,
this amounts to evaluating them from the dynamics of the
only state variable (x, y). To this standard bound we add an
additional condition: that for any pairs of distinct headings
ψ1 and ψ2, the one-time-step reachable sets are distinct. If

Γh(x, y, ψ) :=
[
ρ(v cosψ + vcx) ∩Xh

ρ(v sinψ + vcy) ∩ Yh

]
then ψ1 6= ψ2 ⇒ d(Γh(x, y, ψ1),Γh(x, y, ψ2)) ≥ h, where
B0 is the ball of radius 1 in (x, y), and Xh and Yh are the
points forming the grid in (x, y) with spacing h.

This represents, in some way, a matching condition be-
tween the “granularity” of ψ and (x, y): if it is not met,
we could say that computational effort is being wasted on
redundant ψ modes. We address this with the following
new bound, which relates the h, ρ, and Nψ steps to the
farthest possible point reachable in one step (disregarding
the (vcx, vcy) terms, because they do not rotate):

2π
ρv

h
≥ Nψ (13)

By discretizing ψ separately, we freed it from the standard
consistency bound in (12). The new bound (13) is the
constraint that keeps the overall discretization consistent.



In order to respect the limited turn rate required by (11),
our hybrid model must include a restriction on the rate at
which mode transitions happen. One common method [8] is
to add a “dwell variable” that counts down as time moves
forward, and only permit mode transitions when the dwell
variable is smaller than zero. Adding variables, of course,
increases the dimension of the problem. If the “time steps
per mode change” is non-integer, another source of error
appears, since rounding the dwell variable will result in
either losing or gaining some turn rate performance in the
trajectories. We could eliminate this error by manipulating
the time step so that the number of mode transitions per
time step is an integer; we could eliminate the problem of
the dwell variable entirely if we set the steps so that one
transition were permitted per time step.

rmaxρ
Nψ
2π
≈ 1 (14)

Conditions (13) and (14), when combined to form a bound
on ρ, result in

ρ ≥

√
h

rmaxv
(15)

Depending on v, rmax, and L, only one of conditions
(12) and (15) will be necessary. In this problem setup, it
is condition (12). Our final selections for step sizes are
h = 0.2m, ρ = 1.3s, Nψ = 24.

Once the step sizes have been chosen, the discretization
of (11) follows the standard viability kernel algorithm [15]:

Continuous dynamics:
xn+1 ∈

(
xn + ρv cosψn + vcx(xn, yn) + hB0

)
∩Xh

yn+1 ∈
(
yn + ρv sinψn + vcy(xn, yn) + hB0

)
∩ Yh

ψn+1 = ψn

τn+1 = τn − ρ

Discrete dynamics:
x+ = x−

y+ = y−

ψ+ ∈
(
ψ− + {−1, 0, 1}

)
mod Nψ

τ+ = τ−

(16)

This is the model implemented in the viability algorithm
described as Algorithm 1. Note that in the “continuous”
(non-hybrid) dynamics, we now consider each of the state
variables as a sequence instead of a function of time
(x1, x2, x3, · · · instead of x(t), etc). Also note the dilation
of the x and y successors by a ball of radius h; this is a
standard feature of the viability kernel algorithm.

B. Algorithm

Algorithm 1 below describes the principal viability loop,
which iterates over a discrete grid until a fixed point of the
value function is reached. Points in the grid are labelled

“Target”, “Viable”, or “NonViable”. Initially all the points
are marked either Target or NonViable; the algorithm pro-
gressively changes some of the NonViable points to Viable.
At the end of the procedure, the code converges to a fixed
set of labels.

Algorithm 1 The hybridized, suspended viability algorithm
for minimal time to reach target

mark points in K as NonViable
mark points in T as Target
repeat

set numChanges to 0
for all point p = (x, y, ψ) in K do

if hybrid switches allowed for (x, y, ψ) then
set S to list of successors of p in mode ψ as well
as in possible switched modes ψ1, ψ2, · · ·

else
set S to list of successors of p in mode ψ

end if
find pB , the best of the successors of p in S (see
Algorithm 2)
if pB is marked Target then

mark p as Viable
set BestTime(p) to ρ
set BestSucc(p) to pB

else if pB is marked Viable then
mark p as Viable
set BestTime(p) to BestTime(pB)+ρ
set BestSucc(p) to pB

else
mark p as NonViable
set BestTime(p) to Null
set BestSucc(p) to Null

end if
if p was changed then

increment numChanges
end if

end for
until numChanges is 0

Algorithm 2 describes the subroutine used to find the best
successor point pB given a starting point p and a list of
candidate successors. Each candidate point pC is checked
against the “best point so far” using the following criteria:

1) Target points are better than Viable points are better
than NonViable points

2) Smaller time-to-target is better
3) Smaller heading change is better

Compared to the original viability kernel algorithm pre-
sented in [15], this algorithm is focused on computing
viability kernels that are epigraphs of a value function, using
the functional approach given in [5] for the minimal time-
to-reach problem. This approach is also used in numerical
finance, to compute the evaluation function for financial
instruments [16].



Algorithm 2 Selection algorithm for “best successor”
Input: point p = (x, y, ψ), successor set S
Output: best successor point pB

set pB = (xB , yB , ψB) to Null
for all point pC = (xC , yC , ψC) in S do

if pC is marked Target then
if pB is marked Target then

if
∣∣ψC − ψ∣∣ < ∣∣ψB − ψ∣∣ then
set pB to pC

end if
else

set pB to pC
end if

else if pC is marked Viable then
if pB is not marked Target then

if BestTime(pC)<BestTime(pB) then
set pB to pC

else if BestTime(pC)=BestTime(pB) then
if
∣∣ψC − ψ∣∣ < ∣∣ψB − ψ∣∣ then
set pB to pC

end if
end if

end if
end if

end for

IV. LIGHT AUTONOMOUS UNDERWATER VEHICLE

The LAUV is a small (110cm × 16cm) low-cost submarine
with a maximum operating depth of 50m for oceanographic
and environmental surveys designed and built at Porto Uni-
versity (Figure 1). It has one propeller and three control fins.
The onboard navigation suite includes a Microstrain low-
cost inertial measurement unit, a Honeywell depth sensor, a
GPS unit and a transponder for acoustic positioning (GPS
does not work underwater). This transponder is also used
for recieving basic commands from the operator. The LAUV
has a WiFi interface and GSM module for communications at
the surface. The LAUV has a miniaturized computer system
running modular controllers on a real-time Linux kernel.

LAUV’s onboard software system is called DUNE, is
written in C++ and was designed for autonomous vehicle
control. Device drivers, controllers and services are im-
plemented as dedicated tasks. The task manager has the
responsibility of creating new tasks, assigning priority to
tasks, and terminating running tasks in a safe and ordered
manner. The acoustic navigation system uses the well known
long baseline navigation (LBL) technique. LBL navigation
requires the deployment of a least two transponders in the
water in the area of operation. The vehicle interrogates each
transponder with a given frequency, and each transponder
replies with another frequency. The time elapsed between the
interrogation and the reply is proportional to the distance to
each transponder. The position of the vehicle is computed
from the distances to the two transponders, and from the
depth measurements.

The command and control system consists of one or more,
laptop computers running the Neptus command and control
framework [17] on top of the Seaware publish/subscribe
framework [18]. In its basic version, we operate with one
laptop connected to a wireless router and to an acoustic
transponder through a serial cable. The transponder is de-
ployed in the water to listen to the acoustic exchanges
between the LAUV and the other two transponders; this
information makes it possible to track the position of the
LAUV. In addition, it can send an abort command to the
LAUV. The LAUV answers by surfacing.

The LAUV control algorithms assume decoupled modes
of operation [19]. We consider two types of control: lat-
eral control and longitudinal control. This is acceptable in
practice if we avoid changing the vehicle’s heading while
changing its depth. The input to the lateral control PID is a
heading reference while the input to the longitudinal control
is a depth reference. The longitudinal velocity command
(surge) is assumed to be piecewise constant during mission
execution. The low-level control system is composed of a
periodic discrete-time control law for the heading controller
and for the depth controller. The current implementation
of the control system depends solely on the earth-fixed
coordinates, which are provided by the navigation algorithm.
The LAUV’s navigation algorithm is based on an Extended
Kalman Filter (EKF), to take into account the non-linearities
in the model [20].

V. IMPLEMENTATION

Once the viability algorithm has returned the data, finding
the optimum trajectory for a particular starting point is done
by sequentially connecting the current point to its optimum
successor. The trajectory is the list of these optimum suc-
cessor points. Planning the trajectory of the LAUV during
the experiment was done by selecting a starting point and
heading, then finding the optimum trajectory using the pre-
computed results of the viability kernel algorithm, then
converting the trajectory into a set of waypoints spaced 10m
apart. The LAUV was then tasked to go to those waypoints
using its waypoint tracking algorithm.

The general algorithm and hybrid model framework de-
scribed above was instantiated for a specific problem: finding
optimal trajectories for a LAUV in a river environment
where the currents were significant compared to the forward
velocity of the vehicle. The performance of the LAUV in
terms of a simple current-driven Dubins car model was deter-
mined by developing a hydrodynamic model of the vehicle,
matching it to known performance parameters, and inferring
the parameters of the simplified model. The algorithm was
implemented in C and used to generate optimal trajectories,
which were then executed by the LAUV in the river.

The deployment area was a 400m × 300m rectangle
containing the junction of the Sacramento River and the
Georgiana Slough in California, USA. Under normal con-
ditions, water flows from North to South, at speeds ranging
from 0.5m/s to 1.5m/s. Bathymetric data for the region is
available from the USGS. The channel depth drops steeply



from the bank, and is deeper than 2m at all points away from
the shore, so operations can be safely conducted as long as
the LAUV does not come within 5m of the shore.

Figure 2 presents the Neptus mission planning GUI for the
experiment. lsts1 and lsts2 represent the two transponders
used for acoustic navigation, and basestation represents the
command and control system, which consisted of 3 laptops.
lsts1 and lsts2 were deployed at approximately 2ms from
the bottom of the channel at depths of respectively 8m and
10m. The third transponder was deployed in the water, in the
proximity of the basestation (the transponder is connected to
one laptop with a serial cable). This transponder monitors the
acoustic signals in the water.

Fig. 2. Optimal trajectory of the submarine using the proposed algorithm,
in the Georgianna Slough.

The experimental region is tidally forced, which gives it
time-dependent behavior. This makes it an attractive region
for hydrodynamic study, but adds complexity to the esti-
mation of the currents. We performed our calculations and
experiments for a stable portion of the tidal behavior, which
gave us a two hour window where the currents could rea-
sonably be modeled as time-independent. The velocity field
used in the optimum trajectory calculations was generated by
a forward simulation of the 2D Saint-Venant shallow water
equations using FLUENT [21][22].

In the ideal case, the development of optimum trajectories
based on the velocity field would happen in real-time. In the
present implementation, the process of generating a FLU-
ENT forward simulation from the boundary conditions, and
then calculating optimum trajectories based on this current
field, takes several hours. It was therefore necessary to de-
velop the optimum trajectories off-line, and then perform the
experiment when the tidal conditions were similar to the pre-
calculated velocity field. By choosing a stable portion of the
tidal behavior, the window of operations was 2 hours per day.
Nevertheless, the currents during the experiments were never
exactly the same as those in the pre-generated simulation.
This is an unavoidable source of error, which can only be
mitigated by real-time boundary condition gathering, and
much faster computation of the velocity field and optimum
trajectories.

The optimal control algorithm takes as inputs the LAUV
model parameters, the geometry of the junction and the flow
field. The geometry of the junction is used to generate a 2D
grid of points, labeled either as “river” or “land” points. The
“river” points are used to build K̄, the set of allowed points
for the viability algorithm. As described in section II-A, K̄
is a 4D set; all possible ψ values are permitted, and τ can
be in [0,+∞[ as mentioned. Any trajectory constructed from
the viability algorithm will respect the constraint set K̄, and
therefore will be contained in the allowed river area.

The viability algorithm builds a minimum time function
for the target, but due to the way in which this function is
built, it is efficient to immediately output optimal trajectories.
In other words, there is no need to perform a dynamic
programming optimization on the minimum time function;
these results are immediately accessible during the algorithm
run. Therefore, the algorithm output is a set of trajectories;
each trajectory is a series of (x, y, ψ) points. The optimal
control can be inferred from the sequence of ψ values.

The algorithm was run using an x, y grid of 1m, a time step
of 1.2s, and a ψ spacing of 15◦. Trajectories were generated
for starting points on a 10m× 10m grid, for all 24 possible
initial headings. Figure 5 shows a sample of the trajectories
generated by the viability algorithm, including the one used
for the experiment. The target is a 5m radius circle. Notice
that some of the trajectories join into a common approach
to the target. This figure only shows the (x, y) coordinates
of the trajectories; the direction of travel is a combination
of the thrust vector of the LAUV (in the heading ψ) and the
action of the current.

Fig. 3. Current map (decimated).

VI. RESULTS

A. Computational results

Figures 4, 5, and 6 show the results of the minimal time
computation using the viability algorithm for the LAUV
model. The effect of the anisotropic current on the minimal
time function is clearly visible in Figure 4, and the presence
of discontinuities in the action map is apparent in Figure 6.

In Figure 5, the trajectories labelled “A” show how a
change in initial heading (270◦ versus 255◦) can result in



Fig. 4. Isochrones of the minimal time to target for various starting
positions, and initial heading East. Numbered contours give time to target
in seconds.

Fig. 5. Sample of generated trajectories. Pair “A” have the same starting
position, headings differ by 15◦. Pair “B” have the same starting heading,
positions separated by 10m.

dramatically different actions. The trajectories labelled “B”
show how two starting points, separated by 10m, with the
same initial heading (90◦), can take very different paths
to the target. Once the step sizes have been chosen, the
minimal time trajectory problem can be thought of as a
shortest-path problem on a directed graph. Condition (14)
effectively limits the number of edges leaving each node.
The B0 dilation results in up to 4 possible successors for
each heading, although these may overlap; the result is that
every node has 4− 12 outbound edges. Roughly 38% of the
points in the (x, y) grid are in the river; although not all of
these will be in the viability kernel, we can approximate the
number of points in the kernel by 38%×2000×1500×24 ≈
27M points and 108M − 234M edges. Future work will
investigate how graph theoretic approaches could improve
the efficiency of the viability algorithm.

B. Experimental results

We ran several experiments with the trajectory data sets
provided by the optimal control algorithm. This took place
in second week of November 07. The qualitative behavior
of the LAUV did not change significantly across several

Fig. 6. Minimal time function (left) and feedback map (right) for a 100m
× 100m region around the target, and initial heading (from top) North, East,
South, West.

experiments, and showed good agreement with predicted
results. Figure 2 displays the results for the experiment con-
cerning the optimal trajectory. In this experiment the LAUV
was deployed at the location labeled start, where it drifted
with the current while waiting for the startmission command
(this means that the initial position and orientation are not
exactly known in advance). The mission consisted of three
phases: diving, moving to the first waypoint and executing
the optimal trajectory. The optimal trajectory consisted of the
sequence of 15 waypoints wp1, . . . , wp15, depicted in the
figure along with the trajectory of the LAUV.

Figure 7 shows the deviation between the planned and
actual trajectory. The first segment of the trajectory connects
the starting point to the first waypoint. The large deviation
results from the fact that the LAUV has to reach the first
waypoint with the right orientation after diving from the
starting point. The LAUV rapidly converges to the desired
optimal trajectory starting at the first waypoint. The tracking
error is less than 2m. Observe that the typical navigation error
for this type of navigation scheme is in the order of 1m. The
navigation scheme also explains the jumps in tracking error:
with each new acoustic fix there is a, possibly discontinuous,
correction to the position of the LAUV. The trend in the
deviation may be explained by a mismatch between the
predicted and actual currents.

Figure 8 depicts the heading reference and the heading



Fig. 7. Deviation between planned and actual trajectory.

estimate. The transients concerning the first segment of the
overall trajectory are easily identified in the figure.

Fig. 8. Heading: reference and estimated.

VII. CONCLUSIONS

The algorithm described in this article was successfully
used to compute feedback maps and trajectories that were
executed by an LAUV in a series of experiments in the
Sacramento River. The optimal trajectories were executed
by the LAUV using waypoint control. The behavior of
the LAUV under this control strategy closely matched the
expected behavior. We have demonstrated the validity of the
viability approach to planning trajectories for a vehicle in
a non-parametric velocity field. The general formulation of
the vehicle dynamics make this method applicable to many
scenarios where an oriented vehicle must find trajectories in
a plane while being driven by complex non-linear dynamics
and while subject to constraints.
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otiques,” Revue de l’Association Française de Finance, Paris, 2004.

[17] P. S. Dias, R. Gomes, J. Pinto, S. Fraga, G. Gonçalves, J. B.
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