
VERIFICATION OF MPI PROGRAMS USING SESSION TYPES

K. Honda1, E.R.B. Marques2, F. Martins2, N. Ng3, V.T. Vasconcelos2, N. Yoshida3

1 Queen Mary, University of London 2 LaSIGE/FCUL, Universidade de Lisboa 3 Imperial College London

PROPOSAL

The multiparty session type methodology [3] considers the specification of a global pro-
tocol expressing interaction among multiple participants, from which an endpoint protocol
can be derived (projected) for each individual participant, e.g., as in Scribble [2].

A well-formed (global) protocol can be verified in polynomial time and ensures by con-
struction some key properties: type safety, communication safety, and deadlock free-
dom [3].

Our aim is to ensure these (paramount) properties for sound MPI programs by verifying
(at compile-time) a conformance relation between an MPI program and a session type
specification.

The potential is to overcome typical shortcomings of other state-of-the-art methodologies
considered for MPI, e.g., model checking or symbolic execution [1, 4], that require program-
level analysis for all properties of interest, and inherently lead to a state-explosion problem
as the number of participants grows.

SESSION TYPES

G (global protocol)

E
0

E
 0< r < P-1 

E
P-1

conformance

MPI program

projection

GLOBAL PROTOCOL
(for MPI program)

G = ΠP.ΠN.
foreach (0 ≤ r < P − 1) {
collective-loop {

r −→ r + 1 〈float, N〉
Allreduce 〈float, N〉

}
}

ENDPOINT PROTOCOLS
(for the 3 groups of MPI processes)

E0 = ΠN.
collective-loop {
−→ 1 〈float, N〉
Allreduce 〈float, 1〉
}

E 0 < r <P−1 = ΠN.
collective-loop {
←− r − 1 〈float, N〉
−→ r + 1 〈float, N〉
Allreduce 〈float, 1〉
}

EP−1 = ΠN.
collective-loop {
←− P − 2 〈float, N〉
Allreduce 〈float, 1〉
}

SAMPLE MPI PROGRAM

A simple (and naive) program loop with a pipeline communication pattern and a global
reduction.
float err, localErr, out[N], in[N], ...;
int r, P;
MPI_Status status;
MPI_Comm_rank(MPI_COMM_WORLD, &r); // -> process rank
MPI_Comm_size(MPI_COMM_WORLD, &P); // -> number of processes
...
for (itr=0; itr < MAX_ITER && err > MAX_ERROR; itr++) {
...
if (r < P-1) {
// -> r+1 (right neighbor), executed for r = 0 ... P-2
MPI_Send(out, N, MPI_FLOAT, r+1, 0, MPI_COMM_WORLD, &status);
}

if (r > 0) {
// <- r-1 (left neighbor), executed for r = 1 ... P-1
MPI_Recv(in, N, MPI_FLOAT, r-1, 0, MPI_COMM_WORLD, &status);
}
// some computation takes place and localErr is calculated
...
// obtain global error (involves all processes)
MPI_Allreduce(&localErr, &err, 1, MPI_FLOAT, MPI_SUM, MPI_COMM_WORLD);
}

KEY CHALLENGES

1. Refine multiparty session type abstractions to capture the general traits of MPI pro-
grams, e.g., rank-based communication, collective operations, and common communi-
cation patterns. Some particular features impose additional complexity, such as nonde-
terministic operations (e.g., wildcard receives).

2. Define and verify the conformance relation between MPI programs and multiparty ses-
sion types. In essence, we need to determine a sound correspondence between a session
type specification and the control structure of a MPI program for all its processes. This
is far from trivial, as even the simple example above illustrates:

• The communication flow is dependent on the process rank, i.e., for every participant r in the example
an endpoint protocol must be found, matching the concrete control flow of the MPI process for
rank r.
• A control flow synchrony needs to be established between processes. In the example, we need to

infer that all ranks execute the same number of loop iterations (as hinted by the collective-loop
construct at the session type level), based on the assertion that err and i always have the same
value in all processes per each iteration (note that err results from MPI_Allreduce).

REFERENCES
[1] Gopalakrishnan, G., Kirby, R.M., Siegel, S.,

Thakur, R., Gropp, W., Lusk, E., De Supinski,
B.R., Schulz, M., Bronevetsky, G.: Formal anal-
ysis of MPI-based parallel programs. Communi-
cations ACM 54(12), 82–91 (2011)

[2] Honda, K., Mukhamedov, A., Brown, G., Chen,
T., Yoshida, N.: Scribbling interactions with a
formal foundation. Distributed Computing and
Internet Technology pp. 55–75 (2011)

[3] Honda, K., Yoshida, N., Carbone, M.: Multiparty
asynchronous session types. In: POPL. pp. 273–
284. ACM (2008)

[4] Siegel, S., Mironova, A., Avrunin, G., Clarke,
L.: Combining symbolic execution with model
checking to verify parallel numerical programs.
ACM TOSEM 17(2), 1–34 (2008)

This work is supported by EPRSC funds EP/G015635/01 and EP/G015481/01, FCT funds PTDC/EIA-CCO/122547/2010 and CMU-PT/NGN/0044/2008, and the Ocean Observatories Initiative.


