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Abstract

Machine-learning techniques, namely deep convolutional neural networks,

are pivotal for image-based identification of biological species in many Cit-

izen Science platforms. However, the construction of critically sized and

sampled datasets to train the networks and the choice of the network archi-

tectures itself remains little documented and, therefore, does not lend itself to

be easily replicated. In this paper, we develop a streamlined methodology for

building datasets for biological taxa from publicly available research-grade

datasets and for deriving models from these datasets using off-the-shelf deep

convolutional neural networks such as those provided by Google’s AutoML

Vision cloud service. Our case study is the Portuguese native flora, anchored

in a high-quality dataset, provided by the Sociedade Portuguesa de Botânica,

scaled up by adding sampled data from iNaturalist, Pl@ntNet, and Observa-

tion.org. We find that with a careful dataset design, off-the-shelf machine-

learning cloud services produce accurate models with relatively little effort

that rival those provided by state-of-the-art citizen science platforms. The

best model we derived, dubbed Floralens, has been integrated into the public

website of Project Biolens, where we gather models for other taxa as well.

The dataset used to train the model and its namesake is publicly available

on Zenodo.

Keywords: automatic identification, citizen science, deep learning, computer vision

1 Introduction

The improvements in processing speed, storage capacity, and imaging sen-
sors for mobile devices paved the way for Citizen Science [1] applications
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Figure 1: Detail of the FloraOn web application.

and Web services that allow amateur enthusiasts to participate in science
projects. One very successful case study is that of nature observation,
namely, the photographic recording of animals, plants, and fungi in their
natural habitats. Besides storing these observations, some platforms use
deep-learning models to provide automatic taxonomic identification from
user-provided images [2, 3, 4, 5]. The data gathered by such projects is
highly valuable for scientists, from hardcore taxonomists to ecologists study-
ing the impact of human activity on biodiversity [6, 7].

This paper describes the step-by-step derivation of high-accuracy machine-
learning models for automatic taxonomic identification of the Portuguese na-
tive flora. The work is anchored on the FloraOn dataset provided by the So-
ciedade Portuguesa de Botânica and available online via a web application1

(Figure 1) and as a contributed dataset in the Global Biodiversity Informa-
tion Facility (GBIF)2. While this dataset contains relatively few images per
species, those provided are of very high quality, and all the identifications
are provided by experienced taxonomists. We use the list of Portuguese
native species in this dataset3 as our reference to build a definite dataset
that adequately covers all FloraOn species and allows accurate models to
be derived using off-the-shelf convolutional neural networks (CNN) such as
those provided by Google’s AutoML Vision (GAMLV) cloud service.

While there are a few platforms that already provide automatic iden-
tification of flora species [2, 3, 8, 4], we wanted to develop a streamlined

1https://flora-on.pt/
2https://www.gbif.org/
3A few invasive or naturalized exotic species are also listed. They were not removed.
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methodology to build a dataset for the Portuguese native flora and to de-
rive an accurate model using off-the-shelf machine-learning tools. The goal
would be to replicate the method for other biological taxa in the context of
our ongoing Project Biolens [9]. The project aims to provide a set of CNN-
based models for the taxonomic identification of biological species native to
Portugal. Currently, we have four models: Floralens (described in this pa-
per, covering the kingdom Plantae); Lepilens and Mothlens (for butterflies
and moths, together covering the order Lepidoptera), and; Dragonlens (for
dragonflies and damselflies, covering the order Odonata).

The methodology used to derive all these models shares two core traits
with that described in this paper for Floralens: (a) the use of research-grade
public repositories for dataset construction, and; (b) the use of GAML to
derive the actual models. This methodology is succinctly described in a short
scientific outreach article (in Portuguese) [10], and, more thoroughly, in MSc
theses [11, 12] (both covering different stages of the work on Floralens), and a
BSc project report [13] (covering Lepilens). Compared to the other models,
Floralens was a greater challenge due to the much larger dimension of the
domain, despite being limited to Portuguese native species.

We find that with a careful design of a custom dataset from publicly avail-
able research-grade datasets, current off-the-shelf machine-learning cloud-
based services, such as GAMLV, produce impressive results with relatively
little effort, even rivaling the results obtained with the aforementioned plat-
forms. Thus, the main contributions of this work are as follows:

� a methodology to produce a dataset for a given biological taxa based
on published research-grade datasets, e.g., from GBIF;

� a high-accuracy GAMLV-based model for the Portuguese native flora
publicly available via web and mobile applications;

� a quantitative evaluation of the derived model and a comparison of its
accuracy relative to state-of-the-art platforms such as Pl@ntNet;

� the complete dataset available on Zenodo.

The remainder of this paper is structured as follows. Section 2 describes
the current state-of-the-art regarding automatic taxonomic identification
based on deep learning. Section 3 describes the construction of the datasets
used in this study. Section 4 describes the generation of the models from the
datasets using GAMLV. Section 5 describes the results obtained with the
models. Section 6 describes the software artifacts and datasets produced in
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the scope of this work. Finally, Section 7 summarizes the main findings of
this study and puts forward some future research goals.

2 Related Work

Convolutional Neural Networks (CNN) are deep neural networks composed
of one or more layers of trainable convolutional nodes whose aggregate out-
puts are eventually fed to a final, fully connected, layer for tasks such as
classification. In the context of image processing, a convolution is an oper-
ation that applies a matrix known as a kernel to a given input matrix. The
kernel slides over the input, multiplying the overlapping matrix positions
at each value and then summing the values. Depending on the form of the
kernel, the resulting matrix can encode features such as edges, textures, and
shapes, extracted from the original image.

The advent of CNN allowed the development of the first tools for the
automatic identification of plant species from input images [14, 15, 16]. The
success of these first efforts and their further refinement quickly reached a
point in which automatic species identification rivaled identifications made
by specialists [17], thus attesting to the transformative role of AI in this
field [18]. Nowadays, models based on CNN are central tools in major
citizen science platforms such as iNaturalist [2] and Observation.org [3] and
Pl@ntNet [4]. The massive amount of image data, labeled by experts and/or
crowd-sourcing efforts, enables the appearance of ML models that these
platforms make available to users through web browser interfaces and/or
mobile applications. Recently, Vision Transformers and their hybrids with
CNN have emerged as new powerful tools to derive high-precision models
for image classification tasks [19, 20].

When compared to the aforementioned citizen science platforms whose
domain of application is the global flora, Floralens is more specialized cover-
ing only the Portuguese native species. It is also not supported by a citizen
science platform nor, for the time being, supports directly exporting data
to them, although it allows users to seamlessly export their observations
into easily manageable data formats such as CSV files (and ZIP for images).
In this respect, Floralens is closer in philosophy and implementation to the
Flora Incognita Project [8].

Citizen science platforms generate important by-products in the form of
their curated datasets, often made available to the public through biodiver-
sity data portals, notably GBIF [21]. These datasets enable the development
of other ML models as is the case of Floralens that, in addition to FloraOn,
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uses data sampled from GBIF datasets provided by iNaturalist, Observa-
tion.org, and Pl@ntNet (cf. Section 3).

To improve the identification precision, some platforms such as Pl@ntNet
developed regional models by dividing the globe into several biogeographic
domains [22] following published regional floras such as theWCVP/Kew [23],
and introduced metadata providing information on the anatomic part of the
plant depicted in an image, e.g., flower, leaf, stem. This extra metadata
critically improves the precision of the models [24, 25].

However, in our high-mobility world, many plants have escaped and sig-
nificantly widened their native geographies, with or without mindful help
from humans. The situation is such that many authors argue that special-
ized, regional models are not that useful. Powered by the high precision
achieved in recent years by ML models, they focus instead on the genera-
tion of global models based on extreme datasets, consisting of millions of
images representing tens of thousands of individual species (for comparison,
it is estimated that the world has ∼300K plant species), as exemplified by
the iNat Challenge [26] and PlantCLEF/LifeCLEF [27, 28].

3 Dataset Construction

We now describe the creation of the Floralens dataset, subsequently used
for training the deep learning model. Our universe of species was taken
from the FloraOn catalog as of November 2021, the reference point in time
that marked the beginning of our work. It covers 2,712 species of native
Portuguese flora. The dataset construction involved the identification of
potential images of interest, forming a preliminary raw dataset, and then,
through sampling, a characterization of the actual dataset that would be
suitable for training a deep neural network, one in which each species is
represented by a minimum of 50 and a maximum of 200 images. These
bounds were defined based on our prior experience with building datasets
for other biological taxa (cf. Section 6).

The FloraOn repository is composed of geo-referenced records of Flora
species with associated images. The image data is relatively broad in scope,
as it covers 78% of the entire catalog (2,127 out of 2,712 species), but has a
limited volume: on average there are just 11 images per species, and, unsur-
prisingly, our 50-image lower bound threshold is not met for a single species.
Hence, to adequately populate the Floralens dataset, we retrieved the Flo-
raOn images but also consider image data from three publicly-available
datasets stored and made available at GBIF by three citizen science plat-
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forms: iNaturalist [29], Observation.org [30], and Pl@ntNet [31].

Figure 2: The geographical region of interest for GBIF portal queries.

The GBIF datasets provide validated observation data and associated
images, originally submitted by users of the respective platforms. However,
the validation process differs among data sources, as discussed further down
in this section. For each dataset and for each species in our universe, we
used GBIF portal queries to obtain observation records in the Darwin Core
Archive format [32]. Each such record corresponds to an observation of a
specimen, typically made in the wild by citizen scientists or experts, ac-
companied by its taxonomic identification, its geographical location, and
one or more images. The GBIF portal queries were parameterized to cover
the European continent (Figure 2) as, in a preliminary analysis, we found
that occurrence data from just Portugal or even the entire Iberian Peninsula
would yield limited data in terms of volume and variety. This was possible
because, despite several endemisms, most species in the Portuguese native
flora are widely distributed in the continent.

The raw data, from all image sources, is listed in Table 1 (left), along
with the characterization of the Floralens dataset (right) that results from
sampling the raw data. The corresponding histograms relating to image
counts and the number of species are illustrated in Figure 3. In the raw
data, more than 4 million images were available for consideration, covering
2,539 species (93% of the FloraOn catalog). Only 0.5% of these images
are from FloraOn, and approximately two-thirds are taken from iNaturalist.
Moreover, only 1,678 species reached our lower bound threshold of 50 images
(61% of the FloraOn catalog). Given that most of the images are taken from
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Table 1: Raw data and derived dataset after sampling (#I: image count;
#S: species count; ≥ 50 I: species with more than 50 images).

Raw data Dataset
Source #I %I #S ≥ 50 I #I %I #S

FloraOn 22,869 0.5 2,127 0 15,191 5.1 1,397
iNaturalist 2,753,167 66.2 2,066 1,431 90,127 30.6 1,358
Observation.org 823,389 19.8 1,816 1,114 85,746 29.2 1,093
Pl@ntNet 515,950 12.4 1,495 735 102,537 34.9 1,373

Total 4,154,895 2,539 1,678 293,601 1,678

Citizen Science platforms, this scarcity can be due to subjective issues like
the visual attractiveness of the plant, e.g., having a showy flower, or it can be
a real effect, reflecting its rare status in the wild. The raw data distribution
(in Figure 3a, shown in logarithmic scale) is long-tailed, in line with varied
levels of abundance of species in nature.

The Floralens dataset was derived by sampling the raw data as follows.
First, we filtered out species with less than 50 images. Then, for each of
the remaining species, we sampled up to 200 images from the datasets,
prioritizing data sources in the following order: (1) FloraOn; (2) Pl@ntNet;
(3) Observation.org, and; (4) iNaturalist. That is, for the 50-200 image
target per species, we use up as many images as possible from FloraOn first,
then from Pl@ntNet, and so on.

(a) Raw data. (b) Floralens dataset.

Figure 3: Dataset histograms (x-axis: #images; y-axis: #species).

The intent of this source-based prioritization is to define a dataset where
images are less prone to identification errors, taking into account the cu-
ration processes associated with each data source. The FloraOn data is
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curated by botanic experts and images are of very high quality, typically
clear images of specimens, often featuring subtle details that help secure
the identification of a species. Pl@ntNet data goes through a curation pro-
cess that involves machine learning, contributors’ reputation scores, and
geo-based species verification [31]. Observation.org data can result from
automatic validation through image recognition coupled with a check for
other approved observations in the geographical vicinity, or through an ex-
pert volunteer when automated validation fails [30, 33]. Finally, iNaturalist
identifications result from a crowd-sourcing effort whereby “research-grade”
identifications can be attained with the effort of a few, possibly just two and
non-expert, citizen scientist labels [29, 34].

The end result of this process was the Floralens dataset, formed by
approximately 300,000 images, and covering 1,678 species. As illustrated in
Figure 3b, there are 200 images or very close to it for most of the species.
The image count is 200 for 67% (1,128) of the species, 150 or higher for 79%
(1,323), and 100 or higher for 86% (1,449). The data source prioritization
scheme lead to a more significant fraction of FloraOn images in comparison
to the raw data (the fraction grows from 0.5 to 5.1%) and, also, to a relatively
even distribution of images from iNaturalist, Observation.org, and Pl@ntnet
(the corresponding fractions are 30.6, 29.2, and 34.9%).

4 Model Derivation

The process of deriving an image classification model using GAMLV is il-
lustrated in Figure 4. Overall, it comprises three stages: (1) preparing the
data set for training; (2) training the model, and (3) deploying the model
onto a cloud server or (using a suitable format) onto edge devices. GAMLV
essentially requires the user to focus on the dataset preparation (1), given
that training (2) and deployment (3) merely require simple high-level op-
tions by the user and are otherwise automated [35, 36]. The interaction with
GAMLV can be conducted via a browser with a simple user interface, as we
illustrate partially in this section (cf. Figure 5), or programmatically using
Google Cloud APIs (e.g., in Python).

Data set preparation. This first step requires the user to load the dataset
images onto what is called a storage bucket, provided by the Google Cloud
Storage service (GCS), along with a simple CSV file characterizing the
dataset. The CSV file lists the GCS image URIs and associates each URI
to a ground truth label (the name of the species in the image) and to either
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Figure 4: Model derivation using GAMLV.

the train, validation, or test subset.
We fed GAMLV with train, validation, and test splits over the Floralens

dataset, corresponding to fractions of 80%, 10%, and 10%. As usual, the
train split is used to adjust CNN parameters during the training process
in an iterative feedback loop, the validation split is used to measure the
progress and convergence of that training process, and the test split is used
merely for the evaluation of the model after training. The splits, with the
image counts and data source provenance detailed in Table 2, resulted from
a random selection of images for each species. Since the selection process
is random and given the volume of images at stake, the overall fraction of
images of each data source in each of the splits closely matches that of the
overall dataset.

Table 2: Train, validation, and test splits over the Floralens dataset.

Data source Train Valid. Test Total

FloraOn 12,175 1,466 1,550 15,191 ( 5%)
iNaturalist 72,174 8,924 9,029 90,127 (31%)
Observation.org 68,614 8,603 8,529 85,746 (29%)
Pl@ntNet 81,918 10,367 10,252 102,537 (35%)

All 234,881 (80%) 29,360 (10%) 29,360 (10%) 293,601 (100%)

In [12], we consider other strategies for defining these splits. In particu-
lar, we explored approaches that gave preference to specific data sources for
the validation/test splits. We found that a random split, besides preserving
a roughly similar fraction of images per data source in each split, results in
models with better performance (contrast the results in Section 5 with those
in [12]). In any case, prioritizing particular data sources (e.g. FloraOn or
Pl@ntnet) for validation/test splits over others had little impact on model
performance.
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(a) Training parameters. (b) Deployment options.

Figure 5: GAMLV interface for model training and deployment.

Training. Once the dataset is imported onto AutoML, training may pro-
ceed, requiring only the user to make high-level choices for the type of model
to be generated and the maximum training time, as illustrated in Figure 5a.
In our case, we select the “edge” model option, given that we wish to host it
as part of web or mobile applications (cf. Section 6) rather than deploying
it in a Google Cloud server. We also toggle the option for a model which
favors accuracy over latency among the three available choices. The max-
imum training time is specified in terms of a “node hours” budget, where
nodes are virtual machines used during training.

GAMLV required 4 node hours to complete the training of the CNN with
the Floralens dataset. It operates as a “black box” though, meaning that it is
not possible to discern what goes on during training. For instance, no exact
details or configuration options are provided for the training infrastructure
(e.g., in terms of virtual machines, GPUs, or TPUs) and it is not possible to
track details regarding the training process (e.g., how the model converges
over time).
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Deployment. Once training is completed, a model can be deployed in sev-
eral formats, as illustrated in Figure 5b. The formats include the standard
SavedModel format used by TensorFlow, but also others like TF Lite [37],
an optimized TensorFlow format for use in mobile and embedded devices,
or TFJS [38], for use in web browsers or Javascript programs. We make
use of the TFLite and TFJS variants in the software artifacts described in
Section 6. For these, GAMLV allows the user the export the associated files
to a GCS bucket.

(a) Initial (including in-
put layer). (b) Intermediate.

(c) Final (including out-
put layer).

Figure 6: Layers of the CNN model (fragment).

Derived CNN. The model obtained by GAMLV is a 65-layer deep CNN,
with the structure partially illustrated in Figure 6 for the TF Lite version, in
terms of the input/initial layers (a), intermediate layers (b), and final/output
layers (c). The TFLite version differs from the standard TensorFlow model
only in terms of post-training optimizations like quantization that enable
the model to be interpreted faster with little degradation in accuracy [37].
As shown, the input layer takes a 224× 224× 3 tensor, corresponding to a
224× 224 (typically resized) image with 3 RGB channels, with 8-bit values
per color channel. The intermediate layers make heavy use of stacked 2D
convolutions and depth-wise convolutions with a repeating pattern. The
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final layers include the derivation of a 1280-feature map that is fully con-
nected to a soft-max activation function that produces the final classification
vector with the label probabilities, 1678 of them in line with the number of
species covered.

The CNN architectures at stake are picked from the MnasNet family [39],
developed with mobile and embedded devices in mind. The high-level choice
between models offered by GAMLV (back in Figure 5a) corresponds to three
different MnasNet instantiations that do not differ in structure, just in the
density of connections between layers.

5 Model Evaluation

In this section, we present an evaluation of the Floralens model using the
test split described in the previous section, hereafter designated by FLTS
(Floralens test split) using standard metrics. We then complement these
baseline results with those obtained using two other test sets: a subset of the
images in PlantCLEF’22-23 [40, 28] and a set of plant images automatically
collected fromWikipedia. Furthermore, we compare the Floralens results for
all test sets with Pl@ntnet models accessible through the Pl@ntNet API [41].

Evaluation Metrics. Precision is the ratio of true positives (TP) relative
to the total number of positives (TP + FP). A positive (identification) occurs
when the classification score (a probability) returned by the model equals or
exceeds the established confidence level. Recall is the ratio of true positives
relative to the total number of true examples (TP + FN).

Precision =
TP

TP + FP
Recall =

TP

TP + FN

Top-1 is the fraction of test images that the model correctly classified by
the label with rank 1 (the highest-scoring label). Top-5 is similar to Top-1
but accounts for test images with a rank lower or equal to 5 (the 5 highest-
scoring labels). We also use a variant of the Mean Reciprocal Rank (MRR)
for test images of rank less or equal to 5. These are defined as follows:

Q(rl) = {t ∈ T | rank(t) ≤ rl}

Top-1 =
|Q(1)|
|T |

Top-5 =
|Q(5)|
|T |

MRR =
1

|T |
∑

t∈Q(5)

1

rank(t)
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where T is the set of all test images (|T | = 29,360 as given in Table 2),
rank(t) is the rank of the ground truth label returned by the model for the
test image t, and Q(rl) is the subset of T that contains test images with
rank less or equal to a limit rl.

(a) Precision-Recall curve. (b) Values per confidence level.

Figure 7: FLTS results: precision and recall results.

Baseline results. Figure 7 shows the results for precision and recall for
the Floralens model applied to the test set given in Table 2, more precisely
the macro-average of precision and recall values for all species to factor.
The area-under-curve (AUC) for the precision-recall correlation (in 7a), also
known as the average precision, is 0.72 (the maximum value would be 1.0).
Putting the confidence levels in perspective (in 7b) we can visualize that
precision and recall are both approximately equal to 0.7 for a confidence
level of 0.2. For a confidence level of 0.5 precision equals 0.85 and recall
equals 0.53. Overall, the results indicate a reasonable predictive power for
the Floralens model.

Table 3: FLTS results: Top-1, Top-5 and MRR.

Data source Top-1 Top-5 MRR

FloraOn 0.70 0.88 0.77
iNaturalist 0.70 0.87 0.77
Observation.org 0.64 0.83 0.72
Pl@ntNet 0.66 0.87 0.74

Overall 0.67 0.86 0.75
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Table 3 lists the Top-1, Top-5 and MRR results for the FLTS, per data
source used in the construction of the data set (Floralens, iNaturalist, Obser-
vation.org, and Pl@ntNet) and also in overall terms (last line in the table).
The results indicate relatively homogeneous predictive power across all data
sources, as the maximum difference in values for different data sources does
not exceed 0.06: a Top-1 value of 0.64 for Observation.org vs. corresponding
values of 0.7 for FloraOn and iNaturalist. The overall measures again indi-
cate reasonably good predictive power: 0.67 for Top-1 (hence roughly two
thirds of images in the FLTS are correctly classified with rank 1), 0.85 for
Top-5, and 0.75 for MRR.

PlantCLEF and Wikipedia test sets. We consider two additional test
sets: a random sample of 10,000 labeled images from the PlantCLEF’22-
23 [40, 28] competition, and a sample of close to 1,500 images obtained from
Wikipedia.

The PlantCLEF data we use is only a small sample of the entire “trusted”
training set of PlantCLEF [42] that comprises approximately 2.9 million im-
ages covering 80,000 plant species. The repository is trusted in the sense
that the image labels were obtained from academic sources or collaborative
platforms like Pl@antNet or iNaturalist. Our subset was built by first filter-
ing out species that are not covered by the Floralens model, obtaining data
for 1593 (out of 1,678) species, and then randomly sampling 10,000 images.

As for the Wikipedia test set, the images were identified through the
Wikimedia REST API search functionality [43]. For each species in the
Floralens domain, we used the species name as the keyword for a REST
API search. Among other items of information, the search result typically
yields a reference to an image stored at Wikipedia which we then considered
for addition to the test set. After obtaining the images, we filtered images
that contained illustrations or herbarium specimens, as well as duplicate
images (associated with more than one species; duplicates typically arise
because the search may yield an image of a different species in the same
genus if the target species’ name does not have a Wikipedia page). Through
this process, we obtained a dataset of 1,351 images for an equal number of
species (one image per species). Compared to the PlantCLEF test set, the
identification of the species in these images is less reliable as it results from
an uncontrolled crowd-sourced effort with no specific directives for image
validation.

Table 4 shows the results of the Floralens model for these test sets con-
sidered in terms of the Top-1, Top-5, and MRR metrics. We also recall the
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overall FTLS results (from Table 3) for easy comparison. We can observe
that the PlantCLEF andWikipedia test set results are marginally lower than
those obtained for the FLTS, (by 0.02/0.03 in all metrics). Overall, the re-
sults are evidence that the Floralens model applies well to other datasets
beyond the base test suite.

Table 4: Top-1, Top-5, and MRR of the Floralens model for all test sets.

Dataset #I #S Top-1 Top-5 MRR

FLTS 29,360 1,678 0.67 0.86 0.75
PlantCLEF 10,000 1,593 0.65 0.84 0.73
Wikipedia 1,351 1,351 0.65 0.84 0.72

Genus results. The results for the genus model (Table 5) show a clear
overall improvement relative to the species model. The greatest enhance-
ment is observed for the Wikipedia test set and, especially, for the Top-1
result (∆ = +0.14). The latter is probably because while this test set is
less exact than the others, when the image on the Web page of a species is
wrongly labeled Wikipedia does manage to provide an image of a plant of
the same genus. The improvements observed for FLTS and PlantCLEF for
all metrics are the same.

Table 5: Top-1, Top-5, and MRR of Floralens for genus prediction (∆:
variation relative to species results).

Dataset Top-1 ∆ Top-5 ∆ MRR ∆

FLTS 0.76 +0.09 0.91 +0.05 0.82 +0.07
PlantCLEF 0.74 +0.09 0.89 +0.05 0.80 +0.07
Wikipedia 0.79 +0.14 0.91 +0.07 0.83 +0.08

Comparative Pl@ntNet API results. We now provide results compar-
ing the Floralens model with models accessible via the Pl@ntNet API [41].
The Pl@ntNet API is a RESTful web service that provides access to the same
visual identification models used by state-of-the-art Pl@ntNet apps [4]. The
API lets us obtain a set of ranked species for a given image for two models
for worldwide flora: a so-called “legacy” model from 2022, henceforth iden-
tified as PN22, generated using CNN, and; a recent model announced in July
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Table 6: Pl@ntNet API: comparative MRR values (∆: variation relative to
the Floralens model).

Dataset PN22 ∆ PN23 ∆ PN23F ∆

FLTS 0.68 −0.07 0.80 +0.05 0.80 +0.05
PlantCLEF 0.72 −0.01 0.79 +0.06 0.79 +0.06
Wikipedia 0.73 +0.01 0.78 +0.06 0.79 +0.07

Table 7: Floralens vs Pl@ntNet API: MRR per data source in the FLTS (∆:
variation relative to the Floralens model).

Source PN22 ∆ PN23 ∆ PN23F ∆

FloraOn 0.58 −0.17 0.79 +0.04 0.79 +0.04
iNaturalist 0.67 −0.10 0.81 +0.04 0.81 +0.04
Observation.org 0.59 −0.13 0.76 +0.04 0.76 +0.04
Pl@ntNet 0.77 +0.03 0.84 +0.10 0.84 +0.10

FLTS \ Pl@ntNet 0.63 −0.12 0.78 +0.03 0.78 +0.03

FLTS 0.68 −0.07 0.80 +0.05 0.80 +0.05

2023 [44], generated using Vision Transformers, henceforth PN23. Through
the API, it is also possible to filter results from the PN23 model so that only
species occurring in a specific biogeographic region are included. One of
these regions is Southwestern Europe which includes Portugal, allowing the
most head-to-head comparison between Floralens and Pl@ntNet that can
be devised. These results are identified by PN23F.

Table 6 shows the variation (∆) of the MRR values obtained for PN22,
PN23 and PN23F for all the test sets relative to the corresponding values
obtained for Floralens. PN22 performs worse than Floralens for the FLTS,
a variation of −0.07. The MRR values of PN22 are otherwise similar for
PlantCLEF (−0.01) and Wikipedia (+0.01). The discrepancy observed for
FLTS merits further analysis and is discussed below. Focusing now on PN23

and PN23F, the MRR values across all test sets range from 0.78 to just
0.80, and perform better than Floralens by a factor of 0.05 to 0.07. The
Southwestern Europe species filter associated with PN23F has little impact
on the results.

In Table 7 we show the results in more detail for the FLTS by discrim-
inating the data sources. The goal is to understand why Floralens shows
better results than PN22 and also the impact of Pl@ntNet images in the
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MRR values. Recall that Pl@ntNet data was used to define our model.
That is, of course, also the case for Pl@ntNet models. In particular, part
of the Pl@ntNet data we use for testing may have been used to train the
Pl@ntNet models. That could explain the fact that the MRR values are
noticeably higher for the Pl@ntNet test subset (row Pl@ntNet in Table 7)
when compared to the remaining test suite overall (row FLTS \ Pl@ntNet
in Table 7). This effect is clearer in the case of PN22 (0.77 vs. 0.63) but,
also, in the case of PN23 and PN23F (0.84 vs. 0.78). PN22 has ∆ = −0.07 for
FLTS and the value goes down to ∆ = −0.12 when we exclude Pl@ntNet im-
ages from FLTS. Subject to the same restriction, PN23/PN23F have MRR
values of 0.80 (∆ = +0.05) versus 0.78 (∆ = +0.03), respectively, both
corresponding to modest improvements relative to Floralens.

Overall, the Floralens results are on par and in some cases better than
PN22, and marginally worse than PN23 and PN23F.

6 Software Artifacts

Biolens web site. The Floralens model has been integrated into the Bi-
olens project website [9]. The functionality is quite simple: users submit
photos of interest and obtain corresponding suggestions of biological iden-
tifications, as illustrated in the screenshots of Figure 8. To enable this
deployment, the Biolens website is hosted by a small virtual machine that
requires just 2 CPU cores and 8 GB of RAM. The configuration is quite
lightweight, given that we make use of the TFLite variant of the Floralens
model (and similarly for other models hosted on the site).

Biolens Android app. We also recently developed a prototype version of
a mobile application that can run on Android and iOS devices. The Android
version is available for download at the Biolens website. A few screenshots of
the application are shown in Figure 9. The functionality is similar to that of
the Biolens website, but customized for a mobile application context: users
can take photos of specimens on the fly and obtain instant identification
suggestions without an Internet connection. This information, together with
the date, the current geographical location, and optional user annotations,
is recorded in association with each photo. Another important aspect is that
the app can be used without Internet access. All Biolens models are bundled
within the app and, thus, are evaluated in loco on the mobile device.

17



(a) Image uploading by the user. (b) Suggested automatic identification.

Figure 8: Biolens – web application screenshots.

(a) Model selection. (b) Image list. (c) Details for an image.

Figure 9: Biolens – mobile application screenshots.
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Floralens dataset and results. Finally, the full Floralens dataset is pub-
licly available on Zenodo [45]. The dataset contains the mapping between
the image labels (ground truth), the image URLs from which they were re-
trieved, URLs for a site we maintain where all images are also stored, and
GBIF identifiers when applicable (all images except those obtained from
FloraOn). Ground truth and URLs are also available for the PlantCLEF
and Wikipedia datasets used in the evaluation of Section 5, as well as for
all datasets the top-5 results and corresponding confidence levels for the
Floralens model and the three Pl@ntNet model variations.

7 Conclusions

In this paper, we present the methodology used in the construction of the
Floralens dataset for the Portuguese native flora and in the derivation of a
deep-learning model for the automatic identification of the species therein.
The universe of species was taken from the FloraOn dataset, provided by
the Sociedade Portuguesa de Botânica and compiled exclusively by special-
ists. The dataset was constructed based on high-quality data from several
research-grade datasets available via GBIF. Besides FloraOn these include:
iNaturalist, Pl@ntNet, and Observation.org. We made the dataset avail-
able to the community on Zenodo [45]. The Floralens model was derived
from this dataset using GAMLV, a platform that provides users with tools
to derive models from datasets using off-the-shelf convolutional deep neural
networks.

Our initial tests suggested that the Floralens model had good predictive
power, with an AUC metric value of 0.72 and, for a reference confidence
level of 0.5, values for precision and recall of 0.85 and 0.53, respectively.
Further experiments indicated a relatively homogeneous predictive power
across all data sources used in the dataset, with a maximum variation of
0.06, and they confirmed its good predictive power with values for Top-1
and Top-5 of 0.67 and 0.86, respectively. Compared with the state-of-the-
art platform Pl@ntnet, Floralens performed on par with the “legacy 2022”
model and only marginally worse when compared with the most recent one.
We integrated the model into the BioLens Project website and developed a
mobile application to allow using it offline, in the field.

As for future work, we aim to improve the species coverage and the accu-
racy of the model. One way to do that is to include data from other datasets
such as those of Encyclopedia of Life [46] and FloraIncognita [8]. We also
want to address some limitations of the dataset that arise from the inconsis-
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tent use of taxonomic names and synonyms. Our list of Portuguese native
species taken from FloraOn is as complete and up-to-date as possible. How-
ever, recent taxonomic revisions have changed the accepted binomial names
for some species and these adjustments are not immediately reflected in the
public datasets. As an example, the species featured in the FloraOn listing
as Atractylis gummifera is now known as Chamaeleon gummifer. Although
not very common, it is widespread in the Mediterranean region [47]. Never-
theless, it is not included in the Floralens dataset as we did not find enough
(≥ 50) images with our GBIF queries for Atractylis gummifera. However, a
recent query for images of Chamaeleon gummifer yields more than enough
images to include the species in the Floralens dataset in a future update.

More work is also required on the Biolens mobile app to improve its
usability and optimize resource usage. Integration with existing Citizen
Science platforms is a possibility, allowing the user to automatically upload
Biolens records.

Finally, we plan to continue preliminary work on developing classification
models from image similarity analysis based on the TensorFlow Similarity
package [12]. Such models provide an alternative way to clinch an identi-
fication when GAMLV-based models yield low-confidence results. Hybrid
classification models that combine both approaches are an interesting pos-
sibility.
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[17] P. Bonnet, Hervé Goëau, Siang Thye Hang, Mario Lasseck, Milan Šulc,
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processing leaf images for automated plant identification: understand-
ing the tradeoff between effort and information gain. Plant Methods,
13(1):1–11, 2017.
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