
Machine Learning Models for Indoor Positioning

Using Bluetooth RSSI and Video Data: A Case

Study

Tomás Mamede1, Nuno Silva1,
Eduardo R. B. Marques1,2, Lúıs M. B. Lopes1,2
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Abstract

Indoor Positioning Systems (IPS) are crucial tools in the devel-
opment of safe and efficient infrastructures. Achieving the precision
required by applications is a hard problem and has led to considerable
research in the area, from hardware and software viewpoints. The last
decade has seen a growing interest in applying machine learning (ML)
techniques in the development and deployment of IPS. In this paper,
we present a case study scenario of a proof-of-concept IPS for the Hall
of Biodiversity, a unit of the Natural History and Science Museum of
the University of Porto. The IPS is based on ML models derived from
datasets of RSSI signals from a Bluetooth beacon infrastructure and
images extracted from videos of the premises. Using ensemble tech-
niques, we also obtained hybrid models that combine the output of
the RSSI and video models. We evaluate all models using multiple
test datasets, including simulated visitor walks. We find that while
both RSSI and video models achieve overall good precision, they are
sensitive to factors such as multipath signals, low ambient light, and
differences in the mobile phone hardware. The ensemble models, on
the other hand, significantly improve precision and stability.
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1 Introduction

Indoor Positioning Systems (IPS) aim to find the position of persons or
objects inside buildings. They have manifold applications in the manage-
ment and safety of housing, commercial and industrial infrastructures. Cur-
rent IPS utilize multiple technologies, including Inertial Measurement Units
(IMU), Radio Frequency ID (RFID), Near-Field Communication (NFC),
Wi-Fi, Bluetooth, UWB, Visible Light Communication (VLC), and cam-
eras, complemented by algorithms that extract positions from the hardware-
generated data [8, 13]. Recently, there has been considerable interest in us-
ing data fusion and Machine Learning (ML) techniques to handle the data
provided by sensors and produce models that can be used as the core com-
ponents of IPS [23, 26, 36].

Here, we present a proof-of-concept of an Indoor Location-Based System
(ILBS) for the Hall of Biodiversity (just Hall henceforth, Figure 1), part of
the Natural History and Science Museum of the University of Porto1. The
system should accurately predict the location of visitors and suggest addi-
tional experiences such as videos, augmented reality, games, and targeted
publicity for the museum store. The building where the Hall is located is
an architectural landmark of the city. Therefore, the IPS system that sup-
ported the ILBS was designed to be non-intrusive, seamless to deploy, and
low-cost. The setup includes a mesh of Bluetooth beacons deployed in the
rooms on the first floor of the building. These are controlled via a software
management system that processes telemetry from the beacons and allows
commands to be sent to them. This was an evolution of previous work, in
which we utilized the Hall and its gardens — the Botanical Garden of the
University of Porto — as a test bench [27, 28].

In this setting, we used a prototype mobile application to register the
Received Signal Strength Indicator (RSSI) data from the Bluetooth beacons.
The application also acquired video data from which frames were later ex-
tracted. The data was collected by visiting the premises and walking around
the rooms in predefined patterns to acquire enough RSSI and image data
for each space. The raw data was stored in the device’s local drive and later
transferred to cloud storage for further processing and construction of the
datasets.

We extend preliminary work [19] by using Python’s scikit-learn toolkit
to derive several ML models (AdaBoost, Decision Tree, Gradient Boost, k-
Nearest Neighbors, Linear SVM, Multi-layer Perceptron, Random Forest,

1https://mhnc.up.pt/galeria-da-biodiversidade/
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Figure 1: Panoramic view of the atrium at the Hall of Biodiversity. Cred-
its: Ecsite/Ciência Viva/MHNC-UP. Courtesy of the Natural History and
Science Museum of the University of Porto.

and Radial Basis Function) for the RSSI dataset. For video data, we em-
ploy transfer learning to derive deep learning models from the image dataset,
based on pre-trained TensorFlow instances of state-of-the-art CNN architec-
tures. Finally, we combined the best RSSI and CNN models using ensemble
techniques.

Here, we present the complete process: deploying the Bluetooth beacons,
gathering the raw RSSI and video data, creating and curating the datasets,
deriving ML models, and evaluating the models. The main contributions of
this paper can thus be summarized as follows:

1. the RSSI and video datasets;

2. ML models based on RSSI data;

3. ML models based on video data and using transfer learning;

4. hybrid ML models combining RSSI and video models using ensembles;

5. an evaluation of all the models;

6. the datasets and Python notebooks used in the analysis [20].
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The remainder of this paper is structured as follows. Section 2 describes
the current state-of-the-art of IPS focusing on ML techniques. Section 3 de-
tails our materials and methods concerning the deployment of the Bluetooth
beacon mesh at the Hall, the construction of the RSSI and video datasets,
and finally the generation of the models from the datasets using scikit-learn
and TensorFlow. Section 4 presents the results obtained with the ML mod-
els for the RSSI, video, and hybrid models. Finally, Section 5 discusses the
main results and suggests some directions for future research.

2 Related work

The last decade has seen an increasing interest in using ML techniques to
develop IPS [23, 26, 36]. Most systems use data from Wi-Fi, Bluetooth,
and UWB to feed ML algorithms and produce models that can be used as
the core of an IPS. Other systems use Visible Light Communication (VLC),
and auxiliary data from webcams or CCTV security cameras to mitigate the
problems of radio signal-based IPS, e.g., structural interference, reflection,
and diffraction. Other trends that can be observed are the increasing so-
phistication of the sensors onboard mobile devices [5] and multimodal IPS
that fuse data from multiple sensors to improve accuracy. In the remainder
of this section, we overview the state-of-the-art on IPS systems, emphasizing
contributions closer to our work.

In an early article, Martin et al. [21] study the possibility of using multi-
ple embedded sensors in smartphones - e.g., Wi-Fi and cellular transceivers,
accelerometers, and magnetometers - to produce a multimodal IPS using
novel methods for the statistical treatment of the data. Song et al. [30]
use Convolutional Neural Networks (CNN) trained with Wi-Fi fingerprints
to produce models capable of multi-building and multi-floor classification.
Adege et al. [2] also use CNN but train the networks with raw Channel
Impulse Response (CIR) obtained from UWB radios. Koutris et al. [15] ad-
vocate a deep learning-based IPS trained with Bluetooth LE radio signals.
Bregar et al. [6] present an IPS using Non-Line-of-Sight (NLoS) channel
classification and ranging error regression models based on neural networks
using the TensorFlow framework. Lukito et al. [17] use Recurrent Neural
Networks (RNN) trained on Wi-Fi signals to build an indoor positioning
system. Chen et al. [7] combine Wi-Fi signals, Pedestrian Dead Reckoning
(PDR) data, and other landmarks with Kalman filters to predict positions.
Robesaat et al. [25] also use Kalman filters. In this case, Bluetooth Low En-
ergy (BLE) is used to avoid excessive energy consumption and improve the
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stability of the received signal strength. Duque Domingo et al. [9] present an
IPS based on Wi-Fi signal data from smartphones and surveillance cameras.
Oh and Kim [24] use LED-based VLC technology as the input for training
deep learning networks.

Several authors have recently focused on combining deep learning tech-
niques with complementary methods to improve accuracy, namely using data
fusion techniques [36]. Ashraf et al. [4] put forward a multimodal IPS that
uses a deep learning-generated model trained with photos of a building to
improve the positioning predictions obtained from other sensors on a mo-
bile device. The system recognizes the current location by providing the
model with pictures of the premises taken on the fly with the camera on the
device. Abbas et al. [1] propose an IPS based on a stacked denoising auto-
encoder deep learning model and a probabilistic framework. Nabati and
Ghorashi [22] combine a deep neural network model for WiFi signals with
a state-based positioning method to accurately estimate locations. Tian et
al. [33] propose an IPS based on combining a Kalman filter with a Long Short
Term Memory (LSTM) network trained with UWB RSSI data. Turgut and
Kakisim [34] present a hybrid model that uses Long-Short-Term Memory
to capture long-term WiFi signal dependencies, and CNNs to extract local
spatial signal patterns. Alitaleshi et al. [3] propose an IPS based on a com-
bination of CNN and Extreme Learning Machine Auto-Encoders to reduce
input size and increase positioning accuracy.

Specific case studies are less common in the literature. The following
two are set in museums. Koniusz et al. [14] present an artwork identification
system based on a CNN-derived model trained with a large dataset of images
showcasing different art pieces - the piece identified implicitly provides the
application with the user’s position. Another example is provided by Majd
and Shafabakhsh [18] that shows how ML algorithms derive indoor positions
and can positively impact visitor experience, e.g., by providing automatic
guide methods.

3 Materials and methods

We now describe our materials and methods. These concern the deployment
of the Bluetooth beacon mesh at the Hall, the construction of the RSSI and
video datasets, and finally the generation of the models from the datasets
using scikit-learn and TensorFlow.
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3.1 Beacon deployment

(a) Qualcomm, Estimote and Nordic beacons.

(b) A beacon capsule, the telemetry gateway, and beacon deployment.

Figure 2: Beacons, capsules and deployment.

The first step towards building the RSSI and video frame datasets in-
volved planning and deploying the Bluetooth beacon infrastructure. The
following pre-requisites guided the choice of hardware:

• using low-cost, off-the-shelf devices;

• using well-established protocols such as Eddystone or iBeacon;

• compatibility with most mobile devices, and;

• low maintenance and good battery life.

The setting for the experiments was the first floor of the Hall. The floor
is organized into 15 rooms or spaces (e.g., stairs, elevator) that surround
a central open atrium. Each of the rooms contains installations designed
to provide innovative sensorial experiences while simultaneously conveying
information on biodiversity and evolution. We installed beacons in 13 of
these Regions Of Interest (ROI). The central atrium is the largest space and
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was further subdivided into 8 different ROIs, adding up to a total of 21 ROIs.
We used 27 beacons out of 31 installed (4 eventually malfunctioned during
the experiments) from three different manufacturers: Gimbal, Estimote,
and Nordic, using either Google’s Eddystone Bluetooth or Apple’s iBeacon
protocols (Figure 2a). To improve the SNR of the RSSI data, we developed a
partially shielded capsule to enclose the beacons so that the native isotropic
signal was made more directional. These capsules had the additional goal
of making the beacons inconspicuous. Figure 2b shows a Nordic beacon in
a prototype capsule made from cardboard - a definitive model would be in
3D-printed plastic; the Raspberry Pi-based telemetry gateway in loco, and
beacon capsules deployed over doors between rooms in the Hall. Figure 3
shows the floor layout and the Bluetooth beacons’ positions. The figure
also shows the ROI labels used in the datasets to identify the corresponding
areas on the floor.

TMA

SSDCDG

TS

AH

SA

DF

CN SN ES

G

H

A1

A8

A2

A6 A7

A3A4

A5

Figure 3: Beacon deployment and ROIs of the first floor of the Hall. Each
ROI has a theme and is named accordingly. Their names are as follows:

A3 - What’s that smell?; A6 - Ethical Principle; A1 - Dilution as a show;
A5 - Diversity of Sizes; A2 - Scientific principle; A7 - Spherical egg, ovoid
egg; A8 - Aesthetic principle; A4 - Economic principle; AH - Analogy and
homology; CN - To eat and not be eaten; DC - Diversity of colors; DF -

Diversity of shapes; DG - Genetic diversity versus uncertainty; ES -
Speciation; G - Biodiversity that speaks portuguese; H - Entrance; SA -

Artifical selection; SN - Natural selection; SS - Sexual selection; TS -
Theatre of senses; TMA - By land, sea and air.
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The deployment architecture (Figure 4) contains: (at our department) a
backend server that hosts management software, including a web interface
for administration and monitoring, and (at the Hall of Biodiversity) Blue-
tooth beacons, a telemetry gateway, mobile devices, and a local server that
feeds extra content to the mobile devices based on their positions.

The physical deployment of the beacons presented some challenges due
to the building’s nature: besides having restricted access to electrical out-
lets, the Hall building is classified as being of architectural and cultural
interest. Therefore, beacons had to be installed so that they were (almost)
invisible. The rooms also have high ceilings, so that, on average, beacons
were positioned in high places, e.g., over passages between rooms, resulting
in lower RSSI values. On the positive side, this freed them from interference
from the visitor crowds and physical obstacles such as the museum’s sci-art
installations.

Figure 4: System architecture.

Figure 5: A snapshot of the administrative interface.

The back-end server maintained a map of the beacon deployment in an
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internal database. The map associates beacons with specific ROIs in the
Hall and allows for the seamless addition of new beacons or the removal of
malfunctioning or redundant ones. Physically, the server was installed on
a remote virtual machine with 4 GB of RAM and 2 CPUs running Linux,
and was connected to the telemetry gateway located in the Hall building.
From there, it received real-time data from the beacons (e.g., battery charge,
microcontroller temperature), allowing an administrator to monitor the de-
ployment’s status and to send commands to the beacons using a graphical
interface as depicted in Figure 5.

3.2 Datasets

We describe the data acquisition process and the construction of the datasets
for BLE RSSI (BRSSI) and video data.

3.2.1 Data acquisition

The data acquisition was performed using a custom smartphone app writ-
ten in Kotlin and running on the Android operating system, developed with
Android Studio. The app is capable of recording video frames and BRSSI
measurements simultaneously. All BRSSI measurements were recorded (no
sampling took place), while video was captured at 30 frames per second.
For each recording session, two files were written to disk: (1) an MP4 for-
mat file containing the recorded video frames, and (2) a CSV file contain-
ing BRSSI measurements over the same period with records of the form:
[timestamp, beacon-id, brssi]. Using the two files after data acquisi-
tion, we cross-referenced video-frames and BRSSI measurements within the
same time frame, i.e., by aligning the timestamp of an BRSSI measurement
with a corresponding video frame.

We performed two types of data acquisition using two smartphone de-
vices: a Google Pixel 4 and a Xiaomi Redmi 9T. We first acquired data in
individual ROIs with model training in mind, consisting of circular move-
ments around each ROI for approximately 2 minutes. The purpose was to
define a base dataset used for training and a base test set. We then also ac-
quired data spanning all ROIs with a walking pattern, with ROIs traversed
in a particular order but no fixed pattern of movement within each ROI;
this data was used to define independent test sets that did not necessarily
conform with training data, since the user is walking rather than following a
circular movement around a ROI. We performed two such walks, each with a
different smartphone. The order of ROI traversal in each walk was a spiral-
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Figure 6: The order of ROI traversal during user walks.

like pattern illustrated in Figure 6: first, the lateral rooms were traversed
starting from SS and ending in H, followed by the atrium areas from A1 to
A8.

3.2.2 Dataset construction

Table 1: Datasets considered for model training and testing.

Id Description Time-span (m:s) #Items

TR Base training data 94:12 4710

TS Base test data 94:12 942

PW Walk data (from Google Pixel) 6:04 364

RW Walk data (from Xiaomi Redmi) 7:22 445

To build the datasets, we first conducted a pre-processing step on the
acquired raw data. For the video data, we picked one frame per second
of recording. For the same 1 second time window and for each beacon
detected, we merged all the corresponding BRSSI values by averaging their
values. Beacons not detected during these 1 second periods were assigned a
BRSSI default value of −200 dB, a value well below the standard range of
RSSI measurements, typically between −30 and −120 dB.

The resulting distilled data provided our training and test datasets.
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First, the data for individual ROI defined two different datasets, the base
training set (TR) and the base test set (TS) with an 80-20% train-test split.
As for the data from the walks, they were divided into two test sets according
to the device used: Google Pixel (PW) and Xiaomi Redmi (RW).

The characteristics of these datasets are summarised in Table 1. For
each dataset the time span of the data acquisition is indicated, along with
the number of data items. Note that the indicated time span is the same
for TR and TS, since these are data splits from the same base data.

3.3 Models

Using the datasets mentioned above, we derived three types of models using
BRSSI readings and/or video frames: (1) models trained only with BRSSI
data, using the scikit-learn API [29] and standard classification approaches;
(2) CNN models trained with video frames, using the TensorFlow API [32]
and a CNN transfer learning approach, and (3) hybrid models that combined
the outputs of BRSSI and CNN models using ensemble methods [10]. These
approaches are illustrated in Figure 7.

(a) BRSSI models. (b) CNN models. (c) Hybrid models.

Figure 7: Model development approaches.

3.3.1 BRSSI models

For the BRSSI models, we considered several types of established classifier
models and their corresponding core parameters available through the scikit-
learn API, as listed in Table 2.

We performed a grid search for each model type, using different values
for the core parameters. These values are in our supplementary material [20]
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Table 2: BRSSI model types and parameters considered during grid-search.

Model Grid-search parameters

AdaBoost number of estimators (n estimators),

learning rate (learning rate)

Decision Tree max. features for node split consideration
(max features), min. samples for node

split (min samples split)

Gradient Boost number of estimators (n estimators),

learning rate (learning rate)

K-Nearest Neighbors (KNN) number of neighbors (n neighbors),
weight function used in prediction
(weights), algorithm used to compute

the nearest neighbors (algorithm).

Linear SVM regularization parameter (C), max. itera-

tions (max iter)

Multi-layer Perceptron (MLP) number of layers and per-layer configura-
tion (hidden layer sizes), L2 regular-

ization term (alpha)

Random Forest number of estimators (n estimators),

max. tree depth (max depth)

Radial Basis Function (RBF) regularization parameter (C), max. itera-
tions (max iter)

(see the BRSSI train.ipynb notebook). The overall approach is illustrated
in Figure 7a. We note that the classifiers have multiple parameters made
available through the API and that our grid search covered the most impor-
tant parameters for each type of classifier.

Once a set of parameters was selected for each classifier, we used the
BRSSI training data with a 4-fold split cross-validation strategy. This means
that the data was split into 4 equal splits, such that a different model was
derived using 3 of the splits as proper training data, and the remaining
split was used as test data to evaluate accuracy. For instance, in the case
of Random Forest, we derived 24 = 4 × 2 × 3 different models (4 splits, 2
grid-search parameters, and 3 values for each grid-search parameter).

3.3.2 CNN models

We consider the training of several CNN models using the video images,
resorting to transfer learning. In this approach, a pre-trained CNN is reused
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in a different domain by replacing (only) the final output layer with a new
one for the new domain at stake. This is illustrated in Figure 7b. If the
CNN has been pre-trained on a large and general dataset, it will capture
generic features encoded in a feature vector, a level above the output layer.
This vector may be adapted to a new domain. Only the weights of the
fully-connected interconnection between the feature vector layer and the
domain-specific output layer need training, resulting in a small computation
time.

Table 3: Architectures considered for CNN models using transfer learn-
ing (FV: feature vector dimension; P: total CNN parameters including pre-
trained parameters in millions).

Model FV P

InceptionV1 1024 5.6

InceptionV2 1024 10.1

MobileNetV1 1024 3.2

MobileNetV2 1280 2.3

MobileNetV3 1024 1.5

NasNet Mobile 1056 4.3

ResNetV1 2048 23.5

ResNetV2 2048 23.6

For our models, we consider transfer learning based on trained instances
of some of the most popular state-of-the-art CNN architectures, listed in
Table 3. For homogeneity, all CNNs obey the following conditions: all
were obtained from Google’s Kaggle repository [11]; all were pre-trained on
the ImageNet ILSVRC 2012 dataset [16], and all have a 224 × 224 input
image shape dimension. These CNNs differ in their internal architecture
(e.g., depth, layer types), namely the size of their feature vectors (i.e., num-
ber of features captured by the model). The transfer learning process was
programmed using the TensorFlow Keras API (see the CNN Train.ipynb

notebook in our supplementary material [20]). We follow a standard pro-
gramming recipe for transfer learning using the TensorFlow API (c.f. [12]),
complemented by a dropout layer between the feature vector and output
layer to prevent overfitting. This is a standard technique by which a frac-
tion of the weights are randomly disabled during training. All CNNs were
(re-)trained for 25 epochs, and a dropout factor of 0.2 was used.
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3.3.3 Hybrid models

We considered hybrid models that receive BRSSI measurements and cam-
era images using ensemble methods [10]. These combine the outputs of the
BRSSI and CNN models, as illustrated in Figure 7c. Specifically, for simul-
taneous BRSSI and image data, we first fed each type of data to one of the
BRSSI models and one of the CNN models. The two outputs obtained, each
a probability score for the museum room labels, were fed to the hybrid model
that produced a new probability score. We considered ensemble methods
based on two approaches: (1) soft voting, which worked by simply averag-
ing the outputs of the BRSSI and CNN models, and (2) stacking, which
trained a meta-model using the BRSSI/CNN’s model outputs. For the lat-
ter approach, we considered meta-models using three approaches: logistic
regression, K-nearest neighbors, and random forest.

4 Results

In this section, we present the results obtained for the BRSSI, CNN, and
hybrid models. The metric we use for performance analysis is accuracy,
expressed as the fraction of correct predictions output by a model:

accuracy =
TP + TN

TP + TN + FP + FN

where TP, TN, FP and FN are, respectively, true positives, true negatives,
false positives and false negatives. A prediction for a given input data is the
label with the highest output score returned by the model, and is correct
if it matches the ground truth associated with that data item. Beyond
these baseline results, we also present results regarding the behavior of the
models as a function of the ROIs and the devices used for capturing data.
The former analyses the sensitivity of BRSSI models in the presence of
multipath signals and Bluetooth coverage, and of CNN models in open areas
where multiple installations may be visible and induce confusion. The latter
highlights the impact of device-specific technology, such as transducers and
photographic sensors, on the performance of the models.

4.1 BRSSI models

The accuracy results for the BRSSI models over the test datasets are de-
picted in Figure 8. We first observe that, except for AdaBoost, the accuracy
for TS is always significantly higher than for the RW and PW walk datasets.
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This is unsurprising, since TS data corresponds to data acquired in the same
conditions as the model training data, which is not the case for both PW
and RW (cf. Section 3.2). Moreover, comparing PW and RW, the accuracy
for PW is always higher, with a very significant difference except in the case
of the GradientBoost and RandomForest models where this difference is
only of 0.03 (0.79 vs 0.76 for GradientBoost, and 0.85 vs. 0.82 for Random-
Forest). These two models also yield the best performances overall. Their
accuracy values are higher than 0.75 in all cases and 0.90 or higher for TS,
with RandomForest outperforming GradientBoost slightly in all datasets.
The remaining models tend to have significantly lower accuracy, ranging
from 0.59 to 0.80 for TS, 0.55 to 0.74 for PW, and 0.41 to 0.60 for RW.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AdaBoost

DecisionTree

GradientBoost

KNN

LinearSVM

MLP

RandomForest

RBFSVM
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0.90
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0.92

0.78

0.72
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0.65

0.85

0.69

0.53

0.54

0.76

0.41

0.63

0.49

0.82

0.60 TS PW RW

Figure 8: Accuracy of the BRSSI models over the test datasets.

4.2 CNN models

The accuracy results for the BRSSI models over the test datasets are de-
picted in Figure 9. Compared to the BRSSI model, the results for the
CNN models are more homogeneous, especially considering each dataset
individually. Despite the different CNN network architectures, the underly-
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Figure 9: Accuracy of the CNN models over the test datasets.

ing abstractions and model capabilities are similar (cf. Section 3.3.2). The
overall accuracy ranges from 0.83 to 0.91 for TS, 0.62 to 0.68 for PW, and
0.72 to 0.79 for RW. The best-performing models are MobileNetV1 and Mo-
bileNetV3, but only by a small margin. For all models, the accuracy is
higher for TS, as expected, and also observed for the BRSSI models. Inter-
estingly, all models performed better for RW than for PW. This behavior is
exactly the opposite of that of the BRSSI models.

4.3 Hybrid models

The accuracy results for the hybrid models over the test datasets are de-
picted in Figure 10. The models at stake are defined using ensemble methods
(c.f. Section 3.3.2), combining the RandomForest BRSSI model and the Mo-
bileNetV1 CNN model, the best-performing models for BRSSI and image
data, respectively. The accuracy results for these baseline models are re-
peated at the bottom of the figure for easy comparison. First, we observe
that the results are quite homogenous across the hybrid models with differ-
ences in accuracy per dataset not exceeding 0.05 (0.91 vs. 0.86 in the case of

16



0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

SoftVoting

KNN

LogisticRegression

RandomForest

BRSSI (RandomForest)

CNN (MobileNetV1)

0.98

0.98

0.98

0.96

0.92

0.91

0.82

0.85

0.86

0.84

0.85

0.67

0.91

0.90

0.91

0.86

0.82

0.79
TS PW RW

Figure 10: Accuracy of the hybrid models over the test datasets.

RW is the highest such difference). Moreover, the accuracy is at least 0.96
for TS, 0.82 for PW, and 0.86 for RW. Compared to the baseline BRSSI
and CNN models, their hybrid kin show clear improvements, except in the
case of PW/BRSSI (baseline accuracy of 0.85) where the accuracy is slightly
worse for RandomForest (0.84) and for SoftVoting (0.82).

4.4 Complementary results

Model accuracy vs device type

During the analysis above, we observed significant differences between the
results obtained using data from the two smartphones at hand: the Google
Pixel and Xiaomi Redmi. To study this effect, we derived models using data
from each device individually. For these models, we measured the accuracy
over the partitions of the base test dataset that pertain to each device, be-
sides the walk datasets that are already device-specific. The derived BRSSI,
CNN, and hybrid models are instances of the best-performing variants re-
ported in previous sections: RandomForest for BRSSI, MobileNetV1 for
CNN, and LogisticRegression for hybrid. Figure 11 shows the results for
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(a) BRSSI models.
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(b) CNN models.
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Figure 11: Results as a function of device, and training and test data.

the three test datasets, as in previous sections, but also for the Pixel TS
(PTS) and Redmi TS (RTS) partitions of the base test set (TS). In each
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plot, the accuracy of three models for all datasets is shown: (top) for the
model created with both Pixel and Redmi training data; (middle) a model
created using Pixel data only, and (bottom) a model created using Redmi
data only.

We observe differences in model accuracy originating from the data col-
lected by the two devices. In particular, observing the results for PTS
and RTS, the models trained only with Pixel data have much better accu-
racy for PTS (the Pixel partition of TS) than for RTS: 0.95 vs. 0.49 for
the BRSSI model (RandomForest Pixel), 0.92 vs. 0.73 for the CNN model
(MobileNetV1 Pixel), and 0.98 vs. 0.81 for the hybrid model (LogisticRe-
gression Pixel). A similar situation is observed for models trained only with
Redmi data, where the accuracy is much better for RTS than PTS: 0.90
vs. 0.62 for the BRSSI model (RandomForest Redmi), 0.90 vs. 0.71 for the
CNN model (MobileNetV1 Redmi), and 0.99 vs. 0.82 for the hybrid model
(LogisticRegression Redmi).

While we didn’t identify a definitive cause for these results, the above
pattern suggests that they may stem from differences in the hardware com-
ponents, namely, the transducers and imaging sensors. Image classification
algorithms using CNN, for example, are known to be sensitive to noise lev-
els in the training and input images [31, 35], and the imaging sensors in the
Pixel and Redmi devices have distinct specifications that affect noise (e.g.,
pixel size, read noise, thermal noise, quantum efficiency).

Model accuracy vs location in the Hall

We now measure the accuracy of the models in the ROIs we defined. For
each of the datasets in Figure 12, we consider two cases: the atrium ROIs
vs. other (non-atrium) ROIs. Recall that (cf. Figure 3) the A1-A8 ROIs
are co-located in a big atrium room, while the other ROIs are each located
in their own rooms. In the absence of obstacles, the accuracy of the atrium
ROIs may thus be affected by similarities in Bluetooth RSSI signals and
background/foreground objects captured in video. Indeed, we find that the
accuracy is lower in the atrium ROIs for all datasets in the BRSSI and
hybrid models (12a and 12c, respectively). As for the CNN model (12b),
the results are less clear-cut: the accuracy is higher for the atrium labels for
the TS and RW datasets, and lower only in the case of the PW dataset.

Figure 13 shows the confusion matrices for each model-dataset combi-
nation. For each matrix, the x-axis indicates the predicted ROI, the y-axis
indicates the ground truth ROI, and the diagonal square for each ROI indi-
cates the fraction of correctly classified items. For the TS dataset (confusion
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Figure 12: Results for atrium and non-atrium ROIs.

matrices shown in the left column), the performance is relatively uniform
with only slight dispersion from the diagonal. For the PW dataset (middle
column), we observe significant confusion in the atrium labels (upper-left
part of the matrices - labels A1 to A8), especially for the CNN model.
This confusion is partly inherited by the hybrid model, which still performs
slightly worse than the BRSSI model. Finally, for the RW dataset (right col-
umn), while the results for the atrium are better than those for PW, there
is still some dispersion due to other ROIs (e.g., CN, ES, SS, TMA - lower
right of the matrices). This dispersion is also visible for the PW dataset.
Here, the hybrid model nicely handles these cases and significantly improves
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Figure 13: Confusion matrices for model/test-dataset combinations.
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accuracy.

5 Conclusions

Using BRSSI and video frame datasets, we generated multiple models for
an IPS at the Hall of Biodiversity, a unit of the Museum of Natural History
and Science of the University of Porto. The BRSSI data originated from
a deployment of Bluetooth beacons on one of the building’s floors. The
video data was obtained using the cameras on mobile phones in the same
locations. Both were collected and timestamped using a custom Android
applicatios. This raw data, after refinement and further processing, resulted
in several training and test datasets that were used to generate the ML
models with the help of scikit-learn and TensorFlow. We then tested the
models to determine their predictive power and properties. The video and
the best-performing BRSSI models were then combined into an ensemble-
based hybrid model using different fusion strategies. The BRSSI dataset, the
video dataset, and the Jupyter notebooks used in training and evaluating
the models are available from a GitHub repository registered at Zenodo [20].

Overall, the models obtained feature high accuracy, typically above 0.9
for TS, the base test set, and 0.6-0.9 for PW and RW, complementary test
sets that simulated user walks. For the BRSSI Models, the accuracy for
TS is always significantly higher than for the RW and PW walk datasets.
This is unsurprising, since TS data corresponds to data acquired in the same
conditions as the model training data, which is not the case for both PW
and RW. Moreover, comparing PW and RW, the accuracy for PW is always
higher. As for the CNN Models, the results are more homogeneous, despite
the different CNN network architectures that we experimented with. The
accuracy is higher for TS, as expected, and also observed for the BRSSI
models. All models performed better for RW than for PW; the opposite
trend was observed for the BRSSI models. Finally, for Hybrid Models, the
results are quite homogeneous across the hybrid models and have higher
accuracies than the BRSSI and CNN models. Overall, they improve accu-
racy and stability. We also observe differences in model accuracy originating
from the data collected by the two devices. We attribute this to variations
in the hardware components, namely, the transducers and imaging sensors.
The results confirm the atrium as the most problematic space in the Hall
for both the BRSSI and video models. To a lesser degree, other ROIs were
identified where one of the models struggles to produce a sound prediction.
In all these contexts, we found that the hybrid model significantly improves
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the accuracy. Our results show that while both BRSSI and video models
achieve overall good precision, they are sensitive to factors such as multi-
path signals, low ambient light, and also differences in the mobile phone
hardware. The ensemble-based hybrid models, on the other hand, provide
higher precision and better stability.

We intend to provide the models as components for mobile applications
to be developed for the Hall of Biodiversity. Integrated into mobile apps,
the models provide spatial and temporal information that can be used to
improve the visiting experience. For example, for a given installation nearby,
the apps can offer extra documents, multimedia, and augmented reality and
gamification experiences. The data can also be used to produce valuable
analytics such as visitor profiles based on the path taken and time spent in
specific parts of the collection. This can be used to suggest further collec-
tions to visit, upcoming events, or museum merchandising. Furthermore, we
intend to continue experimenting with the models and improve the granu-
larity of the output, so that instead of obtaining the name of the room, we
can get a definite position in space. This might be interesting in situations
where multiple installations are located in the same room and extra spatial
resolution is required. This could be achieved by replacing the Bluetooth
infrastructure with Wi-Fi RTT or UWB at extra (financial) cost. Finally, to
mitigate the sensitivity of the results to the characteristics of mobile devices,
our methodology can be improved with techniques for data normalisation
and the use of more devices as sources of training data.

Author Contributions

Conceptualization: all authors; methodology, all authors; software, all au-
thors; validation, E.R.B.M. and L.M.B.L.; writing—original draft prepa-
ration, E.R.B.M. and L.M.B.L. ; project administration, E.R.B.M. and
L.M.B.L.; funding acquisition, E.R.B.M. and L.M.B.L. All authors have
read and agreed to the published version of the manuscript.

Funding

This research was partially funded by projects SafeCities and Augmanity
(POCI-01-0247-FEDER-041435 and -046103, through COMPETE 2020 and
Portugal 2020), by Fundação para a Ciência e Tecnologia (UIDB/50014/2020),
and by the Google Cloud Research Credits program.

23



Data Availability Statement

Our paper is supplemented by datasets and Jupyter notebooks, available
from Zenodo. The URL is https://doi.org/10.5281/zenodo.15980462.

Acknowledgements

We thank Nuno Ferrand and Maria João Fonseca for the opportunity to
develop this work in the premises of the Hall of Biodiversity of the Natural
History and Science Museum of the University of Porto.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Abbas, M. Elhamshary, H. Rizk, M. Torki, and M. Youssef. WiDeep:
WiFi-based Accurate and Robust Indoor Localization System using
Deep Learning. In 2019 IEEE International Conference on Pervasive
Computing and Communications (PerCom’19), pages 1–10, 2019.

[2] A. B. Adege, H.-P. Lin, G. B. Tarekegn, and S.-S. Jeng. Applying deep
neural network (DNN) for robust indoor localization in multi-building
environment. Applied Sciences, 8(7):1062, 2018.

[3] A. Alitaleshi, H. Jazayeriy, and J. Kazemitabar. EA-CNN: A smart
indoor 3D positioning scheme based on Wi-Fi fingerprinting and deep
learning. Engineering Applications of Artificial Intelligence, 117, article
#105509, 2023.

[4] I. Ashraf, S. Hur, and Y. Park. Application of deep convolutional
neural networks and smartphone sensors for indoor localization. Applied
Sciences, 9(11):2337, 2019.

[5] I. Ashraf, S. Hur, and Y. Park. Smartphone Sensor Based Indoor Po-
sitioning: Current Status, Opportunities, and Future Challenges. Elec-
tronics, 9(6), 2020.

24

https://doi.org/10.5281/zenodo.15980462
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