
Video Dissemination in Untethered
Edge-Clouds: a Case Study

João Rodrigues, Eduardo R. B. Marques, Joaquim Silva,
Lúıs M. B. Lopes, and Fernando Silva

{joao.rodrigues,edrdo,joaquim.silva,lblopes,fds}@dcc.fc.up.pt

CRACS/INESC-TEC & Faculty of Science, University of Porto, Portugal

Abstract. We describe a case study application for untethered video
dissemination using a hybrid edge-cloud architecture featuring Android
devices, possibly organised in WiFi-Direct groups, and Raspberry Pi-
based cloudlets, structured in a mesh and also working as access points.
The application was tested in the real-world scenario of a Portuguese vol-
leyball league game. During the game, users of the application recorded
videos and injected them in the edge-cloud. The cloudlet servers con-
tinuously synchronised their cached video contents over the mesh net-
work, allowing users on different locations to share their videos, without
resorting to any other network infrastructure. An analysis of the logs
gathered during the experiment shows that such portable setups can
easily disseminate videos to tens of users through the edge-cloud with
low latencies. We observe that the edge cloud may be naturally resilient
to faulty cloudlets or devices, taking advantage of video caching within
devices and WiFi-Direct groups, and of device churn to opportunistically
disseminate videos.

1 Introduction

Traditional mobile cloud computing focuses on moving processing and storage of
data generated by mobile devices to centralised cloud datacenters. This offload-
ing of computation and data benefits the users by decreasing battery consump-
tion in the devices and allows them to access highly reliable infrastructure with
seemingly unlimited computational and storage resources. However, due to the
distance (both physical and logical) that separates a device at the edge of the
network from the cloud, a major technical challenge prevails: how can mobile
cloud computing provide applications with low-latency and/or high-bandwidth
requirements? What if the infrastructure is unavailable or bandwidth limitations
are part of the scenario, e.g., in the aftermath of natural disasters and in dense
environments such as sports or music events?

To address these issues, new paradigms such as mobile edge-clouds [3] and
cloudlets [18] strategically combine traditional cloud infrastructure with the re-
sources provided by devices and small servers near the edge, enabling proximity-
aware applications. In a mobile edge-cloud, for example, nearby devices work

together to form a pool of computing resources with sustained operation un-
der poor connectivity and access to crowd-sourced information which otherwise
might be unavailable. Computational tasks are performed locally, i.e., there is no
offloading of computation or data to a traditional cloud infrastructure. Cloudlets,
on the other hand, bring processing and storage resources closer to the edge to
support local offloading of tasks from devices or to serve as caches.

Content Distribution Networks (CDN) can significantly benefit from the
aforementioned evolution in edge-cloud technology, e.g., in real world scenar-
ios like sports or concert venues, or social gatherings like weddings, parties and
graduation ceremonies. For example, there are apps that provide users within
(and outside) sports venues with almost real-time statistics and multimedia con-
tents like the number of kilometres a player has run or video replays for goals
or interesting events [15,26]. Video replays are downloaded from central servers
to the mobile devices through the venue’s WiFi or cellular infrastructure access
points. If, however, the venue is crowded, the large number of requests can stress
the infrastructure [4,7]. In this context, edge-cloud based CDN can be used as a
complement to the infrastructure by performing local video dissemination and
caching, removing a significant load from the access points. In previous work [19]
we showed that this is indeed possible, in a scenario in which a single (venue)
server provides the video replays and the user’s mobile devices organize them-
selves into mobile edge-clouds that cache and share those replays. We envision
that users can be engaged through diverse incentives, for instance sweepstakes
involving goods like team merchandise or game tickets.

In this paper, we explore a more extreme scenario. First, users can consume
replays but they can also produce and inject them in the edge-clouds. Second,
such clouds of devices can work totally offline, outside the venue’s infrastructure,
by sharing video replays among themselves and with another tier composed of
modest cloudlet servers. The latter synchronize contents periodically allowing
for injected videos to be disseminated to different areas of the venue more effi-
ciently. Finally, we use churn, the natural movement of devices in the venue, to
disseminate contents opportunistically. We implemented a CDN for the scenario,
coupled with an Android app for video acquisition, dissemination and viewing.
The software infrastructure was tested in a real world scenario during an official
Portuguese volleyball league game. During the experiment, users of the appli-
cation recorded small video replays of the game through their smartphones and
injected them in their edge-cloud and in their local cloudlet servers. The latter
synchronised with the other cloudlets in the mesh on a regular basis allowing
users on opposite sides of the venue to access videos with different perspectives
in almost real-time, and without resorting to any on-site or 3G/4G network.

The rest of the paper is organised as follows. Section 2 presents the scenario
and the network architecture to support the “user generated replays” applica-
tion. Section 3 delves into the implementation of the network tiers. Sections 4
describes the experiment and the results we obtained. Section 5 discusses related
work. Section 6 presents concluding remarks and discusses future work.

2 Scenario and architecture

Our interest on video dissemination in the context of edge-clouds stems from
work in the Hyrax project1. The rationale for the latter is to explore a range
of, potentially game-changing, crowd-sourcing middleware and applications that
harness the collective resources of mobile devices and cloudlets at the edge of
the network. Several case study applications were considered in the scope of the
project, including caching and device-to-device techniques for video dissemina-
tion, distributed computer vision, and fully untethered communications infras-
tructure for emergency situations.

Previous work in a more restricted scenario, where contents were selected
from a TV stream by administrators and published exclusively through central
servers, showed that edge-clouds of mobile devices can successfully cache and
disseminate a significant fraction of the video contents provided by servers, ef-
fectively removing up to 60% of the load from conventional access points [19].
We did this without resorting to rooting the devices or any otherwise intrusive
operation that might render the client applications unfit for general public use.

mesh Wifi-DirectWifi

Fig. 1: Snapshot of the game S.C. Espinho vs Vitória S.C., our case study.

In this paper, we explore a more extreme scenario for sports venues (Figure 1)
in which users can both consume and produce replays. When they produce a re-
play they publish it, with some metadata, in the edge-cloud. Also, these clouds
of devices can now work totally offline, without the support of the venue’s infras-
tructure. They do this with the help of a second network tier composed of mod-
est cloudlet servers organised in a dynamic peer-to-peer mesh that synchronize
their contents on-the-fly. Besides caching the videos published by devices, these
servers also work as access points for devices and WiFi-Direct groups (WDGs)

1 http://www.hyrax.dcc.fc.up.pt

within a given spatial region. Finally, we use churn induced by the natural move-
ment of devices in the venue to disseminate contents opportunistically, allowing
devices to publish their videos to neighbouring edge-clouds as they enter them.

mesh

Wifi

Wifi
Direct

Fig. 2: The 2-tier network ar-
chitecture.

Figure 2 shows the 2-tier architecture we
used for this scenario. First, in tier 1, we have
a mesh of cloudlet servers (in this case Rasp-
berry Pi devices) that actively cache video con-
tents published by tier-2 devices. They feature
2 wireless network interfaces: one to support
the cloudlet mesh, the other to provide access
points to tier 2 devices. The cloudlet servers
actively synchronize their local video caches so
that local videos can be accessed by devices un-
der remote cloudlet servers. This is done on a
best-effort basis, as no attempt is made to pro-
vide any strong form of consistency between the
contents of the caches at each cloudlet server.
In the absence of network errors (c.f. Section 4)
the contents of these caches will progressively converge, i.e., eventual consistency
will be attained [22]. Mobile devices in tier 2 can form WDGs and use them to
disseminate local contents, or they can connect directly to a cloudlet server. Each
device also features a cache for holding the videos it generates and publishes plus
the videos it downloads from other devices or cloudlet servers.

3 Implementation

We now describe the main implementation aspects of the infrastructure used in
our case-study. We do so in terms of the hardware and software components for
cloudlets and mobile devices, and the main algorithms used for video dissemi-
nation and edge cloud formation.

(a) Hardware.

storage
service

synch.
service

AP mesh

metadata files

(b) Software services.

Fig. 3: Cloudlet setup.

Cloudlets. Our cloudlets are based
on Raspberry 3 Model-B minicom-
puters, shown in Fig. 3a. These are
equipped with a quad-core ARM
Cortex 1.2 GHz CPU and 1 GB
of RAM, and powered through a
20100 mAh TP-Link power bank.
The Raspberry has two USB-
attached D-Link DWA-172 WiFi
cards with omnidirectional anten-
nas, and runs the Raspbian 9.1 dis-
tribution with a Linux 4.9 kernel.
One of the WiFi cards is setup in

mesh mode using the BATMAN protocol2 over a 5 GHz band and a single chan-
nel (36) in all cloudlets with 20 MHz width. The other WiFi card is setup as an
AP in the 2.4 GHz band using a distinct and non-overlapping 20 MHz channel
per cloudlet (a choice of a 5 GHz band for the AP would limit connectivity by
legacy AP clients).

Two software services run in each cloudlet, a storage service and a synchro-
nization service, as illustrated in Fig. 3b. Both services are supported by the
local filesystem and a MongoDB database, used for storing video files and video
metadata, respectively. The storage service, accessible via HTTP, deals with
(upload and download) data transfers from mobile devices related to video files
or corresponding metadata (video title, creation time, size, etc) and thumbnails
(small images used by clients for video preview). The synchronization service is
responsible for cloudlet announcement, discovery, and data transfers in the mesh
network. Cloudlet announcement and discovery works dynamically over multi-
cast UDP, allowing cloudlets to dynamically join or leave the mesh if necessary,
and data transfers are made through TCP sockets.

procedure handle hello(source, video id list)
stored videos = stored video ids()
new videos ← diff(video id list, stored videos)
update work queue(source, new videos)

procedure video sync()
while running() do
(source, video id)← wait for work()
metadata ← get metadata(source, video id)
thumbnail ← get thumbnail(source, video id)
video ← get video(source, video id)
Store(video id,metadata, thumbnail, video)

Fig. 4: Cloudlet synchronization algorithm.

The algorithm in Figure 4
illustrates how a (possibly dy-
namic) set of cloudlets syn-
chronize videos over time, using
a best-effort active replication
scheme that leads to eventual
consistency among cloudlets in
the absence of network fail-
ures. Each cloudlet periodically
announces itself over multicast
UDP with a hello message, al-
lowing other cloudlets in the mesh to discover it. The hello message has an associ-
ated list of identifiers for available videos. As illustrated by the handle hello()
procedure, receiving cloudlets determine which videos are not yet locally stored,
and add the latter to a queue of pending videos to transfer. This queue is han-
dled by a continuously running procedure, video sync(), such that each pending
video entry is processed by downloading the corresponding metadata, thumbnail,
and actual content, that are stored locally afterwards.

Android app. The Android app is illustrated in Fig. 5. The app works on
non-rooted Android devices running at least Android version 5, thus making
use of standard APIs in particular those for WiFi and WiFi-Direct network-
ing. An app user may browse a list of videos (Fig. 5a) identified by their title,
creation date, and duration, along with an image thumbnail. Upon selection,
a video in this list can be viewed, downloading it first if this has not been
done previously, since downloaded videos are stored persistently. The app also
allows the reverse operation, i.e., recording a video and uploading it to the net-
work (Fig. 5b). In implementation terms, the app is structured in terms of: a

2 https://www.open-mesh.org/projects/open-mesh/wiki

https://www.open-mesh.org/projects/open-mesh/wiki

module that interfaces with the cloudlets’ storage service via HTTP; a network
manager that administers the dynamic role of the app/device in the network
and; an additional module that deals with WDG data transfers via TCP/UDP.

(a) Video browsing.

(b) Video capture.

Fig. 5: Android app.

The app may connect to a
standard WiFi AP, enabled by
one the cloudlets in our scenario,
or to a WiFi Direct group enabled
by another device working as a
“soft” AP, called the group owner
(GO), that maintains the WDG
and has (is able to maintain) a
simultaneous a cloudlet/AP link.
In standard operation, data flow-
ing between non-GO members re-
quire a network hop through the
GO, but Tunnelled Direct Link
Setup (TDLS) may also be ac-
tivated to enable (true) peer-to-
peer wireless links [17].

The dynamics of network for-
mation are discussed further be-
low in this section. Focusing on
group interactions for now, a
WDG forms a mobile edge cloud
where video download requests
can be served from within the
group, if the videos at stake are
available in (i.e., were downloaded
previously by) at least one of the
members. When not, the GO’s
cloudlet fulfils the download on-
the-fly, either directly, if the request originates at the GO, or with the GO
acting as proxy between another group member and the cloudlet. All uploads by
non-GO members are similarly routed on-the-fly from the GO to the cloudlet.
When proxying file requests, the GO caches file, with the aim of improving re-
silience to churn in the group and the chance of one-hop transfers in the absence
of TDLS links.

Apart from GO caching, and unlike in the cloudlet tier, video replication
otherwise occurs passively in the group, i.e., videos are copied between members
only when necessary due to an explicit download request by a user. Alternatively,
an active replication could imply higher overhead in terms of network bandwidth
and inherent battery consumption, but, on the other hand, also potentially lead
to faster video dissemination, or reduce user wait-time without much impact in

bandwidth if users tends to watch a high share of a limited pool of videos (e.g.,
the curated video setting of our previous work [19]).

Parameterisation in the game scenario:

op Creation (c) Disposal (d) Joining (j) Leaving (l)

Top 2 1 5 0

Pop 0.5 0.5 0.7 0

procedure ManageNetwork(Tc, Td, Pc, Pj)
// Device thresholds
input – Tc, Td, Tj , Tl >= 0:
// Trans. probabilities
input – Pc, Pd, Pj , Pl ∈ [0− 1]:
state← DISCONNECTED
while Running() do
when ConnectionError() do
state← DISCONNECTED

switch state do
case DISCONNECTED
when ∃ap ∈WiFiNetworks() do
ConnectTo(ap); state← AP CLIENT

when ∃go ∈WiFiDirectGroups() do
ConnectTo(go); state← GROUP PEER

case AP CLIENT
when ShouldCreateGroup(Tc, Pc) do
CreateGroup(); state← GROUP OWNER

when ∃go ∈ WiFiDirectGroups() :
ShouldJoinGroup(go, Tj , Pj) do
ConnectTo(go); state← GROUP PEER

case GROUP OWNER
when ShouldDisposeGroup(Td, Pd) do
DestroyWDG(); state← AP CLIENT

case GROUP PEER
when ShouldLeaveGroup(Tl, Pl) do
Disconnect(); state← DISCONNECTED

Fig. 6: Network formation algorithm.

Network formation. Device-
to-cloudlet AP connections and
WDGs are formed according to
the algorithm in Figure 6, run-
ning in distributed manner per
each device. As shown, four dis-
tinct logical connection states are
possible, and several event-driven
transitions between them: when
the device has no active connec-
tion (DISCONNECTED), it es-
tablishes one when there is ei-
ther an AP or a WDG in range;
a device connected to an AP
(AP CLIENT) may choose to
create or join a WDG; a group
owner (GROUP OWNER) may
dismantle a group, and resume
back to AP client mode and;
a group peer (GROUP PEER)
may choose to disconnect from
the group.

In the algorithm, state tran-
sitions are parameterised by a de-
vice threshold Top and a prob-
ability Pop probability pairs,
where op may refer to group cre-
ation, disposal, joining, or leav-
ing. The threshold parameters impose limits as follows: min. devices visible in
the AP network to create a group (Tc); min. devices in a group before the GO
considers disposal (Td); max. devices that a group may hold, inhibiting other
devices to join (Tj) and; min. devices in a group before a group peer considers
leaving (Tl). The probabilities govern the likelihood of transitions, provided all
other conditions are enabled for an operation. The transition predicates (e.g.
ShouldCreateGroup() for group creation) may also account for runtime con-
ditions in the device and/or the network. Overall, the parameterisation scheme
allows for flexible tuning according to the scenario of interest.

The concrete parameters for the game scenario are shown above the listing
of Fig. 6, and result from an empirical calibration we did through some prelimi-
nary tests at the game venue. They reflect the concerns of not creating WDGs
too aggressively (Pc = 0.5, Tc = 3), trying to maintain them active (Pd = 0.5,
Td = 1) and stable (Pl = Tl = 0) for relatively long, and encouraging devices
to join groups and have groups of reasonable size (Pj = 0.7, Tj = 5). Together

with this parameterisation, the evaluation of group creation, embedded in the
implementation of ShouldCreateGroup(), feeds on battery and AP signal
strength values broadcasted by devices (when connected to a cloudlet) to imple-
ment a simple heuristic: a device becomes GO only if it has the highest value
of all (batteryLevel + signalStrength)/2 measures known for all devices; the
scheme limits the chance that two devices connected to the same cloudlet be-
come GO almost simultaneously. Other transition predicates could also easily
be refined to account for runtime conditions, e.g., the battery level of a device
while acting as GO in ShouldDisposeGroup() in order to avoid battery de-
pletion (that occurs at a faster rate for GOs, given their role as soft APs), or
the signal strength measured for the serving GO to decide leaving a group in
ShouldLeaveGroup().

4 The experiment

Setup. We conducted our real-world experiment during a game of the Por-
tuguese volleyball league between S. C. Espinho and Vitória S. C., that took
place on December 1st, 2017, at the Nave Desportiva de Espinho sports venue3.
We recruited several student volunteers to watch the game and use the video
dissemination app, using Google Nexus 9 tablets running Android 6.0 that we
provided. Additionally, some audience members and S. C. Espinho staff were also
engaged to participate using their own smartphones. In total, 18 users/devices
participated in the experiment.

For the experiment, the peer-to-peer mesh formed between the cloudlets was
static in size and fully connected. At the venue, we had three cloudlets in-
stalled as shown in Figure 1, identified as C1, C2, and C3 in this section. Smart-
phones and tablets from the volunteers, sitting in the game stands or moving
through them, formed tier-2. Before the experiment, we disabled the use of TDLS
over WiFi-Direct, as we found that the Android app had stability problems;
hence the app used only plain WiFi and WiFi-Direct. Additionally, GPS signal
strength/precision was too poor inside the (indoors) sports venue for obtaining
good location/mobility logs, hence we instructed volunteers not to activate GPS
in the devices.

The experiment began at approximately 16:30, 30 minutes before the game
started, and ended just after the game was over at approximately 19:15. Dur-
ing this period, the following types of events were logged for the Android app
and cloudlet instance: video data transfers in terms of source, destination, time
interval, length of data; network formation events for WiFi-Direct group cre-
ation or disposal, and; connection establishment/detachment between devices
and cloudlets or WiFi-Direct GOs. Event data was stored locally for the cloudlets
and devices, and also pushed from devices to cloudlets in short data transfers.
When the experiment was over, we collected and merged all the logs for analysis.

3 https://goo.gl/maps/cUainSqtD962

https://goo.gl/maps/cUainSqtD962

C1 C2 C3 Group GO

1

2
3

4

5
6

7
8

9
10

11
12

13

14
15

16
17

18

16:15 16:30 16:45 17:00 17:15 17:30 17:45 18:00 18:15 18:30 18:45 19:00 19:15

Fig. 7: Timeline of operations per device.

Overview of user behaviour. Over the course of the experiment, the volun-
teers recorded and uploaded 165 videos to the edge cloud, and also performed a
total of 660 video downloads. Apart from these successful operations, there were
39 transfer errors, corresponding to approximately 4% of total video transfers.

Figure 7 shows a timeline of operations per device. The colors show, for any
given instant, whether a device was connected directly to a cloudlet AP or to a
WDG, or if they formed a WDG (acted as GO). For each device timeline, up-
load and download completions are respectively marked with arrows and dots.
As shown, the behaviour observed from device to device can be quite heteroge-
neous in terms of connectivity and user operations. Some devices connected to a
cloudlet AP and remained in that state for most if not all of the game (e.g., 11,
13, 15, 17), others roamed between different cloudlet APs (1, 4, 6, 9, 12), two
devices formed WDGs for most of the game (8 and 10), and, finally, a portion of
devices was connected to a WDG for significant time (2, 14, 16, 18). Regarding
video transfers, some devices were quite active in terms of uploads (10 and 18),
downloads (7 and 16), or both (4 and 8), while others had little or no activity
(11, 13, 15, 17).

Connectivity. Figure 8 depicts stacked graphs for the number of users over
time in terms of connection type (8a) and serving cloudlet (Fig. 8b).

First, we can observe that the share of devices that formed WDGs (GO) or
connected to them (Group) was roughly balanced with the number of devices
that merely connected to cloudlet APs. Over time, 7.6 (49%) devices on average
participated in WDGs, 2.5 as group owners (16%) and 5.1 (33%) connected to
these groups, whilst 7.9 (51%) devices connected to a cloudlet AP only. The
results are less balanced for the serving cloudlet, through direct connection or
transitively through a GO: over time 9.8 devices were served by C1 on average,

#	
D
ev
ic
es

Cloudlet
Group
Go

16:30 17:00 17:30 18:00 18:30 19:00
0

5

10

15

20

(a) Type of connectivity.

#	
D
ev
ic
es

C1
C2
C3

16:30 17:00 17:30 18:00 18:30 19:00
0

5

10

15

20

(b) Serving cloudlet.

Fig. 8: Connectivity over time.

1.3 by C2, and 3.2 by C3. To explain this, a precise analysis would require
accurate user location/mobility data (as mentioned earlier, we were constrained
by GPS signal reception) but we attribute this to two facts we observed on-site:
(1) users typically installed and turned on the app at a working desk located
very near C1, therefore likelier to keep the connection to it longer, and; (2) as
suggested by the numbers, there were in fact a higher concentration of users near
C1, where most of the game fans concentrated.

Uploads and downloads. Figure 9 depicts video transfers in terms of active
downloads (9a) and uploads (9b) over 1-minute intervals, as stacked graphs.
Downloads are distinguished in terms of the following types of transfers: cloudlet-
to-device (C2D), when involving devices that are not part of a WDG; cloudlet-
to-group transfers (C2G), for downloads that originated in a WDG but could
not be served by it; and device-to-device (D2D), for videos that were requested
and served within a WDG. On average, 3.4 C2D (42%), 2.6 C2G (33%), and 2.0
(25%) D2D downloads were active per minute. The C2D share (42%) is slightly
less than the share of devices that were not involved in groups over time (51%,
as mentioned earlier), whilst the D2D/C2G ratio of 43% corresponds to the
proportion of downloads issued and served within the same WDG. Regarding
uploads, device-to-cloudlet (D2C) and group-to-cloudlet (G2C) are shown, along
with the correlated video transfers in the mesh (using Algorithm 4 presented

#	
Vi
de
os

C2D
C2G
D2D

16:30 17:00 17:30 18:00 18:30 19:00
0

5

10

15

20

25

(a) Downloads.

#	
Vi
de
os

D2C
G2C
Mesh

16:30 17:00 17:30 18:00 18:30 19:00
0

5

10

15

(b) Uploads.

Fig. 9: Video transfers over time.

earlier). On average, there were 2.5 (1.1 D2C and 1.4 G2C) active uploads and
3.1 mesh transfers active per minute. Note that per each upload, there should
be 2 corresponding mesh transfers (we use 3 cloudlets), hence close to 5.0 mesh
transfers would be expectable instead. Upon log inspection, we verified that the
mesh synchronization got stuck for cloudlet C1 early in the experiment due to a
software glitch. Thus, videos originating at devices served by C2 and C3 were not
replicated through the mesh onto C1, although cloudlets C2 to C3 functioned
properly and were able to pull videos from C1 during the entire experiment.

#	
Vi
de
os

C1
C2
C3

16:30 17:00 17:30 18:00 18:30 19:00
0

25

50

75

100

125

150

175

#	
Vi
de
os

C1
A1

16:30 17:00 17:30 18:00 18:30 19:00
0

100

25

50

75

125

150

175

#	
Vi
de
os

C2
A2

16:30 17:00 17:30 18:00 18:30 19:00
0

25

50

75

100

125

150

175

#	
Vi
de
os

C3
A3

16:30 17:00 17:30 18:00 18:30 19:00
0

25

50

75

100

125

150

175

Fig. 10: Video storage analysis.

Looking into this issue further, Figure 10
shows a global plot for the number of dis-
tinct videos stored in all 3 cloudlets over time
(on top), plus three other plots comparing
the number of videos stored per each cloudlet
(Ci) vs. the number of (also distinct) videos
stored in the devices served by that cloudlet
(Ai). The global plot clearly indicates that,
at around 17:15, C1 started to lag behind C2
and C3. Inspecting the plot for C1, a surpris-
ing finding is that the number of videos in
devices served by it (A1) did not stop grow-
ing, however. In fact, it converged very closely
to the set of videos stored in C2 or C3. The
behavior of C1 is not observed for C2 and
C3 which synchronised over the mesh prop-
erly, apart from a temporary glitch in C2 be-
tween 17:00 and 17:30, and where the number
of videos in served devices was actually much
lower than those stored by the cloudlets (ow-
ing up to the lower number of users/download
requests). The finding for C1 is explained by
the combined effects of device churn and video
caching: the loss of videos through faulty syn-
chronization at the mesh tier was compen-
sated by devices that eventually got under the
scope of C1 and brought most of the miss-
ing videos with them. We did not anticipate
(the technical glitch or) this possibility, hence
C1 was not updated with those videos, but
clearly the potential of opportunistic churn-
driven synchronization exists and should be
seized upon.

Video transfer analysis. Figure 11 charac-
terises video lengths (11a) and transfer speeds
per category (11b), in terms of quartiles, min-
imum and maximum values. The median size

Length	(MB)
0 15 30 45 60 75 90 105 120 135 150 165

(a) Size.

Speed	(MB/s)

D2C
D2Go2C

C2D
C2Go2D
Go2D
D2D
Mesh

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

(b) Speed.

Fig. 11: Video transfers – size and speed.

for a video was roughly 14.5 MB, and more than 75% were smaller than 25 MB.
To put this in perspective, in spite of some larger videos (the largest one had
144 MB), even with low bandwidth, say 500 KB/s, a video transfer typically
took less than 1 minute.

The transfer speeds are shown for uploads (green), downloads (blue) and
mesh synchronization (red). For uploads, we distinguish between direct device-
to-cloudlet (D2C) transfers, and uploads mediated through a GO (D2Go2C),
with median values of approximately 1 MB/s and 600 KB/s, respectively. The
symmetric values for downloads, C2D and C2GO2D, are higher as expected
(downlink speed is higher as usual): 2.6 and 1.1 MB/s. As for downloads made
within a WDG, we distinguish transfers from GO to another group member
(Go2D) and between non-GO members (D2D), with median values of 1.4 MB/s
and 600 KB/s, respectively. D2D transfers are slower, as they require data to
be routed through the GO and the inherent up-link bandwidth limitation (the
values are similar to the D2Go2C case). TDLS links, disabled for stability rea-
sons, should allow much higher values for D2D transfers (as we have achieved
in [17,19]). Finally, the median value for mesh transfers was 1.6 MB/s.

WDG analysis. We now analyse the behavior of the two WDGs that were
active for most of the experiment, those enabled by devices 8 and 10 in Figure 7.
In comparison, the other 5 WDGs that were formed during the experiment all
lasted less than 1 hour. Figure 12 depicts the behavior of the 2 groups in terms of
member count (including the GO), the number of videos in the GO, the number
distinct videos stored in all members, and the number of total videos stored by
the group (including duplicates).

#	
re
pl
ay
s #	devices

Go
Distinct
All
Members

16:30 17:00 17:30 18:00 18:30 19:00
0

100

200

300

400

500

600

0

2

4

6

8

10

12

#	
re
pl
ay
s #	devices

Go
Distinct
All
Members

16:30 17:00 17:30 18:00 18:30 19:00
0

15

30

45

60

75

90

0

1

2

3

4

5

6

Fig. 12: Analysis of two Wifi-Direct groups.

The first group was clearly more active, with 4.46 members on average and
a peak value of more than 300 videos, 122 of which were distinct (74% of all 165
videos in the system). Two other significant traits are that: (1) the GO videos,
that are permanently available while the group lasts, grows monotonically over
time and stores/caches more than half (52%) of these videos, and; (2) there is a
high ratio of replication of videos (1.9), meaning that devices tended to download
a high portion of the same videos. This results in resilience to churn: the group’s
video pool (the set of distinct videos) does not decrease significantly when a
member departs, while there are much higher variations in total video count.
The second group marks a contrast to the first one, given that it had far few
members (1.9), a smaller video pool on average, and low levels of GO caching
(27%) and replication (1.1).

5 Related work

CDNs are usually materialised by large datacenters spread throughout the globe,
emerged with the objective of improving the distribution of content to end-
users by providing high data availability, reduced latency and increased network
bandwidth. The potential of hybrid CDN-P2P architectures is well acknowledged
by large CDN providers, e.g., see [12]. Some architectures combine servers and
P2P (Internet) links [5, 24], but do not directly account for proximity to end
users. Cloudlets, on the other hand, are lightweight servers deployed at the edge
of the network, e.g., as part of hybrid CDN-P2P architectures [25], as relays
to perform video processing before uploading data to the central cloud [20], or
to deliver geo-based multi-player content and interaction [23]. Mobile devices
themselves can be used effectively as CDN caches in the network, even without
resorting to D2D links [9].

D2D communications enabled at the level of cellular networks is envisioned
as the main enabler for traffic offloading/proximity-aware CDN [1]. While this
promise is not fulfilled at scale, WiFi/Bluetooth-based communications are the
prevalent means. For instance, Haggle [14] is an opportunistic content-sharing
system that employs WiFi and Bluetooth links and store-and-forward techniques
to cope with network disruption and churn, and Kwon et al. [10] make use
of WiFi-Direct groups for improved video streaming by letting the GO act as
relay/cache between the cellular infrastructure and other group members. There

are other non-standard techniques that require “rooted” device extensions to
work, e.g., Helgason et al. [6] present a middleware for mobile applications that
disseminate contents opportunistically over WiFi ad-hoc one-hop links without
further infrastructural support, and Microcast [8] uses D2D WiFi/Bluetooth
communication in conjunction with 3G/4G to improve the performance of video
streaming, but making use of overhearing techniques for WiFi.

The hybrid architecture of this paper combines cloudlets and D2D commu-
nication, and is naturally extensible to the consideration of a centralised cloud
layer. In addition to the video dissemination scenario considered here (in se-
quence to [19], discussed earlier in the paper), another Hyrax project case-study
concerns photo sharing for temporary networks formed at social gatherings, mak-
ing use of the Thyme system [2]. Thyme is a time-aware publish-subscribe CDN
service, in which devices are logically organised into geographical hash-tables
for content discovery and retrieval. For these and other Hyrax applications and
services, a general-purpose middleware [16] is being developed, providing the ab-
straction of an overlay network formed from heterogeneous (WiFi, WiFi-Direct,
Bluetooth) D2D links, and that is adaptive to intermittent communication and
device churn.

6 Conclusions and future work

We presented an untethered hybrid edge-cloud to support video dissemination
at sporting events, validated experimentally in the real world setting of a Por-
tuguese league volleyball game. The edge-cloud was composed of mobile devices,
possibly organised in WDGs, that produce and consume videos, and a mesh of
three Raspberry Pi cloudlets that cache and disseminate the videos produced by
the devices. The experiment showed that the edge cloud was sufficiently robust to
provide videos to tens of users with low latencies. Moreover, the multiple caching
levels—at devices, WiFi-Direct groups and cloudlets—made it resilient to device
or cloudlet failures. In particular, we illustrated that an unexpected long-term
fault by one the cloudlets could be compensated through the combined effects of
caching and churn for opportunistic content sharing. The role of the WDGs was
specially relevant in this overall picture. They significantly offloaded traffic from
the mesh infrastructure, by involving 49% of devices on average and serving 43%
of the downloads issued by devices in such groups. Moreover, as illustrated for
the most active group in the experiment, caching not only provides resilience to
churn (when devices leave the group) but in fact seize upon it (when devices
enter) to accumulate videos over time in a group.

For future work we focus on several aspects. Some natural extensions can
be considered to our hybrid architecture, such as the addition of a centralised
cloud layer [19], and the use of 3G/4G networks in combination with WiFi and
D2D communication. In the presence of a centralised cloud layer, a curation
mechanism can be implemented such that administrative users filter the appro-
priate videos for dissemination and certify their provenance for security assur-
ances (e.g., using digital signatures for videos). More generally, the paramount

aspects of security and privacy, outside the scope of this paper, may be dealt
with by several mechanisms in a mobile edge cloud setting at the level of devices
and/or cloudlets, e.g., see [11,13,21]. Another line of work concerns the simula-
tion of our scenario, to help us understand the behavior of the network at scale
over the parameter space, and calibrate experiments in more principled manner,
for instance regarding the strategies for network formation, video caching and
replication, patterns for user mobility and video sharing, and choice of commu-
nication technologies. These future developments may consider other scenarios
in crowded venues (e.g., music halls, museums) or in communication-deprived
environments (e.g., disaster settings, remote locations) [16].

Acknowledgements

This work has been sponsored by projects HYRAX (CMUP-ERI/FIA/0048/2013),
funded by FCT, and SMILES (NORTE-01-0145-FEDER-000020), funded by
NORTE 2020, under PORTUGAL 2020, and through the ERDF fund. We wish
to thank Nuno Vitó and Bernardo Viterbo from S. C. Espinho, José Gouveia
and Quirino Gomes from C. M. Espinho, and Francisco Carvalho from Vitória
S. C. for their precious support.

References

1. Andreev, S., Pyattaev, A., Johnsson, K., Galinina, O., Koucheryavy, Y.: Cellular
traffic offloading onto network-assisted device-to-device connections. IEEE Com-
munications Magazine 52(4), 20–31 (2014)

2. Cerqueira, F., Silva, J.A., Lourenço, J.M., Paulino, H.: Towards a persistent pub-
lish/subscribe system for networks of mobile devices. In: Proc. MECC’17. pp. 2:1–
2:6. ACM (2017)

3. Drolia, U., Martins, R., Tan, J., Chheda, A., Sanghavi, M., Gandhi, R.,
Narasimhan, P.: The Case for Mobile Edge-Clouds. In: Proc. UIC/ATC’13. pp.
209–215. IEEE (2013)

4. Erman, J., Ramakrishnan, K.K.: Understanding the Super-sized Traffic of the Su-
per Bowl. In: Proc. IMC’13. pp. 353–360. ACM (2013)

5. Ghareeb, M., S. Rouibia, B. Parrein, M.R., Thareau, C.: P2PWeb: A Client/Server
and P2P Hybrid Architecture for Content Delivery Over Internet. In: Proc. IC-
CIT’13. pp. 162–166. IEEE (2013)

6. Helgason, O.R., Yavuz, E.A., Kouyoumdjieva, S.T., Pajevic, L., Karlsson, G.: A
mobile peer-to-peer system for opportunistic content-centric networking. In: Proc.
MobiHeld’10. pp. 21–26. ACM (2010)

7. Kapustka, P., Stoffel, C.: State of the Stadium Technology Survey. Tech. rep.,
Mobile Sports Report (2014)

8. Keller, L., Le, A., Cici, B., Seferoglu, H., Fragouli, C., Markopoulou, A.: Microcast:
Cooperative video streaming on smartphones. In: Proc. MobiSys’12. pp. 57–70.
ACM (2012)

9. Koukoumidis, E., Lymberopoulos, D., Strauss, K., Liu, J., Burger, D.: Pocket
cloudlets. In: Proc. ASPLOS XVI. pp. 171–184. ACM (2010)

10. Kwon, D., Je, H., Kim, H., Ju, H., An, D.: Scalable video streaming relay for smart
mobile devices in wireless networks. PloS one 11(12), e0167403 (2016)

11. Liu, J.K., Au, M.H., Susilo, W., Liang, K., Lu, R., Srinivasan, B.: Secure sharing
and searching for real-time video data in mobile cloud. IEEE Network 29(2), 46–50
(2015)

12. Lu, Z., Wang, Y., Yang, Y.R.: An Analysis and Comparison of CDN-P2P-hybrid
Content Delivery System and Model. Journal of Communications 7(3), 232–245
(2012)

13. Mollah, M.B., Azad, M.A.K., Vasilakos, A.: Secure data sharing and searching at
the edge of cloud-assisted internet of things. IEEE Cloud Computing 4(1), 34–42
(2017)

14. Nordström, E., Rohner, C., Gunningberg, P.: Haggle: Opportunistic mobile content
sharing using search. Computer Communications 48, 121–132 (2014)

15. Robb, D.: HuaweiVoice: Agile Stadiums Bring Digital Content To Sports Fans.
Forbes Magazine (2015)

16. Rodrigues, J., Marques, E.R.B., Lopes, L.M.B., Silva, F.: Towards a Middleware
for Mobile Edge-cloud Applications. In: Proc. MECC’17. ACM (2017)

17. Rodrigues, J., Silva, J., Martins, R., Lopes, L., Drolia, U., Narasimhan, P., Silva,
F.: Benchmarking Wireless Protocols for Feasibility in Supporting Crowdsourced
Mobile Computing. In: Proc. DAIS’16. pp. 96–108. Springer (2016)

18. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The Case for VM-Based
Cloudlets in Mobile Computing. IEEE Pervasive Computing 8(4), 14–23 (2009)

19. Silva, P.M.P., Rodrigues, J., Silva, J., Martins, R., Lopes, L., Silva, F.: Using Edge-
Clouds to Reduce Load on Traditional WiFi Infrastructure and Improve Quality
of Experience. In: Proc. ICFEC’17. pp. 61–67. IEEE (2017)

20. Simoens, P., Xiao, Y., Pillai, P., Chen, Z., Ha, K., Satyanarayanan, M.: Scalable
crowd-sourcing of video from mobile devices. In: Proc. MobiSys’13. pp. 139–152.
ACM (2013)

21. Tan, J., Drolia, U., Martins, R., Gandhi, R., Narasimhan, P.: Chips: Content-based
heuristics for improving photo privacy for smartphones. In: Proc. WiSec’14. pp.
213–218. ACM (2014)

22. Vogels, W.: Eventually consistent. Communications of the ACM 52(1), 40–44
(2009)

23. Wang, N., Varghese, B., Matthaiou, M., Nikolopoulos, D.S.: ENORM: A framework
for edge node resource management. IEEE Transactions on Services Computing
(2017)

24. Wang, X., Chen, M., Kwon, T.T., Yang, L., Leung, V.C.M.: AMES-Cloud: A
framework of adaptive mobile video streaming and efficient social video sharing
in the clouds. IEEE Transactions on Multimedia 15(4), 811–820 (2013)

25. Yin, H., Liu, X., Zhan, T., Sekar, V., Qiu, F., Lin, C., Zhang, H., Li, B.: Design
and deployment of a hybrid CDN-P2P system for live video streaming: experiences
with LiveSky. In: Proc. Multimedia. pp. 25–34. ACM (2009)

26. YinzCam. http://www.yinzcam.com/, last visited in 21/02/2018

http://www.yinzcam.com/

	Video Dissemination in Untethered Edge-Clouds: a Case Study

