
P3-Mobile: Parallel Computing for Mobile Edge-Clouds

Joaquim Silva Daniel Silva Eduardo R. B. Marques Luı́s Lopes Fernando Silva
Faculty of Science, University of Porto & CRACS/INESC-TEC

e-mail: {joaquim.silva,edrdo,lblopes,fds}@dcc.fc.up.pt

Abstract
We address the problem of whether networks of mobile de-
vices such as smartphones or tablets can be used to per-
form opportunistic, best-effort, parallel computations. We
designed and implemented P3-Mobile, a parallel program-
ming system for edge-clouds of Android devices to test the
feasibility of this idea. P3-Mobile comes with a program-
ming model that supports parallel computations over peer-
to-peer overlays mapped onto mobile networks. The system
performs automatic load-balancing by using the overlay to
discover work. We present preliminary performance results
for a parallel benchmark, using up to 16 devices, and discuss
their implications towards future work.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]: Parallel Programming

Keywords mobile edge-clouds, peer-to-peer networks, par-
allel computing

1. Introduction
The smartphone has become ubiquitous and powerful. Cur-
rent estimates suggest that in 2016 more than 2 billion con-
sumers worldwide owned a smartphone, corresponding to as
much as 80% of the mobile data traffic [1, 11]. As a result,
it is increasingly likely to find mobile devices in proxim-
ity of each other. The internal capabilities of current devices
have also evolved substantially: multi-core processing, low-
power consumption, several gigabytes of storage, a horde of
specialized sensor devices, and multiple wireless commu-
nication interfaces. Likewise, wireless network technology
has also evolved considerable with new standards and proto-
cols providing for low-latency, untethered, device-to-device
communication, necessary to establish higher-level network

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CrossCloud’17, April 23, 2017, Belgrade, Serbia.
Copyright c© 2017 ACM 978-1-4503-4934-5. . . $15.00.
http://dx.doi.org/10.1145/3069383.3069388

abstractions such as meshes for application use. In this con-
text, a mobile edge-cloud is a cluster of mobile devices that
provide their storage and computation resources over a com-
munication network based on wireless protocols. It is hoped
that, collectively, such an infra-structure can support game-
changing locality-based applications as well as opportunistic
best-effort computing.

This trend prompted many researches to investigate the
computational capabilities of such edge-clouds, moving
away from previous paradigms such as Mobile Cloud Com-
puting (MCC) [3] or Cloudlets [15], in which most, if not all,
computationally hard tasks were off-loaded from the devices
to nearby computational nodes (as in cloudlets) or to a tradi-
tional cloud infrastructure (as in MCC). In edge-clouds [5], a
computational task is spawned by some node in a mesh and a
subset of the reachable nodes in the network will collaborate
with processing resources to complete the task, the partial
results being collected by some algorithm, centralized (e.g.,
sent to the spawner node) or distributed (e.g., using some
distributed storage service).

Here, we address the problem of whether we can use edge
networks of mobile devices such as smartphones to perform
opportunistic, best-effort, parallel computations, as opposed
to the usual paradigm of high-performance parallel comput-
ing, taking advantage of their sheer number, of data locality
(low latency) and of the relatively high-bandwidth of avail-
able wireless technologies. We focus on crowd-sourcing ap-
plications like data-intensive sensing (using the manifold de-
vice sensors, camera, etc.) and sporadic computationally in-
tensive applications, e.g., a distributed face recognition ap-
plication to locate a missing person [5].

Towards this goal, we re-designed and implemented a
parallel programming system developed for traditional peer-
to-peer networks on top of an edge-cloud of Android de-
vices. Parallel-Peer-to-Peer (P3) [13], as the system was
called, implemented a hierarchical peer-to-peer overlay on
top of an IP network. The computation started at the root
node. A dynamic work sharing strategy directs new volun-
teer nodes to request work from busy nodes so that they
can quickly start working and contribute for the compu-
tation. P3-Mobile [16] implements a similarly structured
peer-to-peer overlay, over a WiFi network and with An-
droid smartphones as the computing nodes. Preliminary re-

sults with an embarrassingly parallel application (comput-
ing the Mandelbrot Set for the complex function family
f(z) = z2 + c,where z, c ∈ C) show that significant
speedups can be reached using up to 16 devices.

The remainder of the paper has the following structure.
Section 2 overviews the literature on parallel programming
systems for mobile edge-clouds. Section 3 introduces de-
scribes P3-Mobile and describes its architecture and imple-
mentation in the Android platform. Section 4 describes the
experimental setup we used to gauge the performance of the
system and provides an analysis of the results. Finally, Sec-
tion 5 puts forward our conclusions and thoughts for future
work.

2. Related Work
Although edge-clouds are a relatively recent development
in mobile computing, there have been some attempts to
use these platforms to perform distributed/parallel compu-
tations [7].

Mobile Message Passing Interface (MMPI) [4] is an
implementation of the MPI standard for message passing
for parallel distributed computing over Bluetooth networks.
MMPI builds Bluetooth meshes by interwining several pi-
conets and provides communication and discovery services.
This allows point-to-point connections to be established be-
tween any 2 devices. Parallel computations are spawned by
a master device and propagated to slave devices that perform
the computations and return the results.

Hyrax [9] is a port of the map-reduce [2] model for paral-
lel computing, as implemented in Hadoop [17], to Android
devices. The system uses WiFi for communication and al-
lows applications to spawn computing jobs from a central
server onto networks of mobile devices. The management
of the network of available devices is performed by Hyrax
internally allowing applications to abstract away from is-
sues like churn and network topology. Hyrax provides fault-
tolerance mechanisms that provide some resilience to churn.

Honeybee [6] implements an opportunistic work-sharing
model that allows independent jobs to be disseminated and
executed on networks of mobile devices. It uses work steal-
ing algorithms to load-balance computational jobs among
the devices in a heterogeneous network and implements
some resilience mechanisms to handle churn. mCloud [10]
is a proposal for an architecture in the lines of Honeybee, for
which no implementation is available.

FemtoClouds [8] allows users to create networks of mo-
bile devices, receive job submissions and schedule these jobs
amongst the devices. Some central coordination is required
in the form of a “control device”, responsible for the man-
agement of the network and for scheduling the jobs.

P3-Mobile differs from the aforementioned proposals by
providing a programming model that supports opportunis-
tic parallel computations over peer-to-peer overlays mapped
onto mobile networks. The system performs automatic load-

Applications
Services

Kernel

Android OS

Figure 1. The P3-Mobile architecture.

balancing by using the overlay to discover work. It also im-
plements basic resilience mechanisms that may, at least par-
tially, mitigate the problem of churn, although we do not ad-
dress this issue in this paper.

3. The P3-Mobile system
Parallel Peer-to-Peer (P3) is a system developed for tradi-
tional desktop/server-based networks with the goal of en-
abling the implementation of parallel applications on a peer-
to-peer overlay [12, 13]. It provides a simple parallel pro-
gramming model based on work-sharing supported by tree-
structured overlays, to make node membership and discov-
ery more efficient. In this section, we describe the main fea-
tures of P3 and its Android sibling that we call P3-Mobile.

3.1 Overview
P3 has the layered architecture shown in Figure 1. The ker-
nel layer (at bottom) is the engine that drives the rest of
the system, providing support for core functions such as
network management and device-to-device communication.
The middle layer comprises a set of generic services, includ-
ing those used to handle network overlays and parallel com-
puting, discussed in more detail below, but also for other fa-
cilities such as distributed storage. Applications on the upper
layer are implemented through the use of P3 services, e.g., an
application can use the overlay and parallel processing ser-
vices to distribute and perform a parallel computation, and
make the computation results available through peer-to-peer
messaging, as in the Mandelbrot application we use for the
evaluation (Section 4), or using the distributed storage ser-
vice.

The prototype P3-Mobile is a port of the original P3 to the
Android operating system, to be used in mobile devices. The
main difference is that whereas the original system used a
centralized registry to implement the membership service, in
P3-Mobile devices are added to the overlay by coordinators
which they discover by listening to their WiFi broadcast
messages.

3.2 Overlays
P3 overlays, illustrated in Fig. 2, are tree structures made
of coordination cells. Each coordination cell (a node in the
tree) groups a set of devices with bounded size (4 in the

coordinator workers

new
worker

root cell

Figure 2. A P3-Mobile hierarchical overlay.

figure). Devices in the same cell will ideally be part of the
same physical network, but need not to, as traffic routing
between distinct networks that support the overlay may be
handled by the P3 kernel. Each device in a cell can either
play the role of a worker, merely providing resources such
as processor time and disk storage, or that of a coordinator,
that is in addition responsible for managing the network
overlay and for supporting distributed services. For fault
tolerance, there may be more than one coordinator per cell;
the figure shows the simpler case where there is only one
coordinator, for details see [13]. As new devices join the
network, coordination cells in the overlay may eventually
become full, and in that case the new devices form new
descendant (children) cells leading to a tree structure; the
number of descendants in a coordination cell is also bounded
(2 in the figure), hence the joining procedure recurses down
the tree if necessary.

Devices assume the role of coordinators as follows. The
first device, the one that spawns the computation, starts a
cell and is a coordinator by construction. Devices that arrive
later on fill in available positions in the cell until it is full.
Then, a new arrival will create a new cell and be elected its
coordinator. The process continues henceforth. If a node in
a cell fails or leaves, it leaves a position available in the cell
that is occupied by incoming devices before creating new
cells. If it is the coordinator that fails, another device in the
cell is promoted to coordinator.

As the original P3 system targeted workstation clusters,
the coordinator role was preferably attributed to server ma-
chines with good capabilities in terms of Internet connec-
tion, network bandwidth, storage, etc. In P3-Mobile, these
characteristics may play a role, e.g., an Internet connection
may be more adequate to connect two coordinators that are
not in range of one another, while peer-to-peer communica-
tion (e.g., WiFi-direct) may suffice in the scope of a single
coordination cell that aims to group nearby devices. In any
case, the main appeal of P3 is more in terms of the potential
flexibility in defining overlays in a decentralized manner.

A device joins the network by looking for a root-level co-
ordinator (there may be more than one in the root-cell) that
announces its presence using WiFi broadcast. After finding
such a coordinator the device uses the following the algo-
rithm to join the overlay:

procedure JoinOverlay(d : Device, c : Cell)
M = members(c)
D = descendants(c)
if ¬isFull(M) then

M := M
⋃
{ d }

else if ∃c′ ∈ D : ¬isFull(c′.M) then
JoinOverLay(d, c′)

else if ¬isFull(D) then
D := D

⋃
{ CreateCell(d) }

else
c′ := pickCell(D)
JoinOverlay(d, c′)

end if
end procedure

The algorithm is recursive, and considers 4 cases: (1) if
the coordination cell (c) is not yet full, the device (d) is
added to it; (2) if the cell is full, but it has a descendant
that is not full (c′), then the device joins the descendant cell;
(3) the device forms a fresh descendant cell and becomes its
coordinator, if the maximum number of descendants has not
been reached; or, finally, (4) the procedure recurses to one
of descendant cells. This general algorithm may be refined,
especially in the choice of descendant cells (cases 2 and 4,
when the algorithm recurses), to account for factors such as
connectivity and current workload.

3.3 Parallel Programming Model
The P3-Mobile parallel programming service defines an API
for developers of parallel computations, which encapsulates
the base logic for network overlay interactions. The overall
spirit is that each device in the overlay is at any given time
responsible for the execution of a portion of the workload for
the entire parallel computation, subject to a workload distri-
bution criteria. Once a portion of the workload is complete,
a device seeks for further work. During the overall computa-
tion, coordination devices are responsible for keeping track
of the remaining workload to execute, and trying to achieve
load balance by attributing portions of the workload conve-
niently.

From a developer’s perspective, the service is exposed by
a Java class called P3ParallelTask, that defines the base logic
of the service, and defines placeholder (abstract) methods to
be implemented by a developer. For a parallel task, a de-
veloper must define a subclass of P3ParallelTask, providing
concrete implementations of the placeholder methods. The
placeholder methods and their role, illustrated in Fig. 3, are
as follows:

• p3main is used to setup the computation, preliminary I/O
and the initialization of data structures, before starting the
computation;

• p3compute implements the algorithm used to process a
unit of parallel work for the application;

running

suspended

finished

p3main

p3divide
p3restart

p3fnish
p3compute

Figure 3. The P3-Mobile programming model.

• p3divide implements the algorithm used to divide the
work allocated to the current device when a work request
is received from another device. For example, for most
of the experiments in Section 4 (computing the Mandelb-
root Set), the method simply splits the part of the complex
plane assigned to the receiving device and sends half of it
to the requesting device. The computation at the receiv-
ing node is also briefly suspended while this method is
executed.

• p3restart is used to restart a computation in a device, ei-
ther in case of failure, when a device receives new work,
or after it responds to a work sharing request. Each of
these cases derives or reuses a computation checkpoint,
allowing the application to restart.

• p3finish is invoked when the workload attributed to a
device is complete. The method is responsible for making
the results of computation available, e.g., using the P3

storage service, and freeing up any used resources.

(1) request (2) notify

(3) transfer

(a)

(1) request

(2) notify

(3) transfer

(b)

Figure 4. Work sharing in a P3-Mobile overlay.

In support of the programming model, a number inter-
actions occur in the background for sharing the workload
among devices in the P3 overlay. Two example interactions
are illustrated in Fig. 4, where an idle worker device finds
work in the same coordination cell (a) or a parent coordi-
nation cell (b). In case (a), the worker interacts with the lo-
cal coordinator, which is able to find an appropriate sibling
worker to transfer part of its workload; a simpler variation of
this scheme (not shown) is when the coordinator transfers its
own portion of the workload to the requesting worker (recall
that coordination devices also perform computation). In the
second case (b), there is no work to share in the local cell,
hence the cell coordinator services the request by asking for
work at the level of the parent cell interacting with its coordi-
nator(s). Beyond requests by workers, note that coordinators
may also, at some point, ask for further work. Similarly to
the illustrated cases, they may search for work from devices
in the same cell or the parent cell.

4. Evaluation
In this section we report our first evaluation of the perfor-
mance of the P3-Mobile system while running parallel ap-
plications.

4.1 Test setup
The test application computes the Mandelbrot set fractal. For
a point c in the complex plan to belong to the Mandelbrot set,
the sequence zi+1 = z2i + c with z0 = 0 must converge. We
evaluated this sequence for a 1920 × 1080 grid represent-
ing a subregion of the complex plane. To ensure a homoge-
neous computation, we performed a fixed number of 8000
iterations for each point (i.e., z8000 for each c), regardless
of whether divergence was detected earlier in the sequence
(i.e., ∃i : |zi| ≥ 2).

The experiments used 16 Google Nexus 9 devices run-
ning Android 7.1, each equipped with a dual-core 2.3 GHz
processor, 2 GB of RAM, 16 GB of flash storage, and a Wi-
Fi 802.11 card. The devices were USB-powered and used
the same wireless network, enabled by an Asus RT-AC56U
WiFi router. In some complementary experiments, to assess
the possible benefit of peer-to-peer technologies [14], we
also enabled the use of WiFi-TDLS, allowing transparent
peer-to-peer links over WiFi, and of WiFi-Direct, bypass-
ing the router entirely by letting one of the devices work as
wireless access point linking up to 6 nodes (a limit imposed
by Android). We did not however observe any significant
differences in performance through the use of WiFi-TDLS
or WiFi-Direct, as the Mandelbrot is computation-intensive
rather than communication-intensive, hence we only report
results for the plain WiFi router configuration.

All devices had P3-Mobile installed from scratch and
one of them spawned the computation. Data, both input
arguments for tasks and output from tasks, was transferred
through messages in a peer-to-peer fashion. P3-Mobile has a
simple key-value data storage system that can also be used
for exchanging information between devices, but it was not
used.

...
n -1

(a)

......
...

(b)

...

......
(c)

Figure 5. Overlay configurations used in the experiments.

We ran the Mandelbrot application using different over-
lay configurations (Fig. 5), workload division strategies and
associated granularities, and varying the number of used de-
vices (1, 2, 4, 8 and 16). To run each configuration, we em-
ployed a Python script that communicated with the devices
using the adb Android utility. The script first performed a
random selection of the devices, then activated the Mandel-

Table 1. Execution times in seconds, and speedups for the
various experiments (1-device: 131.7 ± 1.5 s).

O G
Devices

2 4 8 16

(a)
10 61.7±0.4 (2.1) 31.2±0.1 (4.2) 16.1±0.1 (8.2) 10.7±0.3 (12.3)
20 59.5±0.7 (2.2) 30.0±0.3 (4.4) 16.2±0.8 (8.1) 11.5±0.6 (11.2)

40 58.8±0.6 (2.2) 30.0±0.3 (4.4) 17.5±0.6 (7.5) 12.8±0.8 (10.3)

(a)

1 66.2±0.2 (2.0) 33.3±0.7 (4.0) 20.8±1.6 (6.3) 17.5±2.0 (7.5)

2 66.8±0.6 (2.0) 33.2±0.5 (4.0) 21.0±1.6 (6.3) 18.3±0.7 (7.2)

4 66.7±0.8 (2.0) 32.9±0.6 (4.0) 21.0±1.2 (6.2) 19.1±1.7 (6.9)

8 66.6±0.4 (2.0) 34.4±0.8 (3.8) 22.3±1.1 (5.9) 20.4±1.4 (6.5)

(b)
1 66.2±0.2 (2.0) 35.2±0.4 (3.7) 24.3±0.3 (5.4) 23.5±1.2 (5.6)

2 66.8±0.7 (2.0) 35.8±0.6 (3.7) 25.3±0.8 (5.2) 25.6±1.2 (5.1)

4 66.7±0.8 (2.0) 36.2±0.3 (3.6) 25.4±1.5 (5.2) 22.3±1.7 (5.8)

8 66.6±0.4 (2.0) 36.8±0.3 (3.6) 25.4±1.0 (5.2) 23.4±1.4 (5.6)

(c)
1 66.2±0.3 (2.0) 35.3±0.8 (3.7) 23.8±2.5 (5.5) 18.6±1.5 (7.1)

2 66.4±0.4 (2.0) 34.9±0.5 (3.8) 24.6±3.0 (5.4) 19.0±2.0 (6.9)

4 66.9±0.7 (1.9) 36.3±0.6 (3.6) 24.0±3.0 (5.5) 17.8±1.2 (7.4)

8 66.7±0.8 (1.9) 35.8±0.8 (3.7) 24.0±3.0 (5.5) 19.8±1.4 (6.6)

(c)
1 66.0±0.2 (2.0) 34.7±1.0 (3.8) 23.6±2.9 (5.6) 15.9±3.3 (8.3)

2 66.1±0.6 (2.0) 34.4±0.6 (3.8) 23.6±3.5 (5.6) 15.2±1.8 (8.6)

4 66.1±0.5 (2.0) 33.5±1.6 (3.9) 22.9±3.4 (5.7) 16.4±2.6 (8.0)

8 67.0±0.4 (2.0) 34.4±1.0 (3.8) 24.5±2.3 (5.4) 16.6±2.4 (7.9)

brot application in these devices simultaneously. We mea-
sured the average execution time of 5 runs and the corre-
sponding 95 % Gaussian distribution confidence interval,
listed in Table 1 along with the average speedup over the
1-device configuration that took 131.7± 1.5 seconds to exe-
cute.

In this table, O stands for the overlay configuration, as
described in Figure 5, and G is the granularity of the tasks
used in the runs. The first 4 blocks of rows correspond to the
speedups given in Figures 6 to 9; the average load balance
per device for the best-case granularity is also depicted in
these figures (at bottom in each figure). The fifth block gives
the speedups for overlay configuration (c) measured without
including the time spent in overlay formation, as discussed
later in the text.

4.2 Analysis
The best-case configurations correspond to using overlay
(a) in Fig. 5, in which n devices form a single-cell overlay
with 1 coordinator, and task division proceeds by attribut-
ing a fixed number of lines in the z-plane, the task granular-
ity, to each device upon a work request. Operationally, the
overlay works as a master-slave computation as n − 1 de-
vices ask the coordinator for work. The speedups are good
(Fig. 6, top): linear up to 8, and up to approximately 13 for 16
devices; the 95% confidence intervals for the speedups are
not represented for clarity but are at most 2% of the val-

1

3

5

7

9

11

13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Number of Devices

Granularity: 10
Granularity: 20
Granularity: 40

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Av

er
ag

e C
om

pu
ta

tio
n

(fr
ac

tio
n)

Device

2 Devices
4 Devices
8 Devices
16 Devices

Figure 6. Speedup and load balancing for configuration (a),
using fixed task size division.

1

3

5

7

9

11

13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Number of Devices

Granularity: 1
Granularity: 2
Granularity: 4
Granularity: 8

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
er

ag
e C

om
pu

ta
tio

n
(fr

ac
tio

n)

Device

2 Devices
4 Devices
8 Devices
16 Devices

Figure 7. Speedup and load balancing for configuration (a),
using halving work task strategy.

ues in the worst case. Some slightly super-linear speedups
were observed for the configuration (a) that may be orig-
inated by a number of conditions that are hard to identify
precisely, e.g., network conditions, memory access patterns.

The good load-balance achieved (Fig. 6, bottom) partially
explains these results, along with adequate choices for task
granularity; the dashed lines in these graphics represent the
ideal work fraction, 1/n, for each device in a collection of n
devices (in these experiments 1/2, 1/4, 1/8 and 1/16). The
performance degradation for 16 devices can be tracked down
to the underlying star topology of the WiFi network, and the
overlay formation time which in the worst case can take up
to 2 seconds (18% of the total execution time).

Fig. 7 shows results again for the single-cell overlay, but
considering a different workload sharing scheme. In this
case, each device that requests a task from another device
computing k lines will receive k/2 lines to compute, i.e.,
work is divided in half. The granularity is defined as the
smallest task size for which a division is allowed. The intu-
ition for this scheme, originally used in the P3 system, is to
emulate the growth of the overlay tree and push big chunks
of work down the tree; we also use this scheme for hier-
archical overlay configurations discussed below. Speedups
(Fig. 7, top) grow almost as good as in the previous workload
sharing scheme up to 8 devices, but then have a modest in-
crease up to 16 devices (about 7.5). Observing the workload
distribution (Fig. 7, bottom) it is clear that adequate load-
balancing was not achieved for higher number of devices
with impact on the speedup.

Fig. 8 shows the results for overlay (b) in Fig. 5. In this
case, the overlay is a binary tree where each cell is formed by
one coordinator and one worker. Speedups (Fig. 8, top) are
worse than the above examples for the single-cell overlay,
almost 6 with 16 devices. An analysis of the logs showed
that there where a number of factors contributing to these
modest results. First, as above, the work sharing algorithm
did not provide for a balanced work load at runtime (Fig. 7,
bottom). This, however, is not a problem of the algorithm
alone. In fact, overlay formation in this configuration is 4
times longer than the previous examples which contributes
to an asymmetric work load. The initial network formation
corresponded to 35% of the total run time. And, finally,
we have contention from the access point due to increased
communication.

Finally, Fig. 9 shows the results for overlay (c) in Fig. 5,
a binary tree as in case (b), but where each cell is formed
by only one (coordinator) device. Speedups (Fig. 9, top) are
worse than those of configuration (a) with balanced tasks
(Fig. 6) but are comparable to those obtained for the same
configuration with the “divide by 2” work sharing algorithm
(Fig. 7), especially for 16 devices. This is an improvement
relative to the previous configuration and is connected with
the fact that more balanced tree overlays can be formed
with the (c) configuration than in (b). The speedups however
never get close to the best case scenario as in this configura-
tion the initial network setup corresponds to 50% of the total
run time, so that the last devices to join in, usually, have little
work left to perform.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Number of Devices

Granularity: 1
Granularity: 2
Granularity: 4
Granularity: 8

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Av

er
ag

e C
om

pu
ta

tio
n

(fr
ac

tio
n)

Device

2 Devices
4 Devices
8 Devices
16 Devices

Figure 8. Speedup and load balancing for configuration (b).

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Number of Devices

Granularity: 1
Granularity: 2
Granularity: 4
Granularity: 8

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
er

ag
e C

om
pu

ta
tio

n
(fr

ac
tio

n)

Device

2 Devices
4 Devices
8 Devices
16 Devices

Figure 9. Speedup and load balancing for configuration (c).

To understand the impact of the overlay formation over-
head in these results we ran the same experiments for all the
configurations but this time we implemented a barrier that
starts the computation only once all nodes have joined the
overlay. The results for configuration (c), shown in the last

block of Table 1, highlight that some improvement is ob-
tained (a maximum speedup of 8.6 versus 7.4 for 16 devices)
but it is clear that the work-sharing strategy is still a limiting
factor.

5. Discussion and Conclusion
The results presented in this paper show that P3-Mobile of-
fers substantial speedups for simple, embarrassingly parallel
applications, such as the Mandelbrot. They also show that
the choice of overlay and work sharing strategy impacts per-
formance, as evidenced by the fact that the speedups deviate
from linear as the number of devices grows.

More work is clearly required on the system to support
other overlays and, especially, more adaptive and intelligent
work sharing strategies, to improve performance, with the
added benefit of providing some level of fault-tolerance in
the presence of churn. In particular, scheduling should be
sensitive to differences in the computational capabilities of
the devices and to the topology of the overlay. The construc-
tion of the overlays, e.g., the assignment of coordinator roles,
should take into consideration the capabilities of the devices
as well.

Another aspect of this work that was not addressed in this
paper is the energy issue: what is the impact of the paral-
lel computations and data exchange between devices in their
batteries? We have reasons to believe that the impact of com-
munication will not be very significant for applications that
are broken into mostly independent tasks [14]. The energy
impact from local computation, on the other hand, may be
quite substantial for Mandelbrot and other applications like
face recognition, but the latter would be executed only in
sporadic situations.

Acknowledgments
We would like to thank the anonymous reviewers, and the
invaluable help of our colleague João Rodrigues in setting up
the experiments. This work has been sponsored by projects
HYRAX (CMUP-ERI/FIA/0048/2013), funded by FCT, and
SMILES (NORTE-01-0145-FEDER-000020), funded by
NORTE 2020, under PORTUGAL 2020, and through the
ERDF fund.

References
[1] Cisco. Cisco visual networking index: Global mobile data

traffic forecast update, 2015–2020 white paper, 2015. http:
//www.cisco.com/c/en/us/solutions/collateral/

service-provider/visual-networking-index-vni/

mobile-white-paper-c11-520862.html.

[2] J. Dean and S. Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):
107–113, 2008.

[3] H. T. Dinh, C. Lee, D. Niyato, and P. Wang. A survey
of mobile cloud computing: architecture, applications, and

approaches. Wireless communications and mobile computing,
13(18):1587–1611, 2013.

[4] D. C. Doolan, S. Tabirca, and L. T. Yang. Mmpi a mes-
sage passing interface for the mobile environment. In Proc.
MoMM’08, pages 317–321. ACM, 2008.

[5] U. Drolia, R. Martins, J. Tan, A. Chheda, M. Sanghavi,
R. Gandhi, and P. Narasimhan. The case for mobile edge-
clouds. In Proc. UIC’13, pages 209–215. IEEE, 2013.

[6] N. Fernando, S. W. Loke, and W. Rahayu. Honeybee: A
programming framework for mobile crowd computing. In
Proc. MOBIQUITOUS’12, pages 224–236. Springer, 2012.

[7] N. Fernando, S. W. Loke, and W. Rahayu. Mobile cloud
computing: A survey. Future Generation Computer Systems,
29(1):84 – 106, 2013.

[8] K. Habak, M. Ammar, K. A. Harras, and E. Zegura. Femto
clouds: Leveraging mobile devices to provide cloud service at
the edge. In Proc. CLOUD’15, pages 9–16. IEEE, 2015.

[9] E. E. Marinelli. Hyrax: Cloud computing on mobile devices
using mapreduce. Master’s thesis, Master’s Thesis, Carnegie
Mellon University, 2009.

[10] E. Miluzzo, R. Cáceres, and Y. F. Chen. Vision: Mclouds -
computing on clouds of mobile devices. In Proc. MCS’12,
pages 9–14. ACM, 2012.

[11] MobiForge. Global mobile statistics 2016, q2 report. http:

//mobiforge.com/, 2016. last visited in 05/09/2016.

[12] L. Oliveira. P3: Parallel peer-to-peer. Master’s thesis, Com-
puter Science Department, University of Porto, 2003.

[13] L. Oliveira, L. Lopes, and F. Silva. P3 (Parallel Peer-to-Peer):
an Internet Parallel Programming Environment. In Workshop
on Web Engineering and Peer-to-Peer Computing, pages 274–
288. Springer, LNCS 2376, 2002.

[14] J. Rodrigues, J. Silva, R. Martins, L. Lopes, U. Drolia,
P. Narasimhan, and F. Silva. Benchmarking wireless protocols
for feasibility in supporting crowdsourced mobile computing.
In Proc. DAIS’16, pages 96–108. Springer, 2016.

[15] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The
case for VM-based cloudlets in mobile computing. Pervasive
Computing, 8(4):14–23, 2009.

[16] D. Silva. P3 Mobile: Parallel Peer-to-Peer Computing on Mo-
bile Devices. Master’s thesis, Computer Science Department,
University of Porto, 2016.

[17] T. White. Hadoop: The definitive guide. O’Reilly, 2012.

