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Abstract

This chapter presents the PARTYPES framework to statically verify C pro-
grams that use the Message Passing Interface, the widely used standard for
message-based parallel applications. Programs are checked against a protocol
specification that captures the interaction in an MPI program. The protocol
language is based on a dependent type system that is able to express var-
ious MPI communication primitives, including point-to-point and collective
operations. The verification uses VCC, a mechanical verifier for concurrent C
programs. It takes the program protocol written in VCC format, an annotated
version of the MPI library, and the program to verify, and checks whether the
program complies with the protocol.

16.1 Introduction

Message Passing Interface (MPI) [3] is a portable message-passing API for
programming parallel computers running on distributed memory systems.
To these days, MPI remains the dominant framework for developing high
performance parallel applications.

Usually written in C or Fortran, MPI programs call library functions to
perform point-to-point send/receive operations, collective and synchronisa-
tion operations (such as broadcast and barrier), and combination of partial
results of computations (gather and reduce operations). Developing MPI
applications is an error-prone endeavour. For instance, it is quite easy to
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write programs that cause processes to wait indefinitely for a message, or
that exchange data of unexpected sorts or lengths.

Verifying that MPI programs are exempt from communication errors
is far from trivial. The state-of-the-art verification tools for MPI programs
use advanced techniques such as runtime verification [7, 15, 16, 21] and
model checking [5–7, 15, 17, 20]. These approaches frequently stumble upon
the problem of scalability since the search space grows exponentially with
the number of processes. It is often the case that the verification of real
applications limits the number of processes to less than a dozen [18].

We approach the problem of verifying C+MPI code using a type theory
for parallel programs. In our framework—PARTYPES—types describe the
communication behaviour programs, that is, protocols. Programs that con-
form to one such type are guaranteed to follow the protocol and not to run into
deadlocks. The verification is scalable, as it does not depend on the number
of processes or other input parameters.

A previous work introduces the type theory underlying protocol spec-
ification, shows the soundness of the methodology by designing a core
language for parallel programming and proving a progress result for well-
typed programs, and provides a comparative evaluation of PARTYPES against
other state-of-the-art tools [10].

This chapter takes a pragmatic approach to the verification of C+MPI
code, by explaining the procedure from the point of view of someone inter-
ested in verifying actual code, omitting theoretic technical details altogether.
Protocols are written in a dependent type language that includes specific
constructors for some of the most common communication primitives found
in MPI programs. The conformance of a program against a protocol is
checked using VCC, a software verifier for the C programming language [1].
In a nutshell, one checks C+MPI source code against a protocol as follows:

1. Write a protocol for the program, that can be translated mechanically to
VCC format;

2. Introduce special, concise marks in the C+MPI source code to guide the
automatic generation of VCC annotations required for verification;

3. Use the VCC tool to check conformance of the source code against the
protocol.

If VCC runs successfully, then the program is guaranteed to follow the
protocol and to be exempt from deadlocks, regardless of the number of
processes, problem dimension, number of iterations, or any other parameters.
The verification process is guided by two tools—the Protocol Compiler and
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the Annotation Generator—and by the PARTYPES MPI library. All these can
be found at the PARTYPES website [14]. The tools and the library almost
completely insulate the user from working with the VCC language.

The rest of this chapter is organised as follows. The next section intro-
duces a running example and discusses typical faults found in MPI programs.
Then Section 16.3 describes the protocol language and Sections 16.4 and 16.5
provide an overview of the verification process. Section 16.6 discusses related
work and Section 16.7 concludes the chapter.

16.2 The Finite Differences Algorithm and Common
Coding Faults

This section introduces a running example and discusses common pitfalls
encountered when developing MPI programs.

The finite differences algorithm computes an approximation of derivatives
by the finite difference method. Given an initial vector X0, the algorithm
calculates successive approximations to the solution X1,X2, . . . , until a pre-
defined maximum number of iterations has been reached. A distinguished
process, say the one with rank 0, disseminates the problem size (that is, the
length of array X) through a broadcast operation. The same process then
divides the input array among all processes. Each participant is responsible
for computing its local part of the solution. When the pre-defined number of
iterations is reached, process rank 0 obtains the global error through a reduce
operation and collects the partial arrays in order to build a solution to the
problem (Figure 16.1, left). In order to compute its part of the solution, each
process exchanges boundary values with its left and right neighbours on every
iteration (Figure 16.1, right).

Figure 16.2 shows C+MPI source code that implements the finite differ-
ences algorithm, adapted from a textbook [4]. The main function describes the

Figure 16.1 Communication pattern for the finite differences algorithm.
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Figure 16.2 Excerpt of an MPI program for the finite differences problem.

behaviour of all processes together; the behaviour of each individual process
may diverge based on its process number, designated by rank, and set on
line 5 using the MPI_Comm_rank primitive. The number of processes (procs
in the figure) is obtained through primitive MPI_Comm_size on line 6. Rank 0
starts by reading the problem size and the corresponding input vector X0

(lines 8–9, variables n and work). The same participant then broadcasts the
problem size (line 11, call to MPI_Bcast) and distributes the input vector to
all other participants (line 13, call to MPI_Scatter).

Each participant is then responsible for computing its part of the solution.
The program enters a loop (lines 16–35), specifying point-to-point message
exchanges (MPI_Send, MPI_Recv) between each process and its left and
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right neighbours, based on a ring topology. The various message exchanges
distribute boundary (local[0] and local[local_n+1]) values necessary
to local calculations. Different send/receive orders for different ranks
(lines 19–22, lines 24–27, and lines 29–32) aim at avoiding deadlock sit-
uations (MPI_Send and MPI_Recv are blocking, synchronous, unbuffered
operations). The loop ends when a pre-defined number of iterations is
attained. Once the loop is over, rank 0 computes the global error through a
reduction operation (MPI_reduce, line 36) and gathers the solution obtaining
from each process (including itself) a part of the vector (MPI_Gather, line 37).

For space reasons we have omitted a few actual parameters in some
calls to MPI operations: the ellipsis in Figure 16.2 denote parameters 0
(the message tag number) and MPI_COMM_WORLD (the communicator) in all
operations, except in MPI_Recv where they denote, in addition, parameter
&status.

The code in Figure 16.2 is extremely sensitive to variations in the struc-
ture of MPI operations. We distinguish five kinds of situations that are further
discussed below:

1. Type mismatches in messages,
2. Array length mismatches in messages,
3. Missing send or receive operations,
4. Wrong send-receive order in messages, and
5. Incompatible MPI operations for the different processes.

The first two situations are related to how MPI primitives describe data
transmitted in messages: usually in the form of a pointer to a buffer, the length
of the buffer, and the type of elements in the buffer. A type mismatch in a
message exchange occurs when, for example, one replaces MPI_FLOAT by
MPI_DOUBLE in line 19. Then process rank 0 sends a value of type double,
while process rank procs-1 expects a float. An array length mismatch
happens, for example, if one replaces 1 with 2 as the second parameter on
line 19. Then process rank 0 sends two floating point numbers, while process
rank procs-1 expects exactly one (line 24). It should be emphasised that these
mismatches are caught at runtime, if caught at all.

The last three cases all lead to deadlocks. In general, MPI programs enter
deadlocked situations when a communication operation is not matched by
all the processes involved. For example, the omission of the send operation
on line 19 will leave process rank procs-1 eternally waiting for a message to
come on line 24. For another example, exchanging the two receive operations
in lines 21 and 22 leads to a deadlock where ranks 0 and 1 will be forever
waiting for one another.
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Incompatible MPI operations for the different processes come in different
flavours. For example, replacing the receive operation by an MPI_Bcast on
line 24 leads to a situation where process rank 0 tries to send a message,
while rank procs-1 tries to broadcast. For another example, replace the root
process of the reduce operation at line 36 from 0 to rank. We are left with
a situation where each process executes a different reduce operation, each
trying to collect the maximum of the values provided by all processes. For a
last example, enclose the gather operation on line 37 by a conditional of the
form if(rank == 0). In this case process rank 0 will be forever waiting for
the remaining processes to provide their parts of the array.

16.3 The Protocol Language

This section introduces the protocol language, following a step-by-step
construction of the protocol for our running example.

In the beginning, process rank 0 broadcasts the problem size, a natural
number. We write this as

broadcast 0 natural

That process rank 0 divides X0 (an array of floating pointing numbers) among
all processes is described by a scatter operation.

scatter 0 float[]

Now, each process loops for a given number of iterations, nIterations.
We write this as follows.

foreach iteration: 1..nIterations

Variable nIterations must be somehow introduced in the protocol. It
denotes a value that must be known to all processes. Typically, there are two
ways for processes to get to know this value:

• The value is exchanged, resorting to a collective communication opera-
tion, in such a way that all processes get to know it, or

• The value is known to all processes before computation starts, for
example because it is hardwired in the source code or is read from the
command line.

In the former case we could add another broadcast operation in the first
lines of the protocol. In the latter case, the protocol language relies on the val
constructor, allowing a value to be introduced in the program:

val nIterations: positive
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Either solution would solve the problem. If a broadcast is used then
processes must engage in a broadcast operation; if val is chosen then no
value exchange is needed, but the programmer must identify the value in the
source code that will replace variable nIterations.

We may now continue analysing the loop body (Figure 16.2, lines 17–
34). In each iteration, each process sends a message to its left neighbour and
another message to its right neighbour. Such an operation is again described
as a foreach construct that iterates over all processes. The first process is 0;
the last is size-1, where size is a distinguished variable that represents the
number of processes. The inner loop is then written as follows.

foreach i: 0..size -1

When i is the rank of a process, a conditional expression of the form
i=size-1 ? 0 : i+1 denotes the process’ right neighbour. Similarly, the left
neighbour is i=0 ? size-1 : i-1.

To send a message from process rank r1 to process rank r2 containing
a value of a datatype D, we write message r1 r2 D. In this way, to send a
message containing a floating point number to the left process, followed by a
message to the right process, we write.

message i (i=0 ? size -1 : i-1) float
message i (i=size -1 ? 0 : i+1) float

So, now we can assemble the loops.

foreach iteration: 1..nIterations
foreach i: 0..size -1 {

message i (i=0 ? size -1 : i-1) float
message i (i=size -1 ? 0 : i+1) float

}

Once the loop is completed, process rank 0 obtains the global error.
Towards this end, each process proposes a floating point number representing
the local error. Rank 0 then reads the maximum of all these values. We write
all this as follows:

reduce 0 max float

Finally, process rank 0 collects the partial arrays and builds a solution Xn

to the problem. This calls for a gather operation.

gather 0 float []

Before we put all the operations together in a protocol, we need to discuss
the nature of the arrays distributed and collected in the scatter and gather
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operations. In brief, the scatter operation distributes X0, dividing it in small
pieces, while gather collects the subarrays to build Xn. So, we instead write:

scatter 0 float[n]
...
gather 0 float[n]

Variable n, describing the length of the global array, must be introduced
in the protocol. This is typically achieved by means of a val or a broadcast
operation. In this case n stands for the problem size that was broadcast before.
So we name the value that rank 0 provides as follows.

broadcast 0 n:natural

But n cannot be an arbitrary non-negative number. It must evenly
divide X0. In this way, each process gets a part of X0 of equal length, namely
length(X0)/size, and we do not risk accessing out-of-bound positions when
manipulating the subarrays. So we would like to make sure that the length
of X0 equal divides the number of processes. For this we use a refinement
datatype. Rather that saying that n is a natural number we say that it is
of datatype {x: natural | x % size = 0}. The complete protocol is in
Figure 16.3.

As an aside, natural can be expressed as {x: integer | x >= 0}. Sim-
ilarly, positive abbreviates {x: integer | x > 0}, and float[n] abbrevi-
ates a refinement type of the form {x: float[] | length(x) = n}.

Further examples of protocols can be found in a previous work [10] and at
the PARTYPES web site [14]. The current version protocol language supports:

1 protocol FiniteDifferences {
2 val nIterations : positive
3 broadcast 0 n: {x: natural | x % size = 0}
4 scatter 0 float[n]
5 foreach iteration : 1 .. nIterations
6 foreach i: 0 .. size -1 {
7 message i (i = 0 ? size -1 : i-1) float
8 message i (i = size -1 ? 0 : i+1) float
9 }

10 reduce 0 max float
11 gather 0 float[n]
12 }

Figure 16.3 Protocol for the finite differences algorithm.
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• Different MPI communication primitives such as message, broadcast,
reduce, allreduce, scatter, gather, and allgather;

• Control flow primitives, including sequential composition (;), primitive
recursion (foreach), conditional (if-then-else), and skip (that is, the
empty block of operations).

Protocols are subject to certain formation rules [10], including:

• Variables must be properly introduced with val, broadcast, allreduce;
• Ranks must lie between 0 and size-1;
• The two ranks in a message must be different;
• The length of arrays in scatter and gather must equally divide size.

The PROTOCOLCOMPILER checks protocol formation and, in addition,
generates a C header file containing the VCC code that describes the protocol.
The tool comes as an Eclipse plugin; it may alternatively be used on a web
browser from the PARTYPES web page [14]. Figure 16.4 shows a screenshot
of Eclipse when the compiler did not manage to prove that the value of
expression i=size ? 0 : i+1 lies between 0 and size-1.

Figure 16.4 Protocol compiler running under the Eclipse IDE.
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16.4 Overview of the Verification Procedure

This section and the next present the PARTYPES methodology. Figure 16.5
illustrates the workflow of the verification procedure. Two inputs are
required:

• The C+MPI source code (example in Figure 16.2);
• The protocol for the program (example in Figure 16.3).

First, the C+MPI source code must be adapted for verification, the reason
being that VCC accepts only a subset of the C programming language. Then,
special marks are inserted in the C source code. One of our tools, the ANNO-
TATIONGENERATOR (AG in the figure), expands the marks. The output is C
source code with VCC annotations, which we denote by C+MPI+VCC. The
VCC annotations allow the verification of the C code against the protocol.

A second tool, the PROTOCOLCOMPILER (PC in the figure), checks
protocol formation and generates a C header file containing the protocol in
VCC format. At this point two C header files need to be included in the C
source code: the PARTYPES MPI library, and the protocol in VCC format.
The PARTYPES MPI library, mpi.h, is a surrogate C header file containing
the type theory (as described in a previous work [10]) in VCC format and
available at PARTYPES web page [14].

The C code is now ready to be submitted to VCC. The outcome is one of
three situations:

• VCC signals success. We know that the C+MPI code, as is, conforms
to the protocol, hence is exempt from all the problems discussed in
Section 16.2;

Figure 16.5 Workflow of the verification procedure for C+MPI programs.
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• VCC complains presenting the list of failed assertions. In this case, the
source of the problem may lie at three different places:

• the protocol does not capture the communication pattern of the
program and needs to be rectified;

• the C+MPI program is not well annotated, either because it
needs additional marks or because some existing marks are
misplaced;

• the C+MPI program itself has a fault that needs to be fixed. In our
example, the problem size (stored in variable n) must be a multiple
of the number of processes (stored in variable procs), so that the
source code may conform to the protocol. Since the problem size
is the value of function read_problem_size (line 8, Figure 16.2),
we may add an explicit contract to the function:

int read_problem_size(int procs)
_(ensures \result >=0 && \result%procs ==0);

{
...

}

In such cases PARTYPES users must make use of the VCC
specification language.

• VCC times out. This situation typically happens when the underlying
SMT solver fails to check some refinement condition. The PARTYPES

user should revise protocol refinements and possibly rewrite them. For
instance, to describe that the process with rank i sends a floating
point value to its right neighbour in a ring topology, we could have
written

message i (i+1)%size float

It is well-known that non-linear integer arithmetics is undecidable in
general and inefficiently supported by SMT solvers. Expressions such
as (i+1)%size may complicate the verification procedure, possibly
leading to timeouts. Instead, we include in our protocol (Figure 16.3)
an equivalent proposition that is more amenable for the solver, namely,
i=size-1 ? 0 : i+1.

The rest of this section describes the source code adaptation required
to run VCC. In general, the original C+MPI source code requires routine
adjustments in order to be accepted by VCC. Adjustments comprise the
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deletion or the replacement of code that is not supported by VCC. In
particular we:

• delete functions with a variable number of arguments (such as printf
and scanf);

• suppress all floating point arithmetic;
• replace multidimensional by single dimensional arrays and adjust the

code accordingly.

VCC is a verifier for concurrent C. Even though C+MPI code is generally
single-threaded, VCC tries to verify that the source code is thread-safe
in any concurrent environment that respects the contracts on its functions
and data structures. This complicates the verification process and demands
additional VCC annotations that are not directly related to the verification
of the adherence of code to protocols. In particular, the PARTYPES user
needs to guarantee that memory accesses do not introduce data races. He
does so by proving that memory locations are not concurrently written (i.e.,
\thread_local in VCC terms) upon reading, and not concurrently written or
read upon writing (\mutable or \writable).

In our running example, and in order to facilitate the explanation and
to concentrate on the adherence to the protocol, we inlined all subsidiary
functions in the main function, made all arrays local to main, and omitted
the code concerned with the actual computation of the finite differences.
This greatly simplifies the annotation process as we must only deal with
local memory, and do not have to cope with other verification demands such
as maintaining loop invariants or proving that integer arithmetics does not
overflow. Such adjustments must be exerted with great care so as not to alter
the interactive behaviour of the original program.

16.5 The Marking Process

This section completes the PARTYPES methodology for checking C+MPI
code by addressing the marking step.

In general, simple protocols require no marks. Imagine the protocol

reduce 0 sum integer

describing a simple algorithm where each process computes its part of the
solution and process rank 0 collects the solution by adding the parts. Because
the protocol uses a simple communication primitive no source code marking
is required.
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We require no marking for the MPI primitives supported by PARTYPES

since their usage is taken care of by the contracts provided in the PAR-
TYPES MPI library (mpi.h). The PARTYPES user must aid verification
through appropriate marks when more advanced protocol features come into
play, such as dependent functions (val), primitive recursion (foreach), and
conditionals (if-then-else).

We start with val. We have seen in Section 16.3 that this primitive
introduces a constant in the protocol:

val nIterations: positive

Users must provide the actual program value for nIterations. Analysing
the code in Figure 16.2, one realises that the protocol variable nIterations
corresponds to the program constant NUM_ITER. We then add the mark

@apply(MAX_ITER)

after the three MPI initialisation primitives (MPI_Init, MPI_Comm_rank, and
MPI_Comm_size), that is, after line 6.

Next, we address foreach. Again, we seek the assistance of the user in
pointing out the portion of the source code that matches each occurrence of
this primitive. In the protocol of Figure 16.3, loop

foreach iteration: 1 .. nIterations

is meant to be matched against the for loop in Figure 16.2 starting at line 16.
We then introduce the mark

@foreach(iter , 1, NUM_ITER)

just before the body of the for loop, thus associating the protocol loop
variable and its bounds with those in the C code.

For the inner loop in the protocol (that is, lines 6–9 in Figure 16.3) we
could proceed similarly would the source code be perfectly aligned with the
protocol, as in the excerpt below meant to replace lines 18–33 in Figure 16.2:

for (i = 0; i < procs; i++) {
if (rank == i)

MPI_Send (& local[1], 1, MPI_FLOAT , left , ...);
else if (rank == left )

MPI_Recv (& local[0], 1, MPI_FLOAT , i, ...);
if (rank == i)

MPI_Send (& local[local_n], 1, MPI_FLOAT , right , ...);
else if (rank == right)

MPI_Recv (& local[local_n +1], 1, MPI_FLOAT , i, ...);
}
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However, efficient implementations do not exhibit loops to implement
this kind of foreach protocols. The loop in the protocol states that each
process (0, . . . , size-1) must send a message to its left and to its right
neighbour. This means that each process will be involved in exactly four
message passing operations: send left, send right, receive from left, receive
from right. Therefore the above for loop can be completely unrolled into a
series of conditional instructions, each featuring two message send and two
message receive operations, as witnessed by the code in Figure 16.2, lines
18–33.

How do we check foreach protocols against conditional instructions in
source code? A possible approach would be to let the verifier unroll the
protocol loop. This may work when size is known to be a small natural
number. In general, however, protocols do not fix the number of processes.
That is the case with our running example which must run on any number of
processes (starting at 2, for processes cannot send messages to themselves).
In such cases VCC takes size to be a 64 bits non-negative integer. This poses
significant difficulties to the unrolling process both in terms of memory and
verification time.

In the running example, the apparent mismatch between the protocol
and the program is that there are three different behaviours in the program
depending on the rank (Figure 16.2, lines 18–33), while the protocol specifies
a single behaviour, namely:

message i (i = 0 ? size -1 : i-1) float
message i (i = size -1 ? 0 : i+1) float

At first sight, it may seem as if the protocol does not specify the required
diversity of behaviours, but in fact it does. To see why, let us unroll the inner
foreach loop. This is what we get when we omit the type of the message
(float):

message 0 size -1; message 0 1; // when i = 0
message 1 0; message 1 2; // when i = 1
...
message size -2 1; message size -2 size -1;// i = size -2
message size -1 size -2; message size -1 0 // i = size -1

From the unrolled protocol we conclude that the behaviour of process
rank 0 is the following:

1. send a message to its left neighbour (size-1);
2. send a message to its right neighbour (1);
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3. receive a message from its right neighbour; and, finally,
4. receive a message from its left neighbour.

The behaviour is straightforward to obtain: just identify the messages
that mention rank 0, and use a send when 0 is the source of the message
or a receive otherwise. This exactly coincides with the four send/receive
operations in the C code for rank 0, lines 19–22.

For the last rank (that is, size-1) the relevant send/receive operations are
the following:

1. receive a message from its right neighbour (0);
2. receive a message from its left neighbour (size-2),
3. send a message to its left neighbour; and, finally,
4. send a message to its right neighbour.

This pattern coincides with the source code, lines 24–27. All other
behaviours (when rank is between 1 and size-2) are similarly obtained and
are left as an exercise for the interested reader. The pattern thus obtained
should match the code, lines 29–32. Notice that the order of the messages
is important, and that we have identified as many behaviours as there are
conditional branches in the source code (lines 18–33).

Based on this analysis, and in order to guide the verification process we
seek the help of the user by selecting the relevant foreach steps (iterations)
in each branch of the program. A relevant step for rank k corresponds to
one foreach iteration where either the source or the target of a message
appearing in the loop body is k. A step that does not mention k (as source
or target) is equivalent to skip, the empty protocol, and hence irrelevant for
verification purposes. In order to check that all non-relevant steps are skip,
we must provide the loop bounds (0 and procs-1 in this case), in addition to
the relevant steps.

For example, when rank is 0 the relevant steps are when i is equal to rank,
right, and left, in this order. So we insert the mark

@foreach_steps(rank , right , left , 0, procs -1)

just before the code block in lines 19–22. For rank equal to size-1 the
relevant steps are the right, the left, and the rank, again in this order. The
required mark at line 23 is

@foreach_steps(right , left , rank , 0, procs -1)

and the annotation to include in line 28 is

@foreach_steps(left , rank , right , 0, procs -1).

Figure 16.6 presents the marked version of the program in full.
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Figure 16.6 The code of Figure 16.2 with verification marks inserted.

16.6 Related Work

There are different aims and different methodologies for the verification
of MPI programs [6]. The verification of interaction-based properties typi-
cally seeks to establish the absence of deadlocks and otherwise ill-formed
communications among processes (e.g., compatible arguments at both ends
in a point-to-point communication, in close relation to type checking safe
communication). Several tools exist with this purpose, either for static or
runtime verification, usually employing techniques from the realm of model
checking and/or symbolic execution. All these tools are hindered by the
inherent scalability and state-explosion problems. Notable examples include
CIVL [19], DAMPI [21], ISP [15], MOPPER [2], MUST [7], and TASS [20].
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In contrast to these tools, PARTYPES follows a deductive verification
approach with the explicit aim of attaining scalable verification. A previous
work [10] conducts a comparative evaluation by benchmarking PARTYPES

against three state-of-the-art tools: ISP [15], a runtime verifier that employs
dynamic partial order reduction to identify and exercise significant process
interleavings in an MPI program; MUST [7], also a runtime verifier, but that
employs a graph-based deadlock detection approach; and TASS [20], a static
analysis tool based on symbolic execution. For the tools and the programs
considered, PARTYPES runs in a constant time (the tool is insensitive to the
number of processes, problem size, and other parameters), in clear contrast
to the running time of all the other tools, which exhibited exponential growth
in a significant number of cases.

In addition to PARTYPES, the theory of multi-party session types [9]
inspired other works in the realm of message-passing programs and MPI
in particular. Scribble [8, 22] is a language to describe global protocols
for a finite set of participants in message-passing programs using point-to-
point communication. Through a notion of projection, a local protocol can
be derived for each participant from a global Scribble protocol. Programs
based on the local protocols can be implemented using standard message-
passing libraries, as in Multiparty Session C [13]. Pabble [12], an extension
of Scribble, is able to express interaction patterns of MPI programs where the
number of participants in a protocol is decided at runtime, rather than fixed a
priori, and was used to generate safe-by-construction MPI programs [11].

In comparison to these works, PARTYPES is specifically aimed at pro-
tocols for MPI programs and the verification of the compliance of arbitrary
programs against a given protocol. In conceptual terms, we address collective
communication primitives in addition to plain point-to-point communication,
and require no explicit notion of protocol projection.

16.7 Conclusion

This chapter presents PARTYPES, a type-based methodology to statically
verify message-passing parallel programs. By checking that a program fol-
lows a given protocol, one guarantees a series of important safety properties,
in particular that the program does not run into deadlocks. In contrast to other
state-of-the-art approaches that suffer from scalability issues, our approach is
insensitive to parameters such as the number of processes, problem size, or
the number of iterations of a program.
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The limitations of PARTYPES can be discussed along two dimensions:

• Even though PARTYPES addresses the core features of MPI, it leaves
important primitives uncovered. These include non-blocking operations
and wildcard receive (the ability to receive from any source), among
many others.

• Our methodology is sound (in the sense that it does not yield false
positives) but too intentional at times. For instance, it requires protocol
loops and source code loops to be perfectly aligned, while the type
theory [10] allows more flexibility, loop unrolling in particular.
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