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Abstract—Edge computing is a hot research topic given the
ever-increasing requirements of mobile applications in terms of
computation and communication and the emerging Internet-
of-Things with billions of devices. While ubiquitous and with
considerable computational resources, devices at the edge may
not be able to handle processing tasks on their own and thus
resort to offloading to cloudlets, when available, or traditional
cloud infrastructures. In this paper, we present JAY, a modular
and extensible platform for mobile devices, cloudlets, and clouds
that can manage computational tasks spawned by devices and
make informed decisions about offloading to neighboring devices,
cloudlets, or traditional clouds. JAY is parametric on the schedul-
ing strategy and metrics used to make offloading decisions,
providing a useful tool to study the impact of distinct offloading
strategies. We illustrate the use of JAY with an evaluation of
several offloading strategies in distinct cloud configurations using
a real-world machine learning application, firing tasks can be
dynamically executed on or offloaded to Android devices, cloudlet
servers, or Google Cloud servers. The results obtained show
that edge-clouds form competent computing platforms on their
own and that they can effectively be meshed with cloudlets and
traditional clouds when more demanding processing tasks are
considered. In particular, edge computing is competitive with
infrastructure clouds in scenarios where data is generated at the
edge, high bandwidth is required, and a pool of computationally
competent devices or an edge-server is available. The results also
highlight JAY’s ability of exposing the performance compromises
in applications when they are deployed over distinct hybrid cloud
configurations using distinct offloading strategies.

Index Terms—Computation Offloading, Edge Cloud, Edge
Computing, Cloudlet, Cloud Computing, Machine Learning

I. INTRODUCTION

Traditional mobile cloud computing [1] focuses on offload-
ing computation and data generated by mobile device applica-
tions to centralized cloud datacenters. This decreases battery
consumption in the devices, reduces their storage requirements
and speeds-up computation, thanks to the high-performance,
elastic, resource pool provided by the cloud infrastructure.
The network latency between devices and a centralized cloud
can be significant, especially if large amounts of data need
to be transferred, offsetting the gains in computation speed-
up. Under these circumstances, performing the computations
closer to the data source is desirable. Moreover, reliance on
a network connection to the cloud impairs applications that
need to provide high availability and represents a cost to end
users. From the service providers’ perspective also, the cost
of cloud resources is also a significant factor, and a limit on
maximum resource provisioning (the “level of elasticity”) is
usually set to make this cost manageable and predictable. As a
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Fig. 1: A hybrid cloud environment.

result, traditional mobile cloud computing alone is not a good
solution for a variety of computationally intensive, high data
locality, applications.

To counter these limitations, edge computing tries to of-
fload data and computation to the “edge” of the network,
by pooling resources provided by mobile devices themselves
and/or lightweight computing facilities near the edge, for
instance through mobile edge-clouds [2] and cloudlets [3].
The processing capabilities of devices such as smartphones
or tablets have been steadily increasing, making them capable
of performing computationally intensive tasks with reasonable
performance. In a mobile edge-cloud, nearby devices bound
together by a local network or device-to-device communi-
cations form a pool of computing resources with access to
local, crowd-sourced, data. Computational tasks are partitioned
and schedule among the participating devices. Cloudlets add
another layer of computational and storage resources closer to
the edge to support local offloading of tasks and/or data from
devices, reducing network latency significantly.

In this paper we consider the problem of adaptive compu-
tation offloading in mobile applications, where the decision of
running a computational task locally on a mobile device or to
offload it to a cloudlet or a traditional cloud infrastructure is
evaluated at runtime. Thus, we consider application scenarios
where 3 computational layers may coexist: mobile devices,
possibly forming mobile edge-clouds; cloudlets, and; cloud
servers (Fig. 1). In such hybrid environments, an adaptive
offloading strategy may be informed by runtime conditions
that inherently change over time - e.g., network bandwidth,
computational loads across the hybrid cloud, battery status
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of the devices - that dynamically influence the performance
metrics one wishes to optimize - e.g., task completion time,
network traffic consumption, cloud processing cost, battery
consumption.

We present JAY, a parametric framework for adaptive com-
putation offloading that allows users to evaluate application
performance according to several model parameters:
(a) hybrid cloud size and topology;
(b) data rate and size distribution;
(c) required result precision;
(c) offloading strategy, and;
(d) optimization metric.
As a proof-of-concept we use JAY with a case-study appli-
cation that performs automated object detection in images
sampled from videos captured and stored on devices. For
object detection the application employs deep neural networks,
deployed using TensorFlow [4]. We perform a benchmark
evaluation for distinct configurations in terms of the task
workload, hybrid cloud composition, and offloading strategies.

The results show that edge computing is competitive, with
respect to infrastructure clouds, for scenarios where data is
generated at the edge, high bandwidth is required, and a
pool of computationally competent devices or an edge-server
is available. From the framework’s perspective, they also
highlight JAY’s capability of instrumenting apps and exposing
the performance trade-offs and bottlenecks present when they
are deployed over distinct hybrid cloud configurations and
offloading strategies.

The remainder of this paper is structured as follows. Sec-
tion II provides a description of the generic framework we
employ for evaluating offloading strategies in hybrid clouds.
A general rationale for the specification of the task offloading
strategies, as well as concrete examples, are also presented
here. We then describe our case-study application for task
offloading in Section III, and present a benchmark evaluation
we conducted for this application in Section IV. Related work
is discussed in Section V. The paper ends with concluding
remarks and a discussion of future work in Section VI.

II. THE JAY PLATFORM

JAY is a platform for the implementation and testing of com-
putation offloading strategies in hybrid clouds. JAY is provided
as services implemented in Kotlin for Android OS, or as plain
Java Virtual Machines in other OSes (e.g., Linux or Windows).
A hybrid cloud may be composed of mobile devices, plus
servers running on cloudlets at the edge of the network or
clouds accessible through the Internet. JAY instances in a
hybrid cloud may host applications that generate tasks and/or
serve as computational resources for offloading requests. Thus,
the design makes no a priori assumptions where applications
reside, even if we are are particularly interested in applications
hosted on mobile devices. In any case, note that mobile devices
can also serve offloading requests. Furthermore, JAY main
focus is not on data security/privacy preservation, leaving this
app-dependent.
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Fig. 2: JAY architecture and task life-cycle.

A. Architecture and task life-cycle

The architecture of JAY is illustrated in Fig. 2. As shown,
each JAY instance runs a mandatory Broker service, plus
optional Scheduler and Worker services. Each service is imple-
mented using gRPC 1, an open-source framework by Google
for remote procedure calls, that provides easy and secure
data exchanges with SSL/TLS authentication. Their roles are
as follows: a Broker is responsible for mediating interaction
between instances, and delegating requests, responses, and
state information to the Scheduler and Worker services, as
required; a Worker runs tasks that are supplied to it, possibly
originating in the local device or in a remote device through
offloading; and, finally, a Scheduler decides where to run a
given task, based on available information on JAY instances
across the hybrid cloud that host a Worker service.

In Fig. 2 we also illustrate the life-cycle of tasks, with and
without task offloading, and the underlying interplay between
services. A task is spawned by an application, by submitting it
to the local Broker (1). Next, the task is turned over to the local
Scheduler (2) that decides which JAY instance in the hybrid
cloud will execute the task. The Scheduler then provides
the local Broker with the identity of the aforementioned JAY
instance (3). If the chosen instance is the local one, the Worker
executes the task (4a); in this case, when the task completes
(5a), the application is notified of its results (6a). Alternatively,
if the decision is to offload the task (4b), the task will run on
the remote JAY instance (4b – 6b), after which its results will
be transmitted to the originating instance (7b) and then, finally,
also back to the application (8b).

B. Runtime adaptivity

Dynamic offloading strategies rely on information that bro-
kers in JAY instances exchange between themselves, regarding
the state of the instances. A scheduler, in turn, uses a digest of
this information, provided by its broker, to guide its decisions.

Information is shared over time among brokers in the form
of a state sh per host h. The state sh may encode distinct
types of information regarding h such as: the current load
of the worker running on h (if one exists), an estimate of

1https://grpc.io/
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the communication bandwidth, and resource usage (e.g., CPU,
memory, and battery). Each broker keeps a set SH of states
sh for hosts h in H , where H is the set of hosts the broker
has knowledge of; the hosts in H may include the local host
hlocal (if it hosts a worker), other hosts configured statically,
typically the case of static cloudlet/cloud servers, and also
hosts discovered dynamically in the case of Android devices
in an edge network.

For a current state SH and a given task T , a scheduler yields
a decision h? = sch(SH , T ) ∈ H , indicating that T should
run at host h?. JAY is parametric in the sch function. For
instance, sch(SH , T ) = hlocal will mean that all tasks should
run on the local host hlocal, and no offloading takes place. In
contrast, we may have sch(SH , T ) = hfixed 6= hlocal, meaning
that every task should be offload to a fixed host hfixed; this
will correspond to an offloading strategy where all tasks are
sent to a host that centralizes task execution, e.g., a traditional
cloud server. More generally, a dynamic offloading strategy
may be expressed at each host by:

sch(SH , T ) = argminh∈H f(T, SH , h), (1)

where f is some target function to be minimized.
Regarding the worker service, the current implementation

uses a simple first-come/fist-served strategy (FCFS), i.e., it
maintains a FIFO queue of pending tasks and runs one task at
a time to completion. This choice let us focus on evaluating
offloading strategies at the scheduler level in the current stage
of JAY’s design. Naturally, adaptivity could also, in principle,
be applied to the way tasks are handled at the worker level,
for instance the consideration of task priorities or deadlines
in addition to arrival time, task preemption (provided tasks
implement some sort of checkpointing), or task migration/re-
offloading schemes between worker instances.

C. Example strategy for dynamic offloading

Using the current JAY version, as a proof-of-concept, we
implemented a dynamic offloading strategy that seeks to
minimize task execution time. The general formulation of the
the target function f of Equation 1 becomes:

f(T, SH , h) = c(sh, T ) + n(sh, T ) (2)

where sh ∈ SH is the known state of h. Based on sh and
T , we have estimates of computation and network overheads:
c(sh, T ), the estimated time for executing T on h, and;
n(sh, T ), the estimated time for transmitting task data from
the local host to h and the task results back. When h = hlocal,
we fix n(sh, T ) = 0, i.e., to account for the case where no
offloading takes place.

Let us now be more specific regarding the choice we made
for c and n terms in Equation 2. Beginning with c, we must
account for the FCFS policy in task execution at the worker
in each host, hence we let qh be the number of queued tasks
in a worker running at h. Furthermore, under the assumption
that tasks imply roughly the same raw computation effort, but
allowing that variations occur in performance over time (e.g.,
dynamic frequency scaling in mobile devices for lower battery

consumption, or due to possibly concurrent computations), we
let ch be a moving average of task computation times in h.
To model n, we let bh be a moving average of measured
bandwidth performance for communications with h in a scale
of bytes per second, and d(T ) be the amount of bytes involved
in network communication with h for T . Putting all this
together, letting sh = (qh, ch, bh) ∈ SH encode the known
state of h and replacing the terms in Equation 2, we get:

f(T, SH , h) =

c(sh,T )︷ ︸︸ ︷
(qh + 1)× ch +

n(sh,T )︷ ︸︸ ︷
d(T ) / bh (3)

Note that the qh + 1 term accounts for the number of queued
tasks at h (qh) plus task T . In support of this offloading
strategy, moving average settings can be calibrated in terms
of the number of samples and timing requirements (cf. the
sample instantiation given in Section IV).

III. CASE-STUDY APPLICATION

In recent years, we witnessed an explosion in Deep Learning
(DL) research with real-world applications. DL introduces
deep neural networks that can be employed in applications of
diverse fields, for instance computer vision, speech recogni-
tion, text translation, or bioinformatics. DL has naturally been
embraced in mobile software, e.g., for “photo beauty”, face
detection and augmented reality apps, among others [5, 6].

DL applications are interesting case-studies for computation
offloading in hybrid clouds, since they can be computationally
intensive and be handled differently in distinct execution
environments. Moreover, in many cases the data (e.g., images
or video) is generated at the edge and requires high bandwidth
links to move around. The cloud makes it feasible to deploy
heavyweight DL models that are memory and computation-
intensive. A high-end cloud server may be equipped with
vast amounts of RAM and many processors, and also in
particular employ, for faster processing time, several graphical
processing units (GPUs) or more specialized tensor processing
units (TPUs) [7]. Mobile devices such as smartphones are
of course resource-constrained in comparison, in spite of
their ever-increasing capabilities in recent years, including
the integration of specialized hardware [8]. As such, mobile
devices run lightweight DL models, in particular converted
models through quantization [9] that have lower (but still
usable) precision for the machine learning task at stake.
Popular DL libraries have “light variants”, as in the case of
TensorFlow (TF) [4]: the TensorFlow Lite (TFLite) library
consists of a DL model converter, mapping TensorFlow models
into TFLite ones through quantization and other optimizations,
and a TFLite model engine.

Our case-study application is based on an Android TFLite
demo for object detection2, depicted in Fig. 3. The application
identifies objects in frames extracted from real-time video cap-
tured by the device, along with bounding boxes and confidence
scores per object. The application uses the MobileNet SSD

2https://github.com/tensorflow/examples/tree/master/lite/examples/object
detection/android
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Fig. 3: Object detection Android app using TensorFlow Lite.

model [10] trained with COCO [11], a popular image dataset
used for benchmarking object detection models that contains
2.5 million labeled instances for 91 object types in more than
300.000 images.

In our setup, the object detection task is incorporated into
two distinct Kotlin modules, each linked with the JAY core
library: one module is used in Linux servers (cloudlets and
cloud) with the standard TF library, and the second is used
in Android devices with TFLite. Each module implements the
same DL task, i.e., given an image they run the DL model
to yield object-detection outputs. The input images can have
varying resolution, including High-Definition (HD) and Ultra
HD (UHD), unlike the original demo that used only Standard
Definition (SD) images. Both modules are parametrizable in
terms of the TF (Linux version) or TFLite (Android) although
here we use the same MobileNet SSD model variant for
evaluation in both instances (see discussion in Section IV).
Also, both also only use CPU resources, even if it is possible
to parameterize TFLite and TF to use available GPUs/TPUs.

IV. EVALUATION

To evaluate JAY, we deployed the case-study application in
different cloud configurations under varying workloads.

A. Hybrid cloud configurations

The cloud configurations for evaluation are depicted in
Fig. 4. In all configurations, tasks are only fired by mobile
devices, other (cloudlet and cloud) nodes only act as workers.

1) Device-only configurations: The top row of Fig. 4 shows
two configurations that involve only mobile devices. In the
first, a task always runs on the (local) device (LD) it originated
from, hence no offloading takes place. In the second, a neigh-
borhood of devices (ND), i.e., a mobile edge cloud, allows for
a dynamic choice between local execution or offloading to a
device in the neighborhood. The mobile devices we used were

LD/EC ND/EC

LD

ND/ICIC LD/IC

EC

ND

ND/EC/ICEC/IC LD/EC/IC

Fig. 4: Hybrid cloud configurations.

8 Google HTC Nexus 9 tablets running Android OS 7.0, each
equipped with a dual-core 2.3 GHz CPU, 2 GB of RAM, and
a Wi-Fi 802.11 card. To form the ND, the devices connect to
a local and dedicated WiFi network established using an Asus
RT-AC56U router.

2) Use of edge cloudlet and infrastructural cloud servers:
The 2nd and 3rd rows of Fig. 4 show configurations that,
in addition to mobile devices, deploy an edge cloudlet (EC),
connected to the same WiFi network as the mobile devices,
or an infrastructure cloud (IC), accessible through the Internet.
Accounting for each type of server, we consider static offload-
ing to the server (EC and IC), a dynamic choice between local
device execution or server offloading (LD/EC and LD/IC), and
an enhanced dynamic choice that also accounts for the ND
(ND/EC and ND/IC). The EC server used was an Intel i7-
6700K octa-core 4 GHz CPU with 16 GB of RAM, running
Ubuntu Linux 19.04. The IC server was a Google Cloud VM
hosted on Google’s europe-west2-c data center in London,
equipped with with 32 CPUs and 28.8 GB of RAM, accessible
via Internet. Benchmarks involving the IC server ran during
low network usage hours (only) in what concerns the local
access point at Univ. Porto, 8pm to 8 am.

3) More heterogeneous configurations: Finally, in the last
row of Fig. 4, we illustrate the most heterogeneous cloud
configurations: dynamic choices between EC or IC offloading
but no local device execution (EC/IC), EC/IC offloading but
also local device execution (LD/EC/IC), and EC/IC but also
ND (ND/EC/IC).

B. Workload parameters and setup

In addition to distinct cloud configurations, we consider
workloads characterized by other JAY parameters, as summa-
rized in Table I.
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TABLE I: Workload generation parameters.

Parameter Values

TF / TFLite model MobileNet V1 fpn coco (fixed)

Image resolution SD, HD, UHD

Number of mobile devices (D) 4, 8

Task generator devices (G) 1, D
Tasks / minute (λ) 12D (G = D); 96 (G = 1)

1) Object detection task: We consider the application de-
scribed in Section III, configured with the MobileNet V1
fpn coco model3 both for TF (EC and IC servers) and TFLite
(Android devices). The choice of a fixed DL model (task) in all
cases, allows us to focus solely on performance comparisons.

2) Image resolution: Task inputs have 3 different image
resolutions: SD, HD and UHD images. This affects computa-
tion and data transmission times. SD images are taken from
the COCO test data set [11], and have an average size of
163 KB. HD and UHD images are taken from the UltraEye
dataset [12], and have an average size of 717 KB and 2,210
KB, respectively. All images used were uploaded onto the
mobile devices during the initialization stage by benchmark
execution scripts.

3) Task generation: We have D = 4 or D = 8 mobile
devices, in which either only one or all of them generates
tasks, G = 1 or G = D respectively. When G = 1,
the remaining D − 1 devices merely act as workers. The
TF/TFLite tasks are fired randomly with a Poisson distribution.
When G = D we consider scenarios in which each device
independently generates tasks at rates λ equal to 12 per minute.
When G = 1 we consider a rate λ of 96 per minute. The
task generation rates were chosen to deliberately cause task
processing congestion in a fair number of cloud configurations,
as illustrated further on in this section.

C. Results

1) Baseline Results: In order to get a perspective of the
baseline performance of different types of node in a hybrid
cloud, we first measured the time it took for an individual task
to finish when the task originating from one device was either:
(LD) executed locally; (ND) offloaded to another device; (EC)
offloaded to the edge cloudlet; and (IC) offloaded to the
infrastructural cloud server. Measurements were taken for 3
batches of tasks fired in sequence (executed until completion
before the next task) for 3 minutes per each type of image
resolution (SD, HD, UHD). The average task execution time
in seconds (with 95% Gaussian confidence intervals) are
presented in Table II. Also presented (except for LD) are the
times in seconds spent transmitting data over the network, the
entries denoted with (n).

The first observation is that the networking overheads
mostly explain the difference in completion time for the dis-
tinct image resolutions. The TF/TFLite computation time tends

3https://github.com/tensorflow/models/blob/master/research/object
detection/g3doc/detection model zoo.md

TABLE II: Baseline results (seconds).

SD HD UHD

LD 8.70± 0.75 8.66± 0.66 8.86± 0.68

ND 8.94± 0.75 9.04± 0.82 9.29± 0.95

ND (n) 0.09± 0.06 0.26± 0.11 0.42± 0.26

EC 1.49± 0.15 1.61± 0.18 1.99± 0.22

EC (n) 0.06± 0.06 0.14± 0.08 0.32± 0.12

IC 1.07± 0.44 1.34± 0.23 2.43± 2.80

IC (n) 0.28± 0.21 0.50± 0.18 1.30± 2.81

(n) network transmission time.

to be stable, regardless of image resolution, as the number of
input neurons to the deep neural network is constant.

Looking at the EC and IC results, observe that EC and IC
offloading significantly outperform execution on a device in all
cases. Considering the execution times shown the average EC
/ IC speedups are, respectively: 5.8 / 8.1 for SD, 5.4 / 6.5 for
HD, and 4.5 / 3.6 for UHD. Given the significant difference in
EC and IC computational power compared to mobile devices,
this would be expected. Note that EC is outperformed by IC
in the SD and HD case, but not for UHD. IC networking
overheads significantly increase for higher resolution images,
and thus EC performance is overall better for UHD images.
For all cases, IC networking overheads are anyway higher and
more variable compared to EC, given that the EC server is
accessible directly through the local WiFi network.

Finally, observe that the ND results are naturally worse
than the LD ones, as offloading takes place between nodes
with similar characteristics, but, similarly to EC, networking
overheads are relatively small and have low variability.

2) Multi-device task generation: In Fig. 5 we depict the
results obtained for scenarios with D = 4 and D = 8, in which
all devices generate tasks (G = D) with a rate of λ = 12 tasks
per minute during 3 minutes. After 3 minutes, new tasks were
no longer fired, but pending ones were allowed to complete.
The results are the aggregate of 3 runs, all using the same
Poisson distribution seeds per device for firing tasks. The plot
shows: (a) log-scale box-plots for execution time, and; (b) the
distribution of tasks per type of node (LD, EC, IC) except in
the cases where only one type of node executes all tasks.

We consider all cloud configurations (cf. Fig. 4) except those
with ND offloading, which we discuss in a different scenario.
For the current scenario, we did collect some preliminary re-
sults for ND configurations with results that were consistently
worse with respect to LD configurations. The reason is that
all devices generate tasks and, as such, they tend to become
busy executing (mostly) their own local tasks rather than
helping with tasks offloaded from other devices. Except for the
“static” configurations (standalone LD, EC, IC), we employed
the offloading strategy given in Equation 3 (c.f. Section II),
using the moving average of the 5 latest samples completion
times, reported every 5 seconds by the Worker service at each
node, and similarly the 5 latest bandwidth measurements either
obtained passively through the Broker service with a regular
“ping” message to every node with a payload of 32 KB, or by
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(a) Execution time (seconds).
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Fig. 5: Results for G = D, D ∈ {4, 8}, λ = 12D.

actively measuring the response time when submitting a task.
The chosen task rate of λ = 12 tasks per minute and

per device means that the average completion time for tasks
should be ≤ 5s, otherwise congestion will likely result. This
is observed in several cases. In the LD configuration, tasks
are generated at a higher rate than they can be processed,
hence they pile up in the queues of local devices that keep
growing and execution times typically exceed 50s. For EC
or IC, congestion becomes more pronounced when D grows
from 4 to 8, and when image resolution increases from HD to
UHD. Only in the case of IC with D = 4 we get reasonable
performance for all image resolutions (most tasks take ≤ 5s).

LD/EC and LD/IC configurations have significantly better
performance compare to plain EC and IC, respectively, except
again in the IC case with D = 4. For instance, for UHD
images and D = 8, the median execution time improves from
154.5s in EC to 33.5s in LD/EC, and from 57.9s in IC to 9s
in LD/IC. With LD/EC and LD/IC, the offloading strategy is
able to adjust dynamically to EC or IC congestion by running a
fraction of tasks locally, especially in the case of UHD images.

(a) Execution time (seconds).
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Fig. 6: Results for G = 1, D ∈ {4, 8}, λ = 96.

This can be seen in Fig. 5 (b) as in these configurations the
share of tasks executed at the LD level increases with image
resolution. In the EC case, this share ranges from 18% (SD)
to 28% (UHD) for D = 4, and 51% (SD) to 55% (UHD)
for D = 8. In the IC case, for D = 4 we have a significant
share only for UHD images, 21%, and for D = 8 the share is
marginal for SD, 11% for HD, and 39% for UHD.

The hybrid EC/IC and LD/EC/IC configurations are the
ones that scale better with the increase in devices or image
resolution, and also provide the best comparative results in
almost all cases. The task distributions again show that higher
image resolutions equate with similarly higher ratios of EC
offloading, due to high network overheads at the IC level, and
for UHD images also a relevant share of LD execution: 11%
for D = 4 and 20% for D = 8. It is also worth noting that for
D = 4, the share of EC offloading is significantly higher than
for D = 8, and in fact exceeds the IC share for HD and UHD
images. In the most extreme case the IC share is lower than
18% in the LD/EC/IC configuration for UHD images. Higher
networking overheads at the IC level justify the preference for
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Fig. 7: Execution time (seconds) for different offloading strate-
gies — ND/EC/IC, G = 1, D = 8, λ = 96.

EC. On the other hand, for D = 8, since the task workload is
higher, we get a more significant share of IC offloads, ranging
from 71% (SD) to 36% (UHD).

3) Single-device task generation: To evaluate the impact
of ND configurations, we consider a scenario where only one
device generates tasks (G = 1), while all others act only as
workers. The results are shown in Fig. 6, with the same layout
as for the multi-device scenario. We fixed a task generation
rate of λ = 96 tasks per minute to match the combined rate
of 8 devices in the previous scenario (λ = 12 × 8 = 96).
We also considered settings with D = 4 and D = 8, where
D − 1 devices act as workers; in this case, more devices
equate with more computational resources, whilst previously
more devices equated with increased workload (as all devices
generated tasks).

The results are overall similar to the previous multi-device
scenario, except for the consideration of ND that offers addi-
tional insights. As shown, the ND standalone configurations
offer poor performance, even if they predictably improve as
the number of devices grow (from D = 4 to 8). How-
ever, ND-hybrid configurations clearly improve performance,
particularly compared with LD-hybrid configurations, e.g.,
the median execution times for UHD images are 15.5s for
LD/EC/IC, 10.7s for ND/EC/IC with D = 4, and 8.6s for
ND/EC/IC with D = 8. The fraction of ND-offloaded tasks
increases from D = 4 to D = 8 and image resolution,
alleviating congestion at the EC, IC, or LD levels. For instance,
in the case where images are UHD and D = 8, the ND share
is 49% both for ND/EC and ND/IC, and 14% for NC/EC/IC.

4) Variation of offloading strategies: To explore the impact
of distinct dynamic offloading strategies on performance, an
additional experiment was conducted. We considered a base
scenario with a single task generator and 7 workers (D = 8
and G = 1, as discussed above), using the ND/EC/IC configu-
ration (the most heterogeneous of all considered). We compare
three offloading strategies: C+N) the dynamic offloading strat-
egy of previous scenarios, accounting for both computation

and networking overhead information available at runtime (as
specified by Equation 3 in Section II); C) that just accounts for
computation overhead (a variation of Equation 3, but omitting
the n term for networking overheads); and R) a offloading
strategy that randomly assigns tasks to available nodes (LD,
devices in the ND, EC, IC with a uniform distribution).

The execution times are depicted in Fig. 7. The compar-
ison between the C+N and C results demonstrate that not
accounting for network overheads (in the C strategy), specially
in the UHD case when these overheads are more significant
(e.g., 8.6s for C+N vs. 16.1s for C in terms of the median
execution time), clearly leads to degraded performance. The
results for R are very poor (the median execution time is
> 40s), illustrating the extreme case where any sort of runtime
adaptivity is absent.

V. RELATED WORK

JAY follows up on previous research work in the Hyrax
project4, where we mostly dealt with data offloading ap-
plications and related challenges in edge clouds [13–15],
rather than computation offloading with the exception of P3-
Mobile [16], a system for computation offloading with an
underlying parallel programming model.

Overall, JAY provides a framework for the evaluation of
computation offloading in distinct and possibly quite het-
erogeneous cloud environments, including the most common
research approaches for which we now provide a brief survey.

Offloading computations from mobile devices to the cloud,
in line with with the Mobile Cloud Computing (MCC)
paradigm [1] usually has the purpose of speeding up computa-
tion and lowering battery consumption in mobile devices, for
instance as in CloneCloud [17], Cuckoo [18], or MAUI [19].

While MCC is a good fit for many scenarios, high network
latencies, sub-optimal use of data locality, and the need for a
permanent connection to the Internet are significant factors for
many (hyperlocal) application scenarios. The increasing com-
puting power and networking capabilities of mobile devices
led to the consideration of Mobile Edge Clouds (MECs) which
are formed by a neighborhood of devices [2, 20]. MECs may
take advantage of data locality, as data is usually produced at
the edge, and of low network latencies afforded by local WiFi
networks or D2D variants like WiFi-Direct that do not require
any infrastructural support. Offloading in MECs is considered
under several forms in systems such as FemtoClouds [21],
mClouds [22], MobileStorm [23], or P3-Mobile [16].

Cloudlets [3] are less-powerful servers that are placed at
the edge that overcome the network latency associated with
sending large amounts of data to cloud infrastructures, while
providing computational “muscle” to edge-clouds when the
hardware resources of the devices are not sufficient. Systems
like CloudAP [24] or MAPCloud [25] demonstrate that two-
tier cloudlet/cloud offloading can improve efficiency, and
mCloud [26] also considers mobile devices as possible offload-
ing targets. Hybrid architectures are also considered in simu-
lation frameworks like EdgeCloudSim [27] or MobEmu [28].

4https://hyrax.dcc.fc.up.pt
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VI. CONCLUSION

In this paper we described JAY, a parametric framework to
explore task offloading strategies in hybrid cloud configura-
tions and their impact on performance. As a proof-of-concept,
we made use of a case-study application that concerned the
use of a TF/TFLite model for object detection in images. The
case-study allowed us to expose performance compromises
and bottlenecks for different choices of cloud configurations,
workloads, and offloading strategies.

The key highlight is that the use of computational resources
at distinct networking tiers (mobile edge cloud, cloudlets,
infrastructure clouds), partly or fully combined, can improve
the performance of an application through task offloading,
by alleviating or eliminating the bottlenecks that result from
the congestion of computation and/or networking resources.
In particular, the results show that edge resources, in the
form of mobile edge clouds or cloudlets, are a very relevant
complement or even alternative to infrastructure clouds, for
scenarios where data is generated at the edge and high band-
width is required. Moreover, through the adaptive offloading
strategy we implemented in JAY and used in our case-study,
we demonstrated that significant performance improvements
can be achieved in terms of task completion times over static
cloudlet/cloud offloading or strictly local execution.

In the future, we are interested in pursuing further work on
JAY and related case-study applications by:
• evaluating different offloading strategies for other QoS

metrics beyond execution time like energy efficiency, the
costs of using an infrastructure cloud or mobile device
network traffic, strategies that seek to balance several QoS
metrics simultaneously, or fault-tolerance/resilience;

• considering more complex cloud configurations, for in-
stance those that provide access to GPU or TPU resources
in the case of DL applications, or those that have more
heterogenous distribution of resources in the network, as
it happens where more several cloud servers are available
in different data centres or edge servers associate to
different local networks, and, finally, those with more
dynamic mobile edge clouds where device churn can be
frequent, mobility may impair network availability, and
applications may involve interaction with IoT devices;

• implementing richer task models in JAY to contemplate
aspects such as QoS properties (e.g., deadlines or, for
DL tasks, the precision of results), task relations (e.g.,
precedences, data dependencies), checkpointing to allow
for preemption or migration, or task features that lead to
high irregularity in computation or networking overheads;

• and, in relation to the former points, conducting real-
world experiments involving users that exercise the sys-
tem instead of controlled benchmark settings, e.g., fol-
lowing up on our previous experiment concerning video
dissemination at sport venues [13], where we merely
studied data offloading but not computation offloading.
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